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THE MULTIVARIATE ARITHMETIC

TUTTE POLYNOMIAL

PETTER BRÄNDÉN AND LUCA MOCI

Abstract. We introduce an arithmetic version of the multivariate Tutte poly-
nomial and a quasi-polynomial that interpolates between the two. A general-
ized Fortuin-Kasteleyn representation with applications to arithmetic colorings
and flows is obtained. We give a new and more general proof of the positivity
of the coefficients of the arithmetic Tutte polynomial and (in the representable
case) a geometrical interpretation of them.
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1. Introduction

In this paper we introduce and study a multivariate arithmetic Tutte polynomial.
Recall that the Tutte polynomial is a bivariate polynomial with several well-known
specializations: for instance the chromatic polynomial of a graph, or the character-
istic polynomial of a hyperplane arrangement can be obtained by specializing the
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Tutte polynomial. Also, its coefficients are nonnegative, as proved by Crapo by
providing an explicit combinatorial interpretation [5, 13].

Recently an arithmetic version of this polynomial was studied [7, 10]. Namely,
to a finite list L of elements in a finitely generated abelian group G, one associates
an arithmetic Tutte polynomial. This is a bivariate polynomial that encodes several
geometric, algebraic and combinatorial invariants. For instance:

• The characteristic polynomial of the generalized toric arrangement T (L).
This is a family of submanifolds in the abelian compact Lie group
Hom(G, S1) (see [10, Section 5]).

• The dimension of the Dahmen-Micchelli space DM(L). This vector space
was introduced in order to study vector partition functions (see [10, Section
6]).

• The Ehrhart polynomial of the zonotope Z(L) (see [10, Section 4] and [8]).

Furthermore, the arithmetic Tutte polynomial has applications to graph theory
[8], and it has nonnegative coefficients, as proved in [7] by providing a combinatorial
interpretation that extends Crapo’s theorem.

The Tutte polynomial is naturally defined in the general framework of matroids,
while the arithmetic Tutte polynomial is associated to an arithmetic matroid A,
which is a matroid equipped with a multiplicity function m satisfying additional
axioms. When A is represented by a list of elements in a finitely generated abelian
group, the function m encodes arithmetic information, just as the rank function
encodes linear-algebraic information.

Recently Sokal [12] studied a multivariate generalization of the Tutte polynomial.
The multivariate Tutte polynomial has a variable ve for each element e of the
matroid (or edge e of the graph), and an extra variable q. If all the variables ve
are set to be equal, we obtain a bivariate polynomial which is essentially equivalent
to the standard Tutte polynomial. In the case of graphs, the polynomial is known
to physicists as the partition function of the q-state Potts model, which along with
the related Fortuin–Kasteleyn random-cluster model plays an important role in the
theory of phase transitions and critical phenomena. In this paper we introduce a
multivariate arithmetic Tutte polynomial

ZA(q,v) :=
∑
A⊆E

m(A)q− rk(A)
∏
e∈A

ve.

(Here E is the ground set of the arithmetic matroid A, while rk and m are the rank
and the multiplicity functions, respectively.) As the name suggests, ZA(q,v) gen-
eralizes the polynomials above. It is naturally defined starting from an arithmetic
matroid, or more generally from what we call a pseudo-arithmetic matroid (see Sec-
tion 2). In fact, our polynomial encodes all the structure of the (pseudo-)arithmetic
matroid, i.e., it is possible to reconstruct A from ZA(q,v).

For this polynomial we prove a deletion-contraction recurrence (Lemma 3.2) and
a generalization of Crapo’s formula (Theorem 4.6).

We also give a new proof of the nonnegativity of the coefficients of the (bivariate)
arithmetic Tutte polynomial in the more general framework of pseudo-arithmetic
matroids (Theorem 4.5). Moreover, if A is represented by a list L of elements in
a finitely generated abelian group G, then in Theorem 6.3 we give a geometrical
interpretation of such coefficients, generalizing various formulae proved in [7, 10].
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When A is representable, we also provide a Fortuin-Kasteleyn formula for
ZA(q,v) (Theorem 7.7), with applications to arithmetic colorings. This can be
seen as a generalization of the “finite field method” for computing the charac-
teristic polynomial or the Tutte polynomial of a rational hyperplane arrangement
[1, 2, 14], as well as a generalization of a similar result for toric arrangements [9].
We also introduce a generalized “flow polynomial” with applications to arithmetic
flows (see Theorem 8.1).

Furthermore, we introduce a quasi-polynomial ZP
L (q,v) that interpolates be-

tween the ordinary and the arithmetic multivariate Tutte polynomial (Theorems
7.4, 7.6, 7.7), and a Tutte quasi-polynomial QL(x, y) that interpolates between the
corresponding bivariate polynomials and specializes to a chromatic quasi-polynomial
and to a flow quasi-polynomial. The quasi-polynomial ZP

L (q,v) is the partition
function of a generalized Potts model similar to the one studied by Caracciolo,
Sportiello and Sokal; see [12, Section 3.2].

2. Arithmetic matroids and multivariate Tutte polynomials

The notion of an arithmetic matroid tries to capture the linear algebraic and
arithmetic information contained in a finite list of vectors in Zn.

Let N := {0, 1, 2, . . .} and 2E := {A : A ⊆ E}, where E is a finite set. We recall
that a matroid, M, on E may be defined via its rank function, which is a function
rk : 2E → N satisfying:

(R0) rk(∅) = 0.
(R1) If A,B ⊆ E and A ⊆ B, then rk(A) ≤ rk(B).
(R2) If A,B ⊆ E, then rk(A ∪B) + rk(A ∩B) ≤ rk(A) + rk(B).

We shall now equip a matroid with a multiplicity function m : 2E → R satisfying
certain positivity and/or divisibility properties.

If R ⊆ S ⊆ E, let [R,S] := {A : R ⊆ A ⊆ S}. We say that [R,S] is a molecule
if S is the disjoint union S = R ∪ F ∪ T , and for each A ∈ [R,S]

rk(A) = rk(R) + |A ∩ F |.
Note that if [R,S] is a molecule and [R′, S′] ⊆ [R,S], then [R′, S′] is a molecule. A
pseudo-arithmetic matroid A = (M,m) is a matroid M equipped with a function
m : 2E → R satisfying the following axiom:

(P) If [R,S] is a molecule, then

ρ(R,S) := (−1)|T |
∑

A∈[R,S]

(−1)|S|−|A|m(A) ≥ 0.

A quasi-arithmetic matroid A = (M,m) is a matroid M equipped with a func-
tion m : 2E → N satisfying the following axioms:

(A1) For all A ⊆ E and e ∈ E:

If rk(A ∪ {e}) = rk(A), then m(A ∪ {e}) divides m(A);

otherwise m(A) divides m(A ∪ {e}).
(A2) If [R,S] is a molecule, then

m(R)m(S) = m(R ∪ F )m(R ∪ T ).

An arithmetic matroid is a quasi-arithmetic matroid which is also pseudo-arithmetic,
i.e., it satisfies (A1), (A2) and (P).
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Remark 2.1. The relevance of pseudo-arithmetic matroids is clear from Theorem
4.5. Quasi-arithmetic matroids also arise in combinatorial topology (see [3, Remark
3.3]). As will be shown later in this paper, axioms (A1) and (A2) are “algebraic”
(see Lemmas 5.2, 5.3), while axiom (P) has a more geometrical flavor (see Section
6).

The dual of an arithmetic (or pseudo-arithmetic) matroid is defined as the ma-
troid with the same ground set E, its rank function defined by

rk∗(A) := |A| − rk(E) + rk(E \A)

and its multiplicity function defined by m∗(A) := m(E \ A). Notice that each of
axioms (A1), (A2) and (P) is self-dual, so the dual of an arithmetic matroid is
indeed an arithmetic matroid.

Our definition of an arithmetic matroid is equivalent to the one given in [7]. In
[7], the function m satisfies five axioms. The first three correspond precisely to
(A1) and (A2), while the others are:

(4) If A ⊆ B ⊆ E and rk(A) = rk(B), then ρ(A,B) ≥ 0.
(5) If A ⊆ B ⊆ E and rk∗(A) = rk∗(B), then ρ∗(A,B) ≥ 0.

Clearly, axiom (P) implies (4) and (5). On the other hand, axioms (A2), (4), (5)
together imply (P). Indeed, by axiom (A2)

ρ(R,S) = (−1)|T |
∑

A1⊆T,A2⊆F

(−1)|T |+|F |−|A1|−|A2|m(R ∪A1)m(R ∪A2)

m(R)

=
ρ(R,R ∪ T )ρ(R,R ∪ F )

m(R)
≥ 0,

where the last inequality follows from axioms (4) and (5).
The main example of an arithmetic matroid is the one associated to a finite list

of elements of a finitely generated abelian group G; see Section 5.
Recall [5, 13] that to each matroid M is associated the Tutte polynomial

TM(x, y) =
∑
A⊆E

(x− 1)rk(E)−rk(A)(y − 1)|A|−rk(A)

that Sokal [12] generalized by defining a multivariate Tutte polynomial in the vari-
ables q−1, v = {ve}e∈E :

ZM(q,v) :=
∑
A⊆E

q− rk(A)
∏
e∈A

ve.

Similarly, to each arithmetic matroid A is associated the arithmetic Tutte poly-
nomial

MA(x, y) =
∑
A⊆E

m(A)(x− 1)rk(E)−rk(A)(y − 1)|A|−rk(A)

(see [7, 10]) that we generalize to a multivariate arithmetic Tutte polynomial :

ZA(q,v) :=
∑
A⊆E

m(A)q− rk(A)
∏
e∈A

ve.
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Of course these polynomials are also defined for a pseudo-arithmetic matroid. Note
that

ZM ((x− 1)(y − 1), y − 1) = (x− 1)− rk(E)TM(x, y),(2.1)

ZA ((x− 1)(y − 1), y − 1) = (x− 1)− rk(E)MA(x, y).(2.2)

(By v = y − 1 we mean that each variable ve is evaluated at y − 1.)

3. Deletion and contraction

Let A be an arithmetic matroid. Given an element e ∈ E, the deletion of A by e
is the arithmetic matroid, A1, on the set E1 := E \ {e}, with rank function rk1 and
multiplicity function m1 that are just the restriction of the corresponding functions
of A.

We also define the contraction of A by e as the matroid A2 on the set E2 :=
E \ {e} = E1, with rank function rk2 given by rk2(A) := rk(A∪ {e})− rk({e}) and
multiplicity function given by m2(A) := m(A ∪ {e}) for all A ⊆ E2.

Clearly, the same constructions hold for pseudo-arithmetic matroids.
If an arithmetic matroid A is represented by a list LE of elements of a finitely

generated abelian group G (see Section 5), it is easy to check that the deletion A1

is represented by the list LE1
in G, while the contraction A2 is represented by the

list E2 := {ga + 〈ge〉 : a ∈ E \ {e}} of cosets in G/〈ge〉.
We say that e ∈ E is:

• free (or a coloop) if both

rk1(E \ {e}) = rk(E \ {e}) = rk(E)− 1 and rk2(E \ {e}) = rk(E)− 1;

• torsion (or a loop) if both

rk1(E \ {e}) = rk(E) and rk2(E \ {e}) = rk(E);

• proper otherwise, i.e. if both

rk1(E \ {e}) = rk(E) and rk2(E \ {e}) = rk(E)− 1.

Remark 3.1. An interval [R,S] is a molecule if and only if the matroid defined by
contracting all the elements in R and deleting all the elements not in S is such that
each remaining element is either a coloop or a loop. In this sense we use the word
“molecule” in a slightly more general meaning than in [7].

Let A be an arithmetic matroid, and let A1 and A2 be its deletion and contrac-
tion by an element e ∈ E.

Lemma 3.2.

ZA(q,v) =

{
ZA1

(q,v) + ve ZA2
(q,v), if e is a loop,

ZA1
(q,v) + (ve/q)ZA2

(q,v), otherwise.

Proof. Decompose ZA(q,v) as

ZA(q,v) =
∑

A⊆E,e/∈A

m(A)q− rk(A)
∏
e∈A

ve +
∑

A⊆E,e∈A

m(A)q− rk(A)
∏
e∈A

ve.

If e /∈ A, then rk(A) = rk1(A). Hence the first summand equals ZA1
(q,v). On the

other hand if e ∈ A, then rk(A) = rk2(A) + ε, where ε = 0 if e is a loop and ε = 1
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otherwise. Thus∑
A⊆E,e∈A

m(A)q− rk(A)
∏
e∈A

ve = ve
∑

A⊆E,e∈A

m2(A \ e)q− rk2(A\e)−ε
∏

b∈A\e
vb

= veq
−εZA2

(q,v).

�

4. Positivity of coefficients and generalizations

of Crapo’s formula

The following combinatorial interpretation of the coefficients of the Tutte poly-
nomial was proved in [5].

Theorem 4.1 (Crapo).

T (x, y) =
∑
B∈B

xi(B)ye(B),

where i(B) and e(B) are the internal and external activity defined below.

Let B be the set of bases of a matroid on E, and let B∗ = {E \ B : B ∈ B} be
the bases of the dual matroid. Fix a total order on E, and let B ∈ B. An element
e ∈ E \ B is externally active on B if e is dependent on the list of elements of B
following it (in the total order fixed on E). An element e ∈ B is internally active on
B if in the dual matroid e is externally active on the complement Bc := E \B ∈ B∗.
In other words, e ∈ B is internally active if there is no element f ∈ E such that e
follows f and B \ {e} ∪ {f} is a basis. Denote by E(B) the set of externally active
elements and by e(B) its cardinality, which is called the external activity of B. In
the same way, denote by I(B) the set of internally active elements, and by i(B) its
cardinality, which is called the internal activity of B.

We will now extend Theorem 4.1 in various directions. First we deal with
molecules.

Lemma 4.2. Let [R,S] = [R,R ∪ F ∪ T ] be a molecule in a matroid M, and let
m : E → R be arbitrary. Then∑

A∈[R,S]

m(A)q− rk(A)
∏
e∈A

ve

= q− rk(S)

( ∏
e∈R∪F

ve

) ∑
K⊆F,L⊆T

ρ(R ∪ L, S \K)
∏
e∈K

(
q

ve
+ 1

) ∏
e∈L

(ve + 1).

Moreover if (M,m) is a quasi-arithmetic matroid, then∑
A∈[R,S]

m(A)q− rk(A)
∏
e∈A

ve

= q− rk(S)

( ∏
e∈R∪F

ve

)⎛⎝ ∑
K⊆F

ρ(R,R ∪ (F \K))

m(R)

∏
e∈K

(
q

ve
+ 1

)⎞⎠
×

⎛⎝∑
L⊆T

ρ(R ∪ L,R ∪ T )
∏
e∈L

(ve + 1)

⎞⎠ .

Note that ρ(R,R ∪ (F \K))/m(R) is an integer by Axiom (A1).
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Proof. Note that∑
A1⊆T,A2⊆F

m(R ∪A1 ∪ A2)
∏

e∈F\A2

(ve − 1)
∏
e∈A1

(ve − 1)

=
∑

A1⊆T,A2⊆F

m(R ∪ A1 ∪A2)
∑

K⊆F\A2,L⊆A1

vKvL(−1)|A1|+|A2|+|F |+|K|+|L|

=
∑
K,L

vKvL
∑

L⊆A1⊆T,A2⊆F\K
(−1)|A1|+|A2|+|F |+|K|+|L|m(R ∪A1 ∪ A2)

=
∑

K⊆F,L⊆T

ρ(R ∪ L, S \K)vKvL,

where vA =
∏

e∈A ve. The first formula now follows by a change of variables since
rk(R ∪K ∪ L) = rk(R) + |K|.

The formula for quasi-arithmetic matroids follows from the first by using Axiom
(A2): If A1 ⊆ T \ L and A2 ⊆ F \K, then

m(R ∪ L ∪A1 ∪ A2) =
m(R ∪ L ∪ A1)m(R ∪A2)

m(R)
.

But then

ρ(R ∪ L, S \K) =
ρ(R ∪ L,R ∪ T )ρ(R,R ∪ F \K)

m(R)
,

so the sum factors as claimed. �
Let us formulate a bivariate version of Lemma 4.2 for reference.

Lemma 4.3. Let [R,S] = [R,R ∪ F ∪ T ] be a molecule in a matroid M, and let
m : E → R be arbitrary. Then∑

A∈[R,S]

m(A)(x− 1)rk(S)−rk(A)(y − 1)|A|−rk(A)

=
∑

K⊆F,L⊆T

ρ(R ∪ L, S \K)x|K|y|L|.

Moreover if (M,m) is a quasi-arithmetic matroid, then∑
A∈[R,S]

m(A)(x− 1)rk(S)−rk(A)(y − 1)|A|−rk(A)

=

⎛⎝ ∑
K⊆F

ρ(R,R ∪ (F \K))

m(R)
x|K|

⎞⎠⎛⎝∑
L⊆T

ρ(R ∪ L,R ∪ T )y|L|

⎞⎠ .

The next proposition describes how 2E may be partitioned into molecules. For
a proof see [5] and [4].

Proposition 4.4. Suppose that M is a matroid with ground set E and set of bases
B. Then:

i) 2E is the disjoint union

2E =
⊔
B∈B

[B \ I(B), B ∪E(B)];

ii) for each B ∈ B, [B \ I(B), B ∪ E(B)] is a molecule with F = I(B) and
T = E(B).
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Theorem 4.5. The coefficients of the arithmetic Tutte polynomial MA(x, y) of a
pseudo-arithmetic matroid A are nonnegative. Moreover, pseudo-arithmetic ma-
troids are the most general objects closed under deletion and contraction and such
that the associated arithmetic Tutte polynomials have nonnegative coefficients.

Proof. Consider the molecule [R,S] = [B \ I(B), B ∪ E(B)]. By the first equality
proved in Lemma 4.3 the polynomial∑

A∈[R,S]

m(A)(x− 1)rk(S)−rk(A)(y − 1)|A|−rk(A)

has nonnegative coefficients. By Proposition 4.4, this implies that MA(x, y) has
nonnegative coefficients.

For the second statement, notice that if [R,S] is a molecule we may contract
the elements in R and delete the elements in E \ S. Again by the first equality of
Lemma 4.3 we see that the constant coefficient of the arithmetic Tutte polynomial
of the corresponding matroid is ρ(R,S). �

Crapo’s formula has been extended in [7] to arithmetic matroids. We shall now
see how Lemma 4.2 gives a multivariate version of this and extend it to pseudo-
arithmetic matroids with integral multiplicities.

If A is a pseudo-arithmetic matroid with integral multiplicities, let B̃ be the
multiset with elements of the form (B,C) where B is a basis, C ⊆ E(B) ∪ I(B),
and where the pair (B,C) appears exactly

ρ
(
(B ∪ C) \ I(B) , (B \ C) ∪ E(B)

)
times.

Theorem 4.6. If A is a pseudo-arithmetic matroid with integral multiplicities,
then

ZA(q,v) = q− rk(E)
∑

(B,C)∈ ˜B

∏
b∈B

vb
∏

e∈E(B,C)

(ve + 1)
∏

i∈I(B,C)

(
q

vi
+ 1

)
,

where E(B,C) = E(B) ∩ C and I(B,C) = I(B) ∩ C.
In particular,

MA(x, y) =
∑

(B,C)∈ ˜B

xi(B,C)ye(B,C),

where e(B,C) = |E(B,C)| and i(B,C) = |I(B,C)|.

Proof. The proof follows straightforwardly from Proposition 4.4, Lemma 4.2 and
Lemma 4.3. �

For ordinary matroids we have the following consequence of Theorem 4.6.

Corollary 4.7. If M is a matroid, then

ZM(q,v) = q− rk(E)
∑
B∈B

∏
b∈B

vb
∏

e∈E(B)

(ve + 1)
∏

i∈I(B)

(
q

vi
+ 1

)
.

We define the external activity polynomial of a basis B ⊆ E to be

EB(y) :=
∑
T⊇B

ρ(T )ye(B,T ),

where ρ(T ) := ρ(T,E) and e(B, T ) := |T ∩E(B)|.
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As a consequence of Lemma 4.3, we get a simpler proof of a theorem proved in
[7, Section 4].

Theorem 4.8. The arithmetic Tutte polynomial of an arithmetic matroid A de-
composes as

MA(x, y) =
∑
B∈B

1

m(B)
E∗

Bc(x)EB(y),

where E∗
Bc(x) is the external activity polynomial of the basis Bc in the dual arith-

metic matroid.

Proof. Consider the molecule [R,R ∪ F ∪ T ], where R = B \ I(B), F = I(B) and
T = E(B). By an elementary but somewhat tedious computation which is left to
the reader, one sees that

m(R)

m(B)
EB(y) =

∑
L⊆T

ρ(R ∪ L,R ∪ T )y|L|

and

E∗
Bc(x) =

∑
K⊆F

ρ(R,R ∪ (F \K))x|K|.

Hence the proof follows from Proposition 4.4 and Lemma 4.3. �

Furthermore, if A is representable, the polynomials EB(y) and E∗
Bc(x) have nice

combinatorial interpretations, which we will give in Section 6.

5. Representable arithmetic matroids

Let L = (ge)e∈E be a finite list of vectors in a finitely generated abelian group
G. By a list we will always mean an element (ge)e∈E of GE , and we do not
require E to be totally ordered. Recall that a finitely generated abelian group
G is isomorphic to Gf ⊕ Gt, where Gt is finite and Gf is free abelian, i.e., it is
isomorphic to Zr for some r ≥ 0. Then Gt is called the torsion of G and r := rk(G)
is the rank of G. A matroid with ground set E is naturally defined by its rank
function rk : 2E → N defined by rk(A) = rk(〈LA〉), where LA = (ge)e∈A and 〈LA〉
is the subgroup generated by LA. In addition to the matroid structure, L carries
arithmetic information which is encoded as multiplicities. For A ⊆ E, let HA be
the maximal subgroup of G such that 〈LA〉 ≤ HA and |HA : 〈LA〉| < ∞, where
|HA : 〈LA〉| denotes the index (as subgroup) of 〈LA〉 in HA. The multiplicity
m(A) is defined as m(A) := |HA : 〈LA〉|. For our purposes it is natural to express
the multiplicity in other terms: Let GA :=

(
G/〈LA〉

)
t
be the torsion subgroup

of G/〈LA〉, and define m(A) := |GA|. It is straightforward to see that the two
definitions agree.

The fact that the multiplicity function just described satisfies the original five
axioms for an arithmetic matroid (and hence our axioms) has been verified in [7].
It also follows from the results in this paper, namely Lemmas 5.2 and 5.3 and
Section 6.

Remark 5.1. The most familiar situation is when G = Z
n. However, if we want to

allow for deletion and contraction (see Section 3) we need the above more general
setup.
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We will denote by ML the matroid determined by L, and by AL = (ML,m)
the arithmetic matroid determined by L. We say that an arithmetic matroid is
representable if it comes from such a list.

Lemma 5.2. Let A ⊂ E and e ∈ E \A. If rk(A) < rk(A ∪ {e}), then there exists
a group monomorphism GA ↪→ GA∪{e}. If rk(A) = rk(A∪ {e}), then there exists a
group epimorphism GA � GA∪{e}.

Proof. Since
G/〈LA ∪ {ge}〉 ∼= (G/〈LA〉)/〈ge + 〈LA〉〉,

we may assume that A = ∅. Let π : G → G/〈ge〉 be the natural projection. Then
π is a homomorphism between the torsion parts.

Suppose that ge is not a torsion element. If t ∈ G is a torsion element for which
π(t) = 0, then t ∈ 〈ge〉 so that t = mge for some m ∈ Z. Since ge is not a torsion
element m = 0, and hence t = 0. Hence π is an injection when restricted to the
torsion part.

Suppose that ge is a torsion element. The torsion part of G/〈ge〉 consists of all
elements of the form g + 〈ge〉 where mg ∈ 〈ge〉 for some m ∈ Z. But mg ∈ 〈ge〉
for some m ∈ Z if and only if g is a torsion element. Hence π is an epimorphism
between the torsion parts. �

Furthermore, if A ⊆ B ⊆ E are such that rk(A) = rk(B), then the composition
morphism GA � GB does not depend on the order chosen on B \ A. In the same
way, if rk∗(A) = rk∗(B), the composition morphism GA ↪→ GB does not depend on
the order chosen on B \A. Then for every molecule [R,S] we have a commutative
diagram

GR
��

��

GR∪F

��
GR∪T

�� GR∪F∪T

in which the horizontal arrows are injective and the vertical arrows are surjective.

Lemma 5.3. For each molecule [R,R ∪ F ∪ T ]

GR∪F

GR

∼=
GR∪F∪T

GR∪T
.

Proof. As in Lemma 5.2 we may assume that R = ∅. By Lemma 5.2 we have an
epimorphism GF � GF∪T and hence an epimorphism

φ : GF � GF∪T /GT .

Now g+〈LF 〉 ∈ ker(φ) if and only if mg ∈ 〈LT 〉 if and only if g is a torsion element,
that is, g ∈ G∅. Hence GF /G∅ ∼= GF∪T /GT . �

6. A geometric interpretation

of the arithmetic Tutte polynomial

In this section the arithmetic matroids are representable. Let [R,R ∪ F ∪ T ] be
a molecule. Here we give geometric interpretations of the polynomials

f[R,R∪F ](x) :=
∑
K⊆F

ρ(R,R ∪ (F \K))

m(R)
x|K|
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and
g[R,R∪T ](x) :=

∑
L⊆T

ρ(R ∪ L,R ∪ T )x|L|.

By Lemma 4.3 and Proposition 4.4 this gives a geometric interpretation of the
arithmetic Tutte polynomial (see Theorem 6.3).

It is not hard to see that there is a list of vectors L′ = (fe)e∈F ⊂ Zn such that

G

〈LR∪K〉
∼=

Zn

〈L′
K〉 ⊕GR

for all K ⊆ F . Hence
ρ(R,R ∪K) = m(R)ρ′(∅,K),

where the accent refers to the list L′ in Zn. Let Z(K) be the zonotope generated
by (fe)e∈K , i.e.,

Z(K) :=

{∑
e∈E

tefe : 0 ≤ te ≤ 1 for all e ∈ E

}
.

By e.g. Proposition 10.1, ρ′(∅,K) counts the number of interior points in Z(K).
Now let P[R,R ∪ F ] be the set of integer points in the semiopen zonotope{∑

e∈F

tefe : 0 ≤ te < 1 for all e ∈ E

}
,

and let ι(p), where p ∈ P[R,R ∪ F ], be defined as the number of e ∈ F for which
te = 0 in p =

∑
e∈F tefe.

Lemma 6.1. Let [R,R ∪ F ] be a molecule and let P = P[R,R ∪ F ] be as above.
Then

f[R,R∪F ](x) =
∑
p∈P

xι(p).

Proof. Each point p ∈ P[R,R∪F ] is an interior point in Z(F \K) for a unique set
K. The number of zero coordinates is then |K|. �

Let T (R∪T ) be the generalized toric arrangement defined by R∪T ; this is a set
of subgroups (hence submanifolds) in the abelian compact Lie group Hom(G, S1).
Namely, we have one subgroup He for each e ∈ R ∪ T , having codimension 0 if e
is torsion and 1 otherwise. Let C(R) be the set of connected components of the
subgroup

⋂
e∈R He. Define a function η : C(R) → N as follows: For each c ∈ C(R),

let η(c) be the number of elements e ∈ T such that He ⊇ c.

Lemma 6.2. With definitions as above,

g[R,R∪T ](x) =
∑

c∈C(R)

xη(c).

Proof. It is known that m(A) = |C(A)|; see [10]. If R ⊆ A ⊆ D ⊆ R ∪ T , then
C(A) ⊇ C(D). For A ∈ [R,R ∪ T ], let

(6.1) C̃(A) := C(A) \
⋃

A�D⊆R∪T

C(D).

Then
C(R) =

⋃
L⊆T

C̃(R ∪ L),
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where the union is disjoint. By inclusion–exclusion

ρ(R ∪ L,R ∪ T ) = |C̃(R ∪ L)|.

If c ∈ C̃(R ∪ L), then the indices e ∈ T for which He ⊇ c are exactly those in L.
This proves the lemma. �

Using Lemma 4.3 and Proposition 4.4 we may now deduce the following geomet-
ric interpretation of the arithmetic Tutte polynomial. Let B be a basis. To simplify
the notation we set

PB := P[B \ I(B), B],

CB := C(B \ I(B)),

η(c) := ηE(B)(c).

To summarize, recall that PB is the set of integer points of the semiopen zonotope
defined by F = I(B), while CB is a set of layers of the generalized toric arrangement
defined by R ∪ T = (B \ I(B)) ∪ E(B).

Theorem 6.3. Let L be a list of vectors in a finitely generated abelian group G.
With definitions as above,

ML(x, y) =
∑
B∈B

⎛⎝ ∑
p∈PB

xι(p)

⎞⎠(∑
c∈CB

yη(c)

)
.

7. A Fortuin-Kasteleyn quasi-polynomial

Let G = (V,E) be a finite graph with vertex set V and edge set E. In [12] the
multivariate Tutte polynomial of a graph was defined as

ZG(q,v) :=
∑
A⊆E

qk(A)
∏
e∈A

ve,

where k(A) denotes the number of connected components in the subgraph (V,A).
The multivariate Tutte polynomial has an interpretation in statistical physics as
the partition function of the q-state Potts model.

Theorem 7.1 (Fortuin–Kasteleyn). For any positive integer q,

ZG(q,v) =
∑

σ:V→[q]

∏
e=ij∈E

(1 + veδ(σ(i), σ(j))),

where δ is the Kronecker delta and [q] := {1, . . . , q}.

Theorem 7.1 is known as the Fortuin–Kasteleyn representation of the q-state
Potts model. Our main goal in this section is to generalize this theorem to lists of
vectors in finitely generated abelian groups.

Here we define a generalization of the Potts model which is similar to the one
studied by Caracciolo, Sportiello and Sokal; see [12, Section 3.2]. Let L = (ge)e∈E

be a list of elements in a finitely generated abelian group G, and let H be a finite
abelian group. Then

ZL(G,H,v) :=
∑

φ∈Hom(G,H)

∏
e∈E

(1 + veδ(φ(ge), 0)).
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The special case when H = Zq := Z/qZ will be particularly interesting, and we
set

ZP
L (q,v) :=

∑
φ∈Hom(G,Zq)

∏
e∈E

(1 + veδ(φ(ge), 0)).

We will prove that ZP
L (q,v) is a quasi-polynomial in q that interpolates between

the arithmetic multivariate Tutte polynomial ZAL(q,v) of the arithmetic matroid
AL and the multivariate Tutte polynomial ZML(q,v) of its underlying matroid
ML.

Remark 7.2. Notice that ZP
L (q,v) is not an invariant of the arithmetic matroid.

For instance, the empty list in Z4 defines the same arithmetic matroid as the empty
list in Z2 ⊕Z2, but Z

P
L (2,v) is equal to 2 in the former case, and to 4 in the latter.

First a simple lemma. For a group G and integer q, let qG := {qh : h ∈ G}
where Z acts on G in the usual way.

Lemma 7.3. If G is a finitely generated abelian group of rank r, then

Hom(G,Zq) ∼= G/qG ∼= Z
r
q ⊕Gt/qGt.

Proof. The lemma follows easily from the structure theorem of finitely generated
abelian groups by observing that Hom(G,Zq) ∼= Hom(G/qG,Zq), Hom(Za,Zab) ∼=
Za, Hom(Z,Zq) ∼= Zq, and

Hom(G1 ⊕G2,Zq) ∼= Hom(G1,Zq)⊕Hom(G2,Zq).

�

Theorem 7.4. If H ∼=
⊕k

i=1 Zqi and q = |H|, then

ZL(G,H,v) = qrk(G)
∑
A⊆E

q− rk(A)
k∏

i=1

m(A)

|qiGA|
∏
e∈A

ve.

Proof. Assume first that H = Zq. Expand the product in the sum to obtain∑
φ∈Hom(G,Zq)

∏
e∈E

(1 + veδ(φ(ge), 0)) =
∑
A⊆E

|{φ : 〈LA〉 ⊆ ker(φ)}|
∏
e∈A

ve

=
∑
A⊆E

|Hom(G/〈LA〉,Zq)|
∏
e∈A

ve.

By Lemma 7.3,

(7.1) |Hom(G/〈LA〉,Zq)| = |GA/qGA|qrk(G)−rk(A) =
m(A)

|qGA|
qrk(G)−rk(A).

The proof for general H follows by observing that if H = H1 ⊕H2, then

Hom(G/〈LA〉, H1 ⊕H2) ∼= Hom(G/〈LA〉, H1)⊕Hom(G/〈LA〉, H2).

�

Remark 7.5. Since (q + |G|)G = qG holds for any finite group G it follows that
ZP
L (q,v) is a quasi-polynomial in q.
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Let LCM(L) denote the least common multiple of all m(B), where B ⊆ E is
a basis. In the case when G = Zn and L has rank r, then LCM(L) equals the
least common multiple of all nonzero r × r minors of L. Define two subsets of
Z+ := {n ∈ Z : n > 0} as follows:

ZM (L) := {q ∈ Z+ : GCD(q,LCM(L)) = 1},
ZA(L) := {q ∈ Z+ : qGB = (0) for all bases B ⊆ E}.

For example if q is a multiple of LCM(L), then q ∈ ZA(L).

Theorem 7.6. Let |H| = q. Then q ∈ ZM (L) if and only if

ZL(G,H,v) = qrk(G)ZML(q,v),

as a polynomial in v.

Proof. By Theorem 7.4, the equality holds if and only if qiGA = GA for all A ⊆ E
and 1 ≤ i ≤ k, which is equivalent to the fact that GCD(qi, |GA|) = 1 for all A ⊆ E.
By Lemma 5.2, for each A ⊆ E there is a basis B ⊆ E for which |GA| divides |GB|.
Hence we only have to check the condition for bases. �

Note that when L ⊂ Z
n = G is a totally unimodular matrix, i.e., m(B) = 1 for

all bases B, then ZM (L) = ZA(L) = Z+. Thus Theorem 7.6 extends [12, Theorem
3.1] and can also be seen as a refinement of the “finite field method” to compute
the characteristic polynomial of a hyperplane arrangement; see [2] (or its Tutte
polynomial; see [1, 14]). The proof of the following theorem follows immediately
from Theorem 7.4:

Theorem 7.7. Let q be a positive integer. Then q ∈ ZA(L) if and only if

(7.2) ZP
L (q,v) = qrk(G)ZAL(q,v),

as a polynomial in v. In particular, if q is a multiple of LCM(L), then (7.2) holds.

Theorem 7.7 is a refinement of the finite field method used to compute the
characteristic polynomial of a toric arrangement; see [9].

Example 7.8. Let us see why Theorem 7.1 is a special case of Theorem 7.7. Let
G = (V,E) be a graph on V = [n]. Further, let G = Zn and L = (ge)e∈E , where ge
is the vector with ith coordinate 1 and jth coordinate −1 and the other coordinates
0, where e = {i, j} and i < j. Then m(A) = 1 for all A since the matrix L is totally
unimodular, and hence GA = (0) for all A ⊆ E. Moreover, Hom(G,Zq) = ZV

q , so
Theorem 7.1 follows.

Example 7.9. Let G = Z
3 and

L =

⎡⎣ 1 1 0 0 0 1 1
0 1 1 1 0 0 1
0 0 0 1 1 1 1

⎤⎦ .

Then ML is the non–Fano matroid F−
7 , which is not a regular matroid (see for

example [11]). The multiplicities of the bases are given by the absolute values of
the nonzero 3×3 minors and are thus equal to 1 or 2. Hence for q a positive integer

ZP
L (q,v) = q3

{
ZF−

7
(q,v), if q is odd,

ZAL(q,v), if q is even.
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In view of Theorem 7.4 it is natural to define a Tutte quasi-polynomial by

QL(x, y) :=
∑
A⊆E

|GA|
|(x− 1)(y − 1)GA|

(x− 1)rk(E)−rk(A)(y − 1)|A|−rk(A).

By Theorem 7.4, we have an analogue of (2.1) and (2.2):

(7.3) ZP
L ((x− 1)(y − 1), y − 1) = (x− 1)− rk(E)QL(x, y).

Hence QL(x, y) is a quasi-polynomial in q = (x − 1)(y − 1), which by Theorems
7.6 and 7.7 coincides with ML(x, y) when q ∈ ZA(L) and with TL(x, y) when
q ∈ ZM (L).

From Remark 7.2 we see that QL(x, y) is an invariant of the list L and not of
the arithmetic matroid.

8. Generalized flows

For A ⊆ E and q ∈ Z+ define a homomorphism Ψq
A : ZA

q → G/qG by

Ψq
A(φ) =

∑
e∈A

φ(e)ge + qG.

By analogy with q-flows in graphs (see Section 9), an element φ ∈ ker(Ψq
E) will be

called an (L, q)-flow. If in addition φ(e) �= 0 for all e ∈ E, φ is called nowhere-
zero. Hence a nowhere-zero (L, q)-flow is a map φ : E → Zq \ {0} for which∑

e∈E φ(e)ge = 0 in G/qG.
The multivariate arithmetic flow polynomial of L is defined by

FL(q,v) :=
∑

φ∈ker(Ψq
E)

∏
e∈E

(1 + veδ(φ(e), 0)).

Theorem 8.1. For positive integers q,

FL(q,v) = q− rk(G) |qGt|
m(∅)

(∏
e∈E

ve

)
ZP
L (q, q/v),

where q/v := {q/ve}e∈E . Moreover:

(1) If q ∈ ZM (L), then

FL(q,v) =

(∏
e∈E

ve

)
ZML(q, q/v).

(2) If q ∈ ZA(L), then

FL(q,v) =
1

m(∅)

(∏
e∈E

ve

)
ZAL(q, q/v).

Proof. Expand the product in the sum to get∑
φ∈ker(Ψq

E)

∏
e∈E

(1 + veδ(φ(e), 0)) =
∑
A⊆E

| ker(Ψq
A)|

∏
b∈E\A

vb.

By Lemma 7.3 and the third isomorphism theorem,

Hom(G/〈LA〉,Zq) ∼=
G/〈LA〉

q (G/〈LA〉)
∼=

G/〈LA〉
(qG+ 〈LA〉)/〈LA〉

∼=
G

qG+ 〈LA〉
.
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Also

Im(Ψq
A)

∼= (qG+ 〈LA〉)/qG,

and hence by the third isomorphism theorem again

Hom(G/〈LA〉,Zq) ∼=
G

qG+ 〈LA〉
∼=

G/qG

(qG+ 〈LA〉)/qG
.

By (7.1) and Lemma 7.3

m(A)

|GA|
qrk(G)−rk(A) =

|G/qG|
|(qG+ 〈LA〉)/qG|

=
m(∅)qrk(G)

|qG∅||Im(Ψq
A)|

=
m(∅)
|qG∅|

qrk(G)−|A|| ker(Ψq
A)|.

Hence

FL(q,v) =
∑
A⊆E

| ker(Ψq
A)|

∏
b∈E\A

vb =
|qGt|
m(∅)

∑
A⊆E

m(A)

|qGA|
q|A|−rk(A)

∏
b∈E\A

vb.

�

9. Chromatic quasi-polynomials and flow quasi-polynomials

Let us see how colorings and flows on graphs may be generalized using the ideas
in the previous sections. Some of the following observations were also made in [8],
where the results were obtained by deletion-contraction arguments.

Let D = (V,E) be a directed graph without loops and assign positive integer
weights {we}e∈E to the edges. Define a list of vectors L = (ge)e∈E in G := ZV as
follows. If e is an edge from i to j, let ge be the vector with entry j equal to we,
entry i equal to −we, and the other entries equal to 0. Then we define a proper
(L, q)-coloring as a map φ : V → Zq such that

weφ(i) �= weφ(j)

whenever e is an edge between i and j. We define the chromatic quasi-polynomial
χL(q) as the function that counts such colorings. The fact that this is actually a
quasi-polynomial and that it is independent on the orientation of the graph are
consequences of the next theorem.

Dually, the flow quasi-polynomial χ∗
L(q) counts maps φ : E → Zq \{0} such that

the weighted Kirchhoff laws hold: for each i ∈ V∑
i

e→

φ(e)we =
∑
e→i

φ(e)we,

where i
e→ means that e is an edge from i to some other vertex.

We will show that the quasi-polynomials above are specializations of the Tutte
quasi-polynomial. This fact holds more generally for any list L of elements of a
finitely generated abelian group G. By analogy with the graphic case, we call an
element φ ∈ Hom(G,Zq) a proper (L, q)-coloring if φ(ge) �= 0 for all e ∈ E, and
we denote by χL(q) the number of such colorings. Notice that by definition this is
equal to the evaluation of ZP

L (q,v) at ve = −1 for all e ∈ E, which we denote by
ZP
L (q,−1). We call χL(q) the chromatic quasi-polynomial.
Dually, denote by χ∗

L(q) the number of nowhere-zero (L, q)-flows. By Theorem
8.1 this is a quasi-polynomial in q which we call the flow quasi-polynomial.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE MULTIVARIATE ARITHMETIC TUTTE POLYNOMIAL 5539

We have the following result, generalizing a famous theorem of Tutte [13], and
also its analogue in the arithmetic setting [8]:

Theorem 9.1. Let q be a positive integer. Then

χL(q) = (−1)rk(E)qrk(G)−rk(E)QL(1− q, 0) and(9.1)

χ∗
L(q) = (−1)|E|−rk(E) (m(∅))−1

QL(0, 1− q).(9.2)

In particular, if q ∈ ZM (L), then
χL(q) = (−1)rk(E)qrk(G)−rk(E)TL(1− q, 0) and(9.3)

χ∗
L(q) = (−1)|E|−rk(E)TL(0, 1− q).(9.4)

If, on the other hand, q ∈ ZA(L), then
χL(q) = (−1)rk(E)qrk(G)−rk(E)ML(1− q, 0) and(9.5)

χ∗
L(q) = (−1)|E|−rk(E)ML(0, 1− q).(9.6)

Proof. The first statement follows immediately from (7.3), since χL(q) = ZP
L (q,−1).

Likewise (9.2) follows from Theorem 8.1 and (7.3) because χ∗
L(q) is equal to

FL(q,−1). The other statements are consequences of the first two and Theorems
7.6, 7.7 and 8.1. �

One may of course generalize the setting for graphs by, for example, allowing the
nonzero entries of ge to not be equal in magnitude. We choose not to develop this
direction here.

10. A multivariate Ehrhart polynomial

In this section we assume that G has no torsion, i.e., G ∼= Z
r for some r. Then,

a list L = (ge)e∈E in G defines a zonotope

Z(L) :=
{∑

e∈E

sege : 0 ≤ se ≤ 1 for all e ∈ E

}
.

Consider the polynomial

EL(v) := ZAL(q, qv)
∣∣∣
q=0

=
∑
A

m(A)
∏
e∈A

ve,

where the sum is over all independent sets A in M. For k = (ke)e∈E ∈ N
E let

k · L = (kege)e∈E .

Proposition 10.1. Let k = (ke)e∈E ∈ NE.

(1) EL(k) is equal to the number of integer points of the zonotope Z(k · L);
(2) EL(−k) is equal to the number of integer points in the interior of Z(k · L);
(3) the univariate polynomial t �→ EL(t, . . . , t) is the Ehrhart polynomial of

Z(L);
(4) the highest degree part of EL(v) is the mixed volume of the 1-dimensional

polytopes Z({g1}), . . . ,Z({gn}).

Proof. It is known (see for instance [6]) that the number of integer points in Z(L)
is ∑

{m(A) : A ⊆ E is independent}.
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However, if A is independent, then the multiplicity of A in k · L is equal to
m(A)

∏
e∈A ke. This proves the first statement and the third. The second is then

a consequence of the well-known reciprocity theorem for the Ehrhart polynomial.
The fourth statement is then also clear. �

The theorem above generalizes a result proved in [6]. In fact, the polynomial
EL(v) is a multivariate version of the Ehrhart polynomial. It may be considered
as a mixed Ehrhart polynomial.

For example, if L = {(3, 0), (0, 2), (1, 1)}, then
EL(v1, v2, v3) = 1 + 3v1 + 2v2 + v3 + 6v1v2 + 3v1v3 + 2v1v2.
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