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Measuring heterogeneity in urban expansion via spatial entropy

L. Altieri1, D. Cocchi, G. Roli

Abstract

The lack of efficiency in urban diffusion is a debated issue, important for biologists, urban

specialists, planners and statisticians, both in developed and new developing countries. Many

approaches have been considered to measure urban sprawl, roughly identified as chaotic ur-

ban expansion; such idea of chaos is here linked to the concept of entropy. Entropy, firstly

introduced in information theory, has rapidly become a standard tool in ecology, biology and

geography to measure the degree of heterogeneity among observations; in such contexts, en-

tropy measures should include spatial information. The aim of this paper is to employ a rig-

orous spatial entropy based approach to measure urban sprawl associated to the diffusion of

metropolitan cities. In order to assess the performance of the considered measures, a compar-

ative study is run over archetypical urban scenarios; afterwards, measures are used to quantify

the degree of disorder in the urban expansion of three cities in Europe. Results are easily inter-

pretable and can be used both as absolute measures of urban sprawl and for comparison over

space and time.

Keywords: urban sprawl, environmental heterogeneity, spatial entropy, categorical

variables.
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1 Introduction

Urban sprawl is characterized by an uncontrolled development of cities into surrounding areas, and

has aroused wide social focus because the urbanization of a sprawled city is inefficient, dispersed

and may impede sustainable development. Rapid urban growth is quite alarming worldwide; the

phenomenon has different implications between developed and developing countries, thus the im-

portance of conducting research on this topic is strongly felt (Johnson, 2001; Ewing, 2008; Rosni

and Noor, 2016). Although an accurate definition of urban sprawl is still debated, the general

consensus is that urban sprawl is characterized by an ‘unplanned and uneven pattern of growth,

driven by a multitude of processes and leading to an inefficient resource utilization’ (Bhatta et al.,

2010). More definitions appear in Jaeger et al. (2010) and focus on the negative consequences of

sprawl. The negative impacts of urban sprawl concern many aspects, not only for human life qual-

ity (e.g. increased costs and time for transportation), but also for the environment. The dispersion

of urban areas increases pollution, waste of soil and soil consumption. This endangers ecosystems

and species, and reduces the availability of land for rural areas, water bodies, forests and other

natural areas (EEA and FOEN, 2016). In addition, urban sprawl does not foster climate changes

mitigation, even if variations in climate do not immediately fit with the velocity of an uncontrolled

urbanization. Indeed, any spatial planning strategy has a different impact on climate change (Bart,

2010; Stone, 2012), but the standard consequences of an uncontrolled urbanization concern strong

precipitation events, additional heat due to increased emissions of carbon dioxide and, in particular,

heat island effects. For the above reasons, urban sprawl is a major environmental issue as regards

land misuse, which ought to be associated with space. The environmental footprint of a city is a

broad concept that includes non-spatial aspects as well. Therefore, measurements of urban sprawl
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do not result in a general evaluation of the, usually negative, impact of a city on the environment. A

global assessment would require an integration of such measures with other environmental quality

indicators, and is beyond the scope of this work.

In Europe, urban sprawl is an increasingly serious issue linked to soil consumption and sealing

(EEA, 2006; Couch et al., 2007; EEA and FOEN, 2016). This drawback can be evaluated according

to several viewpoints. For instance, EEA and FOEN (2016) stress that the spatial configuration of

the built up areas is a fundamental component of urban proliferation. Different arguments in EEA

reports point out the impact of urban sprawl: the negative effects mentioned before are evident if

the costs for future generations are taken into account, and are related to the ideas of fragmentation,

degradation and consequences on ecosystems.

The literature about sprawl measurements is voluminous (e.g. Torrens, 2008; Bhatta et al.,

2010; Cabral et al., 2013; Ewing and Hamidi, 2015; Oueslati et al., 2015); the quantification of the

phenomenon develops according to different routes that keep into account alternative formulations

of demographic, social and economic variables. This is partly due to the difficulties of a unique

definition. Moreover, characterisation of sprawl in the literature is often narrative and subjective,

to the point that existing studies yield contrary results for the same cities in several cases (Torrens,

2008; Bhatta et al., 2010). A sprawl indicator should detect whether an unnecessary waste of

urbanised land occurs; one example of such indicator is the low level of population density over an

area. Sprawl may also be defined in cost terms, as in Benfield et al. (1999), or by ratios of urban

growth indicators (Ewing and Hamidi, 2015). A lot of sprawl measures are indeed based on ratios:

relative measures quantify attributes of urban growth and can be compared among cities, among

different zones within a city, or across different time points (Bhatta et al., 2010). Such ratios are

easy to interpret and receive a lot of discussion, but they are statistically poor. In order to capture
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different aspects that are related to sprawl, Jiang et al. (2007) proposed an integrated urban sprawl

measure that combines 13 indices; unfortunately, the final measure requires extensive inputs of

temporal data, and does not mention any threshold to characterise a city as sprawling.

Among the proposals for urban sprawl measurements, there is a number of spatial or landscape

metrics, that have long been used in landscape ecology. Landscape metrics aim at evaluating the

spatial pattern of land cover classes or entire landscape mosaics of a geographic area. Indeed,

the urbanization of a territory can be assessed according to the exhibited pattern of land cover

classes: a sprawled city is in contrast with a compact one, with ’empty’ (i.e. non-urban) spaces

and scattered urban areas denoting inefficient development. Consequently, land cover and land

use data are particularly suitable for urban sprawl measurements. Such data usually are vector

(polygonal) or raster (pixel) spatial data coming from remote sensing images, where the territory is

classified according to a finite number of categories defining the prevailing land use. A definition

about what land use classes are considered urban or non-urban is needed, then the pattern of urban

areas and its evolution over time can be exploited to quantify urban dispersion as lack of spatial

clustering (compactness) of the urban patch. For an approach to sprawl measurement based on a

comparative use of Moran’s Index with land use data, see Altieri et al. (2014).

One approach to measuring sprawl through landscape metrics is based on entropy measure,

for two main reasons: the need to deal with categorical variables and the detection of heterogene-

ity, i.e. lack of compactness, in the territory. Shannon’s entropy is used in several fields, such

as geography, ecology, biology, to assess the heterogeneity of a population over an area. Eco-

logical concepts, such as evenness and richness, are strictly related to heterogeneity, and entropy

represents the utmost index to measure heterogeneity in a dataset. In the context of urban sprawl,

entropy has proved to be a rigorous measurement tool (Yeh and Li, 2001) and is still a widely used
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technique, suitable for integration of remote sensing and GIS (Bhatta et al., 2010; Chong, 2017;

Liu and Chen, 2018). Entropy measures, being entirely based on the occurrences of realizations

of predefined categories, can be proposed and computed also in situations, like remote sensing,

where information is limited but extensively available. While entropy succeeds in working with

qualitative variables and quantifying the heterogeneity of a dataset, in its most known formulation

it suffers from the drawback of not considering the role of space as a source of heterogeneity in

determining the variable outcomes. Indeed, Shannon’s entropy is computed based on the propor-

tions of the land use classes (the common choice for estimating land use probabilities), not on their

spatial configurations, and two territories with the same proportions and very different degrees of

compactness for the urban tissue share the same entropy value. The urban sprawl issue is tightly

bonded to the spatial distribution of land use classes. Therefore, appropriate studies of sprawl

which make use of entropy measures should introduce spatial information.

Over the past decades, two main approaches have been adopted to include spatial information

into an entropy measure. Extending Theil’s work (1972), Batty (1974, 1976, 2010) introduced the

first approach by defining a spatial entropy measure accounting for unequal space partition into

sub-areas. In 2002, this proposal was modified by Karlström and Ceccato to satisfy the property of

additivity, i.e. to decompose the global index into local terms. Three main drawbacks of this ap-

proach can be underlined: such entropy can only be computed for a binary variable, the local terms

do not possess the properties of the global one, and results are heavily affected by the selected area

partition. Nevertheless, in the present work the approach proves to be informative in the context of

urban sprawl. The second approach to spatial entropy is based on a suitable transformation of the

study variable that accounts for the Euclidean distance between realizations (co-occurrences). The

main proposals are authored by O’Neill et al. (1988), Li and Reynolds (1993), Leibovici (2009)

5



and Leibovici et al. (2014), but such distance-based measures do not enjoy the additivity property

and rely on the choice of a single distance without capturing the behaviour of the studied variable

across distances. A recent work by Altieri et al. (2018a) fulfils desirable properties by propos-

ing a set of spatial entropy measures starting from the co-occurrence approach and focusing on

pairs of realizations. The resulting entropy is decomposed into the information due to space and

the remaining information brought by the variable itself once space is considered. The proposal

preserves additivity and disaggregates results, allowing for partial and global syntheses. The prop-

erties of spatial entropy measures make them an appealing tool to evaluate urban sprawl from a

spatial perspective. A spatial entropy measure is sensitive to the spatial dispersion of urban patches

over an area and may be able to separate the heterogeneity of land use data due to the lack of spatial

compactness from the heterogeneity due to other components. Such indices are also suitable for

delivering results across different areas of expertise.

The main aim of this work is to employ entropy for measuring urban sprawl in terms of spatial

compactness or dispersion. If sprawl is considered a negative condition and is measured by means

of spatial entropy, a low level of entropy is desirable, corresponding to a non-chaotic (compact)

urban configuration. We present a thorough assessment of the advantages and disadvantages of

a set of spatial entropy measures, which have not been employed in the context of urban sprawl

measurement yet, both with a comparative study on simulated data and via a case study on three

European cities. The simulation study compares spatial entropy values across the representative

urban configurations currently proposed in the literature (Tsai, 2005): the monocentric, the poly-

centric and the decentralized city. In addition, the results of the simulation study provide reliable

ranges of entropy values that may be used as reference intervals for assessing an indication of ur-

ban sprawl in real case studies, as in the application, where we propose an example of comparison
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over space and time.

The motivating case study comes from official European land use data. Such data are avail-

able for environmental aims, and a binary raster dataset is specifically produced, for a few time

points, for the evaluation of urban expansion (EEA, 2011); the dichotomization process divides

the land cover categories into urban and non-urban classes and provides a pixel grid, with pixel

size of 250×250 metres. The data production process ensures the appropriate resolution to analyse

the phenomenon of (inefficient) urban expansion over Europe, and also that the dichotomization

prevents from misinterpretation of the urban phenomenon. For example, urban parks are classified

within urban areas, in order to avoid underestimation of city compactness. Data possess the proper

quality and the right scale for the study at hand, and provide homogeneous information on a very

vast territory. Details on such classification are given in Section 4. We selected two time points,

1990 and 2012, for the commuting belts of three cities in Europe: Eindhoven, Lublin and Bologna

(also studied in Altieri et al., 2014). We chose these cities since they have similar geographical

extension and population amounts. In addition, they belong to countries with different levels of

urban sprawl (EEA, 2006), giving us the opportunity of exploring if different levels of sprawl are

also detectable at the city level.

The focus of this work is on the spatial aspect of inefficient urban development. Should this

be of interest, our results can be combined with measures integrating relevant demographic, social

or economical variables affecting urban sprawl, e.g. following the idea of EEA (2006), to grasp

the global environmental footprint of a city. Though spatial entropy is applied to the specific issue

of urban sprawl, the techniques illustrated in the present paper may be used for any environmen-

tal phenomenon whose spatial distribution and heterogeneity is of interest. The evaluation of the

abilities of such techniques is relevant for climate and meteorology studies, e.g. the spatial dis-
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tribution of metereological phenomena, for ecological purposes, e.g. species distribution (Altieri

et al., 2018a), for landscape and geographical studies, for the assessment of environmental risks,

e.g. earthquakes and wildfires, for atmospheric studies, e.g. polluting substances, and for disease

mapping.

In the present paper, in Section 2 we revisit the works by Batty (1974), Karlström and Cec-

cato (2002) under a unified statistical framework. We also illustrate the approach of Altieri et al.

(2018a) with a special focus on its use in urban sprawl studies. In Section 3, we build a simulation

study, which helps in comparing and discussing the performances of the two approaches for spatial

entropy measures under different urban scenarios. This is useful for further applications, since

the study covers the main urban configurations explored by the theory (Tsai, 2005), and also as a

contribution to the statistical theory of spatial entropy measures. In Section 4, the measures are

applied to the case study; this constitutes a further practical contribution to the discussion on urban

sprawl. Some concluding remarks can be found in Section 5.

This work is implemented in R (R Core Team, 2017). It makes use of the packages sp (Bivand

et al., 2013), spatstat (Baddeley et al., 2015) and dependencies, and of the recent package

SpatEntropy (Altieri et al., 2018b), now available on CRAN.

2 Spatial entropy measures for urban sprawl

In many environmental and urban studies, the definition of entropy coincides with Shannon’s for-

mula: given a categorical variable X with I possible outcomes, the entropy is

H(X) =
I∑

i=1

p(xi) log

(
1

p(xi)

)
(1)
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where p(xi) is the probability of the ith outcome, i = 1, . . . , I , and log (1/p(xi)) is the information

function, measuring the information brought by outcome xi (Cover and Thomas, 2006). Entropy

is a non-negative quantity, which quantifies the average ’information’ or ’surprise’ concerning X .

The more the categories of X are equally likely, the higher the entropy; if a category of X is far

more likely than others, the entropy is low, as one can predict the behaviour of X and data do not

carry much information. Thus, entropy synthesizes the heterogeneity of X in a single number;

data with very different spatial configurations but the same probability mass function for X share

the same entropy, which is not desirable in the context of urban sprawl. For example, an area

which is partly urbanized and partly rural may be either compact, with an urban nucleous and

rural surroundings, or dispersed, i.e. sprawled, with many small scattered urban areas. Shannon’s

entropy does not detect the difference in the two patterns and returns the same value when the

proportion of urbanized and non-urbanized territory is the same across the two configurations.

For this reason, an extension to spatial entropy is needed. The seminal attempt to extend (1)

into a spatial entropy measure, developed by Batty (1974), is presented in Section 2.1; its most

relevant extension, proposed by Karlström and Ceccato (2002), is sketched in Section 2.2. A recent

approach to spatial entropy, proposed by Altieri et al. (2018a), is in Section 2.3. The remainder of

this work shows that these measures are very suitable in distinguishing between urban compactness

and urban sprawl, though with theoretical differences and peculiar properties.

The spatial entropy measures presented in this Section make use of a few concepts. ’Space’,

in this work, is intended as the two-dimensional space, as everything is applied to geographical

maps. The ’observation window’ is a fixed, limited spatial region with known size and shape;

the spatial phenomenon under study potentially exists everywhere, but is only detected over the

observation window. The window is partitioned into ’spatial units’, which may be pixels, each
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carrying only one realization of X , or ’areas’, i.e. polygonal regions that may contain several

pixels; spatial units are defined via representative coordinate pairs, such as the unit centroids,

used to measure distances. ’Distances’ are always intended as the Euclidean distance on the two-

dimensional space. Moreover, the ideas of spatial adjacency and neighbourhood are fundamental

in Section 2.2 and 2.3. The concept of neighbourhood means that occurrences at certain spatial

units are influenced, in a positive or negative sense, by what happens at surrounding units, i.e.

their neighbours. The system can be represented by a graph (Bondy and Murty, 2008), where

each spatial unit corresponds to a vertex and neighbouring units are graphically connected by

edges. The simplest way of representing a neighbourhood system is via an adjacency matrix. In

the graph representation, for G vertices, A = {agg′}g,g′=1,...,G is a square G × G matrix such

that agg′ = 1 when there is an edge from vertex g to vertex g′, and agg′ = 0 otherwise. In an

observation window with G spatial units, the element of the square matrix agg′ = 1 if the unit

g′ ∈ N (g), the neighbourhood of unit g. In the standard definition of A, the diagonal elements are

all zero (Anselin, 1995). In the remainder of the paper, the word ’adjacent’ means ’neighbouring’,

i.e. connected in the graph, while the word ’contiguous’ is used for pixels or polygons sharing a

border on the map, i.e. for a topological contact.

The definition of entropy as a discrete random variable relies on categories’ probabilities. In

the literature and in the present work, spatial entropy measures are proposed as descriptive indices,

substituting the unknown probabilities with the observed relative frequencies, obtaining the non

parametric as well as the maximum likelihood entropy estimator (Paninski, 2003).
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2.1 Batty’s spatial entropy

A very appreciable attempt to include spatial information into Shannon’s entropy starts from a

reformulation of (1). This approach is proposed by Batty (1974; 1976) to define a spatial entropy

which extends Theil’s work (1972), and does not introduce the adjacency matrix yet. In a spatial

context, a phenomenon F (the binary case of the variable X , i.e. presence/absence) is detected

over an observation window. The window has size T and is partitioned into G areas of size Tg,

g = 1, . . . , G. The partition into G areas defines G dummy variables identifying the occurrence of

F over a generic area g. The occurrence of F in area g has probability pg, where
∑

g pg = 1. The

intensity of F over the area g is defined by λg = pg/Tg, where Tg is the area size, and is assumed

constant within each area. Shannon’s entropy of F follows, where ’categories’ are replaced by

’spatial units’:

H(F ) =
G∑

g=1

pg log

(
1

pg

)
=

G∑
g=1

λgTg log

(
1

λg

)
+

G∑
g=1

λgTg log

(
1

Tg

)
. (2)

Batty (1976) shows that the first term on the right hand side of the formula converges to the contin-

uous version of Shannon’s entropy (Rényi, 1961), namely the differential entropy, as the area size

Tg tends to zero, and rewrites it in terms of pg, giving Batty’s spatial entropy

HB(F ) =
G∑

g=1

pg log

(
Tg
pg

)
. (3)

It expresses the average amount of information brought by the occurrence of F over the areas, and

includes Tg, that accounts for unequal space partition. Analogously to Shannon’s entropy, which

is high when the I categories of X are equally likely in a non-spatial context, Batty’s entropy is

high when the phenomenon of interest F tends to be equally intense over the G areas partitioning

the observation window; its maximum value is log(T ), reached when λg = λ = 1/T for all g. The
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maximum value depends neither on the area partition, nor on the discrete or continuous nature of

F , but only on the size of the observation window. Batty’s entropy HB(F ) reaches a minimum

value equal to log(Tg∗) when pg∗ = 1 and pg = 0 for all g 6= g∗, with g∗ denoting the area with the

smallest size.

In conclusion, Batty’s entropy evaluates the heterogeneity in the intensity of a spatial phe-

nomenon; it reaches a maximum when the intensity is constant over the areas, irrespective of the

value of the intensity itself. When the target is to measure urban sprawl, F denotes the presence

of urbanization, and, for a reliable use of Batty’s entropy, the index must be computed on a city

as a whole, with a monocentric scenario (Tsai, 2005) as the archetype of a positive development.

With this assumption, a high level for Batty’s entropy is not desirable, as it indicates constant ur-

ban intensity, i.e. scattering of urban patches across regions, denoting sprawl. A low level, on

the contrary, indicates that some areas in the window have a very high urban density (usually, the

city centre) while others tend not to present urbanization (i.e. the outside areas). Therefore, when

Batty’s entropy is low the city is compact and a scarce level of sprawl is present. The measure

does not produce reliable results if applied to a sub-area of the city: for example, if only applied to

the city centre (divided into G districts), a very high degree of urbanization with constant intensity

over the selected area would be reflected by a high value for the entropy, wrongly detecting sprawl.

2.2 Karlström and Ceccato’s spatial entropy

A challenging attempt to introduce additive properties, and to include the idea of neighbourhood

in Batty’s entropy index (3) via an adjacency matrix, is due to Karlström and Ceccato (2002),

following the theory of Local Indices of Spatial Association (LISA, Anselin, 1995). Karlström
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and Ceccato’s entropy index HKC(F ) starts by weighting the probability of occurrence of F in a

given spatial area g, pg, with its neighbouring values:

p̃g =
G∑

g′=1

agg′pg′ . (4)

In this proposal, the adjacency matrix A is row-standardized, and the elements on the diagonal agg

are greater than zero for all g, i.e. each area neighbours itself and enters the computation of I(p̃g).

Then, an information function is defined, where Tg is discarded, as I(p̃g) = log (1/p̃g). Karlström

and Ceccato’s entropy index is

HKC(F ) =
G∑

g=1

pg log

(
1

p̃g

)
, (5)

which weights the new information function with the original probabilities, in contrast to the tra-

ditional formulation of Shannon’s entropy. The maximum of HKC(F ) does not depend on the

choice of the neighbourhood and is log(G). As the neighbourhood reduces, i.e. as A tends to the

identity matrix, HKC(F ) coincides with Batty’s spatial entropy (3) in the case of Tg = 1 for all

g (where the unit size depends on the measurement unit of the observation window). The sum of

local measures pgI(p̃g) constitutes the global index (5), preserving the LISA property of additivity.

One major disadvantage of (3) and (5) is that it is unable to consider a categorical variable X

with I > 2 outcomes, since only one category enters the measure. In other words, F may be a spe-

cific category of X , labelled as X∗i , and HKC(X
∗
i ) is computed to assess the spatial configuration

of the realizations of X∗i . Thus, for a X variable with I > 2, I different HKC(X
∗
i ) are computed,

but no way is proposed to synthesize them into a single spatial entropy measure for X . More-

over, the local components are not entropy measures themselves. Lastly, conclusions are affected

by the choice of the area partition. Nevertheless, Batty’s and Karlström and Ceccato’s approach
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is expected to be helpful in the context of urban sprawl with binary variables, and is assessed in

Sections 3 and 4.

2.3 Spatial mutual information and residual entropy

A second way to build a spatial entropy measure consists in defining a new categorical variable Z,

with R = (I2 + I)/2 categories for I categories of X . Each outcome zr, r = 1, . . . , R, identifies

unordered pairs of occurrences of X over space: zr = {xi, xj} with i, j = 1, . . . , I and j 6= i

(O’Neill et al., 1988; Li and Reynolds, 1993; Leibovici, 2009). Such change of variable is crucial

in a spatial context, since observations must now be linked to spatial units (e.g. pixels), so that

space is now taken into account via the distance between each pair of observations. The attention

moves to the computation of (1) as Shannon’s entropy of Z, H(Z), instead of H(X).

Altieri et al. (2018a) follow the approach based on Z and introduce a second discrete variable

W , that represents space by classifying the distance at which two observations (also called occur-

rences) take place. A set of distances d0, . . . , dK , with known K, is fixed, where d0 = 0 and dK is

the maximum distance between any two spatial units inside the observation window. The choice

of the distances d1, . . . , dK−1 is exogenous and depends on the study at hand (Altieri et al., 2018a).

Then, each category of W is a class wk =]dk−1, dk], with k = 1, . . . , K. The classes wk cover all

possible distances within the observation window. Each distance category wk implies the choice

of a corresponding adjacency matrix Ak, which identifies pairs where the two observations lie at a

distance belonging to the range ]dk−1, dk].

Thanks to the introduction of W , the entropy of Z may be decomposed as

H(Z) =MI(Z,W ) +H(Z)W (6)

14



following the fundamentals of Information Theory (Cover and Thomas, 2006): the first term

MI(Z,W ) is known as mutual information and measures the amount of the entropy of Z which is

explained by its relationship with W , while the second term H(Z)W is the conditional, or residual,

entropy, quantifying the remaining amount of entropy of Z once the effect of W is removed. In a

spatial context, the two terms acquire a new meaning: MI(Z,W ) is the quantity of interest and is

called spatial mutual information, because Z identifies pairs of categories of spatial observations

and W collects categories of distances at which pairs occur. Spatial mutual information quantifies

the part of entropy of Z due to the spatial configurationW ; for the same reason, H(Z)W is the spa-

tial global residual entropy, quantifying the information brought by Z after space has been taken

into account. When Z depends on W , i.e. when the realizations of X are spatially associated, the

spatial mutual information is high. Conversely, when the spatial association among the realizations

of X is weak, the entropy of Z is mainly due to spatial global residual entropy.

When sprawl is under study and the variable of interest X is binary with categories urban

and non-urban, Z identifies pairs with the three possible unordered combinations of urban/non-

urban areas, i.e. {urban, urban}, {urban, non-urban}, {non-urban, non-urban}. A compact city

represents the situation where theX outcomes should be highly positively correlated. In such case,

spatial mutual information tends to be high, because urban areas generally have urban neighbours,

while non-urban areas have non-urban neighbours; space plays a relevant role in determining the

entropy of Z. The overall value of MI(Z,W ), however, can be negatively influenced by what

happens at large distance ranges, where usually scarce correlation is present. Hence, spatial mutual

information for the whole dataset may approach zero even when a compact pattern occurs, which

is seemingly a flaw.

The variable W helps in overcoming this drawback, since the two terms forming H(Z) can be
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further decomposed. Indeed, K subsets of realizations of Z are available, formed by pairs of ob-

servations belonging to each distance range, denoted by Z|wk; a set of K conditional distributions

is obtained, that sum up to the two components of (6). When measuring urban sprawl, this means

that the degree of compactness of a city may be quantified at different distance ranges, which can

help in understanding the extent and seriousness of the sprawl phenomenon.

From Information Theory, spatial mutual information

MI(Z,W ) =
K∑
k=1

p(wk)PI(Z|wk) =
K∑
k=1

p(wk)
R∑

r=1

p(zr|wk) log

(
p(zr|wk)

p(zr)

)
(7)

is a weighted sum of partial terms PI(Z|wk), each quantifying the contribution of the kth distance

range to the relationship between Z and W . In other words, each partial term measures the degree

of association (compactness) in the city pattern at each distance range. The focus is expected to

be on short distance ranges, where the difference between a compact city and a dispersed one is

evident. By exploring these terms, an indication of the degree of sprawl can be provided.

Analogously, spatial residual entropy is

H(Z)W =
K∑
k=1

p(wk)H(Z|wk) =
K∑
k=1

p(wk)
R∑

r=1

p(zr|wk) log

(
1

p(zr|wk)

)
, (8)

where the partial residual entropy terms measure the partial contributions to the entropy of Z due

to sources other than the spatial configuration. As regards sprawl, a high value for H(Z|wk),

especially at short distance ranges, is a hint for urban dispersion.

The additive terms in (7) and (8), together with their sums, constitute a rich set of spatial

entropy measures. In particular, spatial mutual information has theoretical support to be considered

a reliable method for measuring urban heterogeneity. It is able to maintain the information about

the categories of X by exploiting the trasformed variable Z, to consider different distance ranges

simultaneously, to quantify the overall role of space, and to be easily interpretable. A comparative
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study for different urban configurations is developed in what follows, in order to verify the ability

of the set of indices to detect sprawl.

3 Spatial entropy measures on simulated urban settings

The flexibility and informativity of the spatial entropy indices discussed in Section 2 are assessed

with a comparative study, which helps in understanding the differences between the two approaches

over three urban configuration archetypes. Following Tsai (2005), they are identified as ’mono-

centric city’, ’polycentric city’ and ’decentralized city’. The monocentric city, with one compact

centre and surrounding peripheral areas, is considered the most positive situation as regards the ur-

ban pattern; the polycentric city, occurring when different city centres merge into one greater urban

area, is an intermediate, less compact, situation which may suffer from sprawl; the decentralized

configuration, denoted by urban scattering, is concerned by the sprawl issue. An example of the

three settings is shown in Figure 1. The three archetypes are theoretical reference scenarios in the

literature and correspond to a low, medium and high indication of sprawl, respectively; they can

be used for comparison to real situations, for a better understanding of the type of urban expansion

under study.

Insert Figure 1 about here

In this simulation study, the observation window is a square of size 100 km2 and represents a

city’s metropolitan area. In order to simulate cities, the window is firstly partitioned into districts.

Since the measures of Section 2.1 and 2.2 may be affected by the partition, we check two partition

options. Firstly, the window is partitioned into G1 = 20 districts of different size, by randomly

generating 20 centroids over the area following a homogeneous Poisson process, which is known
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to produce uniformly distributed points over an area (Baddeley et al., 2015), and then performing a

Dirichlet tessellation, i.e. assigning each part of the window to the district with the closest centroid.

The second option is to partition the window into concentric districts, which can give a better idea

of a city expansion into surrounding areas. We choose G2 = 5 annuli, defined by concentric rings,

with the same width, i.e. the same difference between the radius of the outer ring and the one of the

inner ring. The annuli center is the observation window centroid, and their width is chosen so that

they cover the whole window. The two options are shown in Figure 2 for a monocentric dataset.

Insert Figure 2 about here

The second step consists in generating urban patches over the districts. The window is gridded by

40×40 pixels, so that each pixel is 250 metres wide, the same resolution as the data used in Section

4. The binary variable X occurs over the pixels, with categories x1 = urban and x0 = non-urban.

Consequently, for the measures of Section 2.1 and 2.2 the phenomenon F regards the presence of

x1, while for the approach of Section 2.3 the transformed variable Z has 3 categories: z1 = {urban,

urban}, z2 = {urban, non-urban}, z3 = {non-urban, non-urban}. The three urban configurations

are generated exploiting the theory of point processes. The monocentric and polycentric scenarios

are generated from the intensity function of a Thomas process (Baddeley et al., 2015), i.e. a

Poisson cluster point process, with one cluster for the monocentric case and four clusters for the

polycentric case. Such process is known to produce spatially correlated events, and is analogous

to a spatial autoregressive model with a smoothly decreasing intensity function (Baddeley et al.,

2015). The decentralized pattern is generated following the intensity function of a homogeneous

Poisson process. For the three urban scenarios, 1000 datasets are simulated. Then, the point

patterns are turned into raster data, where a pixel gets value x1 (urban) if it contains at least one
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point. For each of the 1000 realizations, the number of urban and non-urban pixels is the same

across the three scenarios. This way, Shannon’s entropy would not be able to distinguish among

the configurations, while we check how the measures of Section 2 succeed in detecting sprawl.

The objective of the simulation study is to verify that all measures presented in this work,

though based on different distance concepts, incorporate spatial information and are able to distin-

guish among the three theoretical urban configurations. In particular, the distinction should be neat

between the first two scenarios, which denote an acceptable urban development, and the decentral-

ized pattern, which corresponds to a serious degree of sprawl. The study aims at showing that they

are a substantial improvement with regard to non-spatial entropy measures, still commonly used as

landscape and urban expansion metrics. Results are concerned with the type of urban development,

rather than with its spatial extension. Therefore, they hold for any city, irrespective of its size, as

long as its configuration can be compared to one of the archetypical scenarios.

3.1 Batty’s and Karlström and Ceccato’s entropies

For both partition options, probabilities pg of (3) and (5) are estimated in each of the 1000 simu-

lations as the proportions of urban pixels over the districts. Batty’s entropy for the three scenarios

and the two partition options is shown in the boxplots of Figure 3. Results are presented in relative

terms, i.e. all entropies are divided by their maximum log(100) in order to vary between 0 and 1

and enable comparison.

Insert Figure 3 about here

The index performance with the concentric partition is outstanding: the measure is able to make

a neat distinction among the three urban configurations as regards spatial entropy. Results are
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nearly as good for the random partition, with only a partial overlapping between the values of the

monocentric and the polycentric scenario. The most important distinction is between the first two

configurations and the decentralized pattern, which denotes sprawl; under this perspective, Batty’s

entropy proves to be effective in detecting a seriously sprawled development, irrespective of the

district partition.

For Karlström and Ceccato’s entropy, different possibilities for the neighbourhood distances

between the districts’ centroids are considered, in order to quantify I(p̃g). For the random partition

option, three neighbourhoods are set, up to the 5th percentile, first quartile and median of the

distribution of distances among theG1 = 20 centroids; they are equal to nd11 = 1473, nd12 = 3654

and nd13 = 5335 metres. For the concentric option, four neighbourhoods are possible over the 5

annuli, i.e. up to the jth farthest district, j = 1, . . . , 4. We name them nd21 = 1Ann, nd22 = 2Ann,

nd23 = 3Ann and nd24 = 4Ann, where jAnn means ‘up to the jth farthest annulus’. The estimates

of p̃g in (5) are computed as averages of the neighbouring estimated probabilities. Results for

Karlström and Ceccato’s entropy are shown in Figure 4, in relative terms, for the three urban

configurations, the two partition options and all neighbourhoods.

Insert Figure 4 about here

The inclusion of a neighbourhood system does not look helpful in the context of urban sprawl.

Neighbourhood nd3 of option 1 leads to a general overlap in the results, showing that it is not pos-

sible to distinguish among the three configurations when the neighbourhood is too wide. As for the

other panels of Figure 4, the measure is still able to achieve the most important result, i.e. distin-

guishing the first two urban patterns from the decentralized one. The extreme values obtained from

a decentralized, sprawled scenarios are never reached by the other two configurations, irrespective
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of the partition and neighbourhood extent.

While Karlström and Ceccato’s extension to Batty’s entropy is interesting from a theoretical

point of view because of the LISA-type properties, it does not seem to provide major advantages

in practical situations, especially due to the risk of overlapping between the values resulting from

the polycentric and the decentralized scenario, when the partition is not concentric. The original

formulation of Batty’s entropy is well performing on simulated data, and is also used for the case

study of Section 4. The neat distinction among positive and negative scenarios in Figure 3 allows to

provide intervals for an indication of the degree of sprawl in cities; intervals must not be intended

as absolute benchmarks, rather they help in evaluating the seriousness of the sprawl phenomenon

in a city according to its spatial distribution. The interval [0, 0.847] refers to a monocentric scenario

and suggests a positive expansion; the interval [0.848, 0.985] indicates a polycentric configuration

and possibly an intermediate level of sprawl. The interval [0.985, 1] suggests a high level of sprawl.

3.2 Spatial mutual information and residual entropy

For the computation of the entropy set of Section 2.3, breaks for the distance ranges must be

chosen, where the distance concerns pairs of pixels, not districts as in Section 2.2, and is measured

between pixel centroids. Two options are considered in the simulation study, where it should

be remembered that the global values of spatial mutual information and residual entropy are not

affected by the choice of the wk. The first one is motivated by the tradition of spatial statistics,

where the so called ‘4 nearest neighbour system’ (i.e. pixels sharing a border) and the analogous

‘12 nearest neighbours system’ are of standard use (Anselin, 1995). Accordingly, the first two

distance classes chosen for option 1 (in metres) are w11 = [0, 250] and w12 =]250, 500], where
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250 metres is the distance between contiguous pixels’ centroids; the remaining classes are w13 =

]500, 1250], i.e. up to 5 pixels along the cardinal directions, and w14 =]1250, dmax], dmax =

13789 metres being the maximum distance between pixels within the observation window. In the

measurement of urban sprawl, the focus is on what happens at small distance ranges, where a lack

of spatial association, i.e. a high presence of pairs of type {urban, non-urban}, indicates dispersion,

thus sprawl. Therefore, detailed results are needed for small distances, while aggregate results

are enough at large distances. The second option follows the same criterion as the neighbourhood

distance choice in Section 3.1: the empirical distribution of pixel distances (in metres) is computed,

and the breaks are chosen as the 5th, 25th and 50th percentile, resulting in classes w21 = [0, 1346],

w22 =]1346, 3260], w23 =]3260, 5130], w24 =]5130, 13789]. Each specific adjacency matrix Ak

identifies pairs of pixels at a distance that belongs to class wk. The rule of moving rightward

and downward is adopted along the observation window in order to identify neighbouring pairs

avoiding double counting. The number of pixel pairs contained within each distance class does not

depend on the simulated data or configuration, but only on the choice of the grid and on wk, and

is shown in Table 1: the great amount of data involved in the computation einforces the validity

of the results. Then, each pZ|wk
is estimated using proportions for the three categories of Z at the

corresponding distance range.

Insert Table 1 about here

Since the main focus of this work is on the contribution of the partial terms, rather than on the

global value, spatial partial information terms are shown, in relative terms, in Figure 5 for the two

distance class options.

Insert Figure 5 about here
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Spatial mutual information can be interpreted as a sprawl detector: a high mutual information value

implies positive association among urban pixels and positive association among non-urban ones,

and indicates a compact urban expansion. The measure successfully distinguishes the first two

spatial patterns (mono- and polycentric) from the decentralized one in all cases, except at very large

distances (w14) where the lack of distinction among patterns is expected and is of scarce interest in

sprawl studies. No mutual information is detected at any distance over the decentralized patterns,

where no spatial structure is present and space does not help in explaining the data behaviour,

irrespective of the choice of the distance breaks. Results are not shown for spatial partial residual

entropy terms, as the interpretation is symmetrical to that of spatial mutual information.

As for Batty’s entropy, the boxplots in Figure 5 can be used as a reference for assessing real

case studies, since no overlap occurs between an acceptable and a sprawled situation. According

to the simulation study, relative values of spatial mutual information in [0, 0.001] are an indication

of a decentralized pattern.

4 Measuring urban sprawl in Europe via spatial entropy

The case study comes from official European sources. Land use data for the European territory are

provided by CORINE project (COoRdination of INformation on the Environment, EEA, 2011),

which integrates remote sensing images and photo interpretation to produce a pixel grid with a

250×250 metres resolution; pixels are classified according to 44 land use classes. Guidelines are

then provided to dichotomize the dataset into urban and non-urban pixels, transforming land use

data in Urban Morphological Zone (UMZ) data. An Urban Morphological Zone can be defined
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as ‘a set of urban areas laying less than 200m apart’2 (EEA, 2011). Urban classes are selected

in a way, e.g. by including green urban areas, that avoids misinterpretation in the phenomenon

of urban scattering, which might otherwise be overestimated. The nature of UMZ data makes

them appropriate to identify shapes and patterns of urban areas, and thus to detect urban sprawl.

Polygonal maps with administrative boundaries are superimposed over the European dataset for

selecting the areas of interest. We select data for years 1990 and 2012, the first and last release

of CORINE’s dataset, for three cities in different European countries with their commuting belts,

i.e. an extension of the urban centre beyond the administrative city boundaries, which includes

the municipalities surrounding the main city. The three cities have a similar population and spatial

extension, and are chosen based on results in EEA and FOEN (2016): we focus on the DIS index,

‘DISpersion of built-up areas’, which characterises the settlement pattern according to a geometric

perspective. The first city is Eindhoven, the Netherlands, chosen because the country is classified

among the highly sprawled ones. The second city is Lublin, in Poland, one of the countries below

the average European sprawl level. The third one is Bologna, Italy, a country with an average level

of sprawl. From 1990 to 2012, all cities increase the fraction of urbanized pixel: Eindhoven from

18% to 25%, Lublin from 9% to 16% and Bologna from 16% to 18%. A total of six binary raster

datasets (3 cities at 2 time points) is considered and displayed in Figure 6.

Insert Figure 6 about here

The objective of the present study is to show how the proposed entropy measures can be used in an

absolute way to obtain an indication of the level of uban sprawl in the three cities, or in a relative
2The Corine Land Cover classes used to build the Urban Morphological Zone dataset are ‘Continuous urban fabric’,

‘Discontinuous urban fabric’, ‘Industrial or commercial units’, ‘Green urban areas’. ‘Port areas’, ‘Airports’, ‘Road

and rail networks’ and ‘Sport and leisure facilities’ are also considered if they are neighbours to the core classes.
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way for comparison across cities and for evaluating the phenomenon evolution over time. This is

done with both approaches presented in Section 2 and with the support of the results of Section 3.

The focus of the results is on the ability of the proposed measures to capture the phenomenon of

urban sprawl in an interpretable and comparable way: even though the two approaches to spatial

entropy are based on different concepts of neighbourhood and even if distance is measured between

different types of spatial units, the advantages of both can be highlighted. For the three cities, we

expect to find consistent results with regard to the country level analysis of EEA and FOEN (2016).

We follow the usual approach in the literature to treat the indices as descriptive measures, without

relying on their unknown probability distribution for inference and testing. The remainder of

the present Section outlines the main findings; a more comprehensive discussion can be found in

Section 5.

4.1 Batty’s spatial entropy

Each city with its commuting belt is partitioned according to the administrative boundaries of the

municipalities, the G districts for Batty’s entropy. In order to compare results, values are divided

by their maxima, i.e. the logarithm of each city window’s size.

Insert Table 2 about here

Results in Table 2 show that Batty’s entropy values confirm the EEA country level sprawl ranking:

Lublin is the less sprawled one, the highest indication of sprawl is detected for Eindhoven and

Bologna constitutes an intermediate case. In addition, the result for Eindhoven suggests that the

city may suffer from a high level of sprawl, following the reference set of intervals of Section

3.1: Eindhoven’s entropy values are greater than 0.985, that was found as the lowest value of the
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decentralized configuration range in the simulation study. The comparison of results over time is

also consistent with the EEA and FOEN report: the issue of urban sprawl tends to increase for all

cities, especially for Lublin.

The second partition option introduced for the simulation study in Section 3.1, with concentric

areas defined by annuli centered in the centroid of each main city, has been also checked and leads

to the same results.

4.2 Spatial mutual information and residual entropy

Spatial partial mutual information and partial residual entropy terms are computed following the

first distance option of Section 3.2: w1 and w2 are the 4 and 12 nearest neighbour systems respec-

tively, w3 considers up to 5 pixels along the cardinal directions, w4 captures all greater distances.

The number of observation pairs contained within each distance class is shown, for each city, in

Table 3; the huge amount of data used for computations enhances the reliablity of the results. All

distances refer to pairs of pixels and are measured, in metres, between pixel centroids.

Insert Table 3 about here

Insert Figure 7 about here

Results are summarized in Figure 7, which displays the values of partial spatial mutual information

PI(Z|wk) and partial residual entropies H(Z|wk). To allow for space and time comparisons, their

proportional versions are computed by setting the sum PI(Z|wk)+H(Z|wk) to 1 at each distance

class wk. The increase of sprawl over time is evident in these results, while the ranking of cities in

terms of urban sprawl is more evident in 1990 than in 2012, again aligning with the EEA country

results: Eindhoven has a low proportion of spatial information at all distances, identifying a high
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sprawl level; Lublin is the least sprawled one, with the highest values of partial spatial information

terms. By considering the reference set of values identified in Section 3.2, none of the cities

is classified, in an absolute way, as decentralized; this suggests a less extreme evaluation than

Batty’s entropy results, and may be more sensible in this context. Indeed, Eindhoven, though

more sprawled than the other two, looks like a polycentric city according to Figure 6. Extreme

decentralized values are more likely to be found in really chaotic cities, e.g. Calcutta (see Bhatta

et al., 2010).

The most informative distance classes for detecting urban sprawl are the small ones. A second

option, employing the 5th, 25th and 50th percentile of the empirical distribution of distances for

each city to choose the breaks d1 to d3 of the distance classes, proves to be useless for detecting

and comparing the urban sprawl of the three cities over space and time. The distance classes are

too broad, and the partial terms of spatial mutual information are all very low.

5 Discussion and concluding remarks

In this work, the approaches proposed by Batty (1976), Karlström and Ceccato (2002) and Altieri

et al. (2018a) are employed to quantify the level of urban sprawl, i.e. the chaotic expansion of

cities, and their properties are assessed with a comparative study. The first objective is to show that

they constitute a major step forward in the use of entropy measures as landscape metrics; another

objective is to make a comparative evaluation of the theoretical and practical properties of such

indices; lastly, we aim at providing indications about the level of sprawl of three European cities.

The first objective is fully met by the results from both simulated and real data: while Shannon’s

entropy would not be able to distinguish among scenarios with similar proportions of urban areas,
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both approaches successfully separate a clustered situation from a sprawled one.

The second objective may be summarized by a few main comments. Batty’s entropy is a fun-

damental step toward spatial entropy measures, but it suffers from a few theoretical drawbacks:

it requires a dichotomous variable and is affected by the choice of the window partition. Never-

theless, in the context of urban sprawl such measure proves to be very efficient, since it neatly

distinguishes among differently sprawled scenarios and returns coherent results with respect to

EEA and FOEN (2016) as regards European cities. Karlström and Ceccato’s approach represents

an interesting proposal from a theoretical point of view, exploiting the idea of neighbourhood and

enjoying LISA-type properties; however, it suffers from the same drawbacks as Batty’s entropy,

moreover it focuses on a single, predefined neighbourhood system. In the simulation study, the

addition of a neighbourhood system generates overlapping among the results from different urban

scenarios, therefore this approach is discarded in the case study. Spatial partial mutual information

is the key component of Altieri et al.’s entropy for drawing conclusions on sprawl. Its advan-

tages lie in the possibility of managing variables with any number of categories, e.g. more than

two land use classes, decomposing the entropy due to space from the one due to other sources

of heterogeneity, investigating the global values and the partial terms jointly, to identify the role

of space at different distance ranges. Beyond enjoying such theoretical properties, spatial mutual

information proves to be effective in measuring urban sprawl and distinguishing among clustered

and decentralized scenarios. The set of measures proposed by Altieri et al. is more exhaustive than

Batty’s and Karlström and Ceccato’s indices, since it allows to quantify the contribution of the

partial terms. The choice of the distance classes in this proposal does not affect the global result,

unlike the choice of Batty’s window partition. The last advantage is that results in the case study

of Section 4 are less extreme than Batty’s results, and more realistic for a set of European cities.
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As for the last objective, some conclusive points can be stated about the case study of Eind-

hoven, Lublin and Bologna. The EEA country ranking in terms of dispersion of built up areas is

reproduced here at city level: Lublin is the least sprawled one, Bologna has an intermediate level

of sprawl and Eindhoven is the most sprawled one. The situation of Eindhoven seems very critical:

according to Batty’s entropy, its values belong to the range of the decentralized pattern identified

by the simulation study, while spatial mutual information classifies it as the worst situation, though

not extreme. All cities become more affected by sprawl over time, denoting an inefficient urban

expansion from 1990 to 2012.

Results from both simulation and application suggest some general recommendations for work-

ing with real data. In the study of urban sprawl, the most interesting distances are the small ones.

At this regard, spatial mutual information and spatial residual entropy are very flexible, as they can

focus on the most informative distance range to interpret the phenomenon under study. Distance

classes must be suitably proposed according to the context. The focus on small distances is not an

issue for the set of spatial entropy measures proposed by Altieri et al., as the choice of the classes

does not affect the global result; the theoretical framework illustrated in this paper shows that,

when the distance classes system is modified, the set of measures can be easily, rapidly and intu-

itively adapted. As a further point, the data finest available resolution should be used, i.e. points

if data are a point pattern, or the finest grid provided if data are lattice. Pixel aggregation is not

recommended unless motivated, as it may reduce precision in the results and requires expertise in

classifying the new pixel according to land use classes.

The well performing spatial entropy measures considered in this work capture the spatial as-

pect of the complex phenomenon of dispersed urbanization. As a further development, they can

be suitably integrated with other indices in order to obtain a comprehensive quantification of the
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environmental footprint of a city. This helps in focusing on the worst developed areas and con-

tributes to solve environmental issues such as dangers to ecosystems, forest destruction, pollution

and climate change. The present work is also useful in highlighting the abilities of spatial entropy

measures, which can be employed in other environmental contexts as well: meteorology, species

abundance studies, pollution, earthquakes and fires are just a few examples.
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Figure 1: Examples of the 3 archetypical urban scenarios: monocentric, polycentric, decentralized.
as.im(mono.list[[2]], W = win) as.im(poly.list[[7]], W = win) as.im(dec.list[[2]], W = win)

Figure 2: Two options for area partition in Batty’s and Karlström and Ceccato’s entropy over an

example of monocentric dataset. Left panel: 20 random areas; right panel: 5 concentric rings.

Table 1: Number of pairs in each distance class for the two distance options on simulated data

Distance option 1 Distance option 2

w1 w2 w3 w4 w1 w2 w3 w4

3120 6082 48006 1221992 67988 253026 319624 638562
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Figure 3: Results for Batty’s entropy over the three urban scenarios, 1000 simulations, with the

two partition options: 20 random areas (left panel), 5 concentric rings (right panel).
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Figure 4: Results for Karlström and Ceccato’s entropy over the three urban scenarios, 1000 simu-

lations, with the two partition options: 20 random areas (higher panels), 5 concentric rings (lower

panels), at different neighbourhood distances.
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Figure 5: Spatial partial information for the three urban scenarios, 1000 simulations. First option

for the distance ranges in the higher panels, second option in the lower panels.
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Table 2: Results for Batty’s and Karlström and Ceccato’s (KC) entropy for the three cities

1990 2012

Eindhoven 0.987 0.990

Lublin 0.955 0.978

Bologna 0.980 0.983

Table 3: Number of pairs contained within each distance class for Eindhoven, Lublin and Bologna

w1 w2 w3 w4

Eindhoven 17076 33657 274784 37732933

Lublin 23839 47118 387726 73249328

Bologna 19634 38780 318491 49618095
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Figure 6: From left to right, Eindhoven, Lublin and Bologna together with their commuting belts,

in 1990 (higher panels) and 2012 (lower panels).
Eindhoven 1990 Lublin 1990 Bologna 1990

Eindhoven 2012 Lublin 2012 Bologna 2012

Commuting belt for Eindhoven: Best, Eersel, Geldrop, Heeze-Leende, Nuenen, Oirschot, Son en

Breugel, Veldhoven and Waalre.

Commuting belt for Lublin: Głusk, Jastków, Konopnica, Niedrzwica Duża, Niemce, Świdnik and

Wólka.

Commuting belt for Bologna: Anzola dell’Emilia, Calderara di Reno, Casalecchio di Reno,

Castel Maggiore, Castenaso, Granarolo dell’Emilia, Pianoro, San Lazzaro di Savena, Sasso

Marconi, Zola Predosa.
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Figure 7: Proportional partial spatial mutual information (grey area) and residual entropy (white

area). From left to right, Eindhoven, Lublin and Bologna in 1990 (higher panels) and 2012 (lower

panels).
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