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ABSTRACT
The two main topics of this article are the introduction of the “optimally tuned robust improper maximum
likelihood estimator”(OTRIMLE) for robust clustering based on themultivariate Gaussianmodel for clusters,
and a comprehensive simulation study comparing the OTRIMLE to maximum likelihood in Gaussian mix-
tureswith andwithout noise component,mixtures of t-distributions, and the TCLUST approach for trimmed
clustering. The OTRIMLE uses an improper constant density for modeling outliers and noise. This can be
chosen optimally so that the nonnoise part of the data looks as close to a Gaussian mixture as possible.
Some deviation from Gaussianity can be traded in for lowering the estimated noise proportion. Covariance
matrix constraints and computation of the OTRIMLE are also treated. In the simulation study, all methods
are confronted with setups in which their model assumptions are not exactly fulfilled, and to evaluate the
experiments in a standardized way by misclassification rates, a new model-based definition of “true clus-
ters” is introduced that deviates from the usual identification of mixture components with clusters. In the
study, every method turns out to be superior for one or more setups, but the OTRIMLE achieves the most
satisfactory overall performance. The methods are also applied to two real datasets, one without and one
with known “true”clusters. Supplementary materials for this article are available online.

1. Introduction

In this article, we introduce and investigate the “optimally tuned
robust improper maximum likelihood estimator” (OTRIMLE),
a method for robust clustering with clusters that can be
approximated by multivariate Gaussian distributions. Its one-
dimensional version was introduced in Coretto and Hen-
nig (2010). We also present a simulation study comparing
OTRIMLE and other approaches for (mostly robust) model-
based clustering, which is, to our knowledge, the most compre-
hensive study in the field and involves a careful discussion of the
issue of comparing methods based on different model assump-
tions.

The basic idea of OTRIMLE is to fit an improper density to
the data that is made up by a Gaussian mixture density and a
“pseudo mixture component” defined by a small constant den-
sity, which is meant to capture outliers in low density areas of
the data. This is inspired by the addition of a uniform “noise
component” to a Gaussian mixture (Banfield and Raftery 1993).
Hennig (2004) showed that using an improper density improves
the breakdown robustness of this approach. The OTRIMLE has
been found to work well for one-dimensional data in Coretto
and Hennig (2010).

As inmany other statistical problems, violations of themodel
assumptions and particularly outliers may cause problems in
cluster analysis. Our general attitude to the use of statistical
models in cluster analysis is that the models should not be
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understood as reflecting some underlying but in practice unob-
servable “truth,” but rather as thought constructs implying a cer-
tain behavior of methods derived from them (e.g., maximizing
the likelihood), which may or may not be appropriate in a given
application (more details on the general philosophy of cluster-
ing can be found in Hennig and Liao 2013). Using a model such
as a mixture of multivariate Gaussian distributions, interpret-
ing every mixture component as a “cluster,” implies that we look
for clusters that are approximately “Gaussian-shaped,” but we
do not want to rely on whether the data really were generated
iid by a Gaussian mixture. We are interested in the performance
of such methods in situations where one may legitimately look
for Gaussian-shaped clusters, even if some data points do not
belong to such clusters (called “noise” in the following), and even
if the clusters are not precisely Gaussian. This reflects the fact
that in practice, for example,mixtures of t-distributions are used
for clustering the same datasets to which Gaussian mixtures are
fitted as well, interpreting the resulting clusters in the same way.

For illustration of the outlier problem in model-based clus-
tering, we use a five-dimensional dataset in which the 170 dis-
tricts of the German city of Dortmund are characterized by a
number of variables, which is discussed in detail in Section 6.1.
Fitting a plain Gaussian mixture with G = 4 to all five variables
by R’sMCLUST package (Fraley et al. 2012), one cluster is a one-
point cluster consisting only of an extreme outlier, and two fur-
ther clusters fit two different varieties ofmoderate outliers.More
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than 120 districts are collected in a single cluster. The task of
robust clustering is to avoid having many or even most clusters
dominated by outliers, and to produce a meaningful clustering
structure also among themain bulk of nonextremeobservations.

A number of model-based clustering methods that can deal
with outliers have been proposed in recent years. An overview
of these methods is given in Section 2. The OTRIMLE is intro-
duced and discussed in Section 3, starting from the “RIMLE,”
in which the level of the improper constant density is a tuning
constant. We then introduce a method for optimal tuning and
discuss its computation. Section 5 presents a simulation study
that uses a unified approach for defining elliptically shaped clus-
ters with noise/outliers, presented in Section 4. The Dortmund
dataset mentioned above is discussed in Section 6 along with a
dataset of folk song melodies from two known regions. Some
further issues including the estimation of the number of clusters
are discussed in Section 7. Additional details about the exam-
ple dataset (including full scatterplots), the simulation study,
and computation of methods are provided in an online supple-
ment (Coretto and Hennig in press b). Theoretical properties
of the RIMLE with the tuning constant fixed are investigated in
Coretto and Hennig (in press a) and cited here.

2. Methods from the Literature

In the following, assume an observed sample xn = {x1, x2, . . . ,
xn},where xi is the realization of a randomvariableXi ∈ R

pwith
p ≥ 1; X1, . . . ,Xn iid. The goal is to cluster the sample points
into G distinct groups.

2.1. Maximum Likelihood (ML) for GaussianMixtures
(gmix)

Let φ(x;μ,�) be the density of a multivariate Gaussian distri-
bution with mean vector μ ∈ R

p and p× p covariance matrix
�. Assume that the observed sample is iid drawn from the finite
Gaussian mixture distribution having density

m(x; θ ) =
G∑
j=1

π jφ(x;μ j, � j), (2.1)

where π j ∈ [0, 1] for all j = 1, 2, . . . ,G and
∑G

j=1 π j = 1, θ is
the parameter vector containing the triplets π j, μ j, � j for all
j = 1, 2, . . . ,G. Clustering coincides with assigning points to
the mixture components based on ML parameter estimates. π j
can be interpreted as the expected proportion of points orig-
inated from the jth component. Let θml

n be the ML estima-
tor for θ , usually computed by the expectation–maximization
(EM) algorithm (Dempster et al. 1977). TheML estimator under
(2.1) exists only under appropriate constraints on the covari-
ances matrices. These constraints (which are also relevant for
the methods introduced below) will be discussed in detail in
Section 3. Let τml

i j be the estimated posterior probability that the
observed point xi has been drawn from the jth mixture compo-
nent, that is,

τml
i j = πml

j,nφ(xi;μml
j,n, �

ml
j,n)

m(xi; θml
n )

for all j = 1, 2, . . . ,G. (2.2)

The point xi can then be assigned to the kth cluster if k =
argmax j=1,2,...,G τ

ml
i j . This assignment method is common to

all model-based clustering methods introduced here. gmix is
implemented in R’s MCLUST package (Fraley et al. 2012). As
illustrated in Section 1 and proven inHennig (2004), themethod
can be strongly affected by outliers and deviations from the
model assumptions, andwe now turn to approaches that attempt
to deal with this problem. For lack of space, we present these in
detail in the online supplement and only give a short overview
here.

2.2. ML-Type Estimator for GaussianMixtures with
UniformNoise (gmix.u)

Banfield and Raftery (1993) added a uniform mixture compo-
nent on the smallest hyperrectangle covering the data to (2.1),
calling it “noise component” to accommodate “noise.”

2.3. ML forMixtures of Student t-Distributions (tmix)

McLachlan and Peel (2000) replaced the Gaussian densities in
(2.1) with multivariate Student-t densities, because they have
heavier tails and can therefore accommodate outliers in a better
way.Observations can be declared “noise” if they lie in a lowden-
sity area of the t-distribution fitting their cluster. Hennig (2004)
showed that neither tmix nor gmix.u is breakdown-robust.

2.4. TCLUST

TCLUST is based on maximizing a trimmed likelihood of
a “fixed partition model” with cluster weights π j . With R =
∪G

j=1Rj, #{R} = [n(1 − α)] the number of nontrimmed points:

θ tclust := argmax
θ∈�,#{R}=[n(1−α)]

G∑
j=1

∑
i∈Rj

(
logπ j + logφ(x;μ j, � j)

)
.

(2.3)

For background, seeGallegos (2002), Gallegos andRitter (2005),
and García-Escudero et al. (2008). The TCLUST methodol-
ogy is implemented in R’s TCLUST package by Fritz, García-
Escudero, and Mayo-Iscar (2012). Partition methods with
trimming started with the trimmed k-means proposal of
Cuesta-Albertos, Gordaliza, and Matrán (1997).

2.5. Further ExistingWork

More approaches to robustmodel-based clustering can be found
in the literature.Neykov et al. (2007) proposed and implemented
a trimmed likelihood method. Qin and Priebe (2013) intro-
duced an EM-algorithm adapted to maximum Lq-likelihood
estimation and studied its behavior under a gross error model.
References to other approaches to robust clustering are given in
García-Escudero et al. (2010).

3. Optimally Tuned Robust Improper Maximum
Likelihood

3.1. Robust ImproperMaximum Likelihood

The robust improper maximum likelihood estimator (RIMLE)
is based on the “noise component”-idea for robustification
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(gmix.u). The main idea is to use a pseudo-model where the
noise is represented by an improper constant density over the
whole Euclidean space:

ψδ(x, θ ) = π0δ +
G∑
j=1

π jφ(x;μ j, � j), (3.1)

with π0, π j ∈ [0, 1] for j = 1, 2, . . . ,G, π0 + ∑G
i=1 π j =

1. δ > 0 is the improper constant density (icd). The
parameter vector θ contains all Gaussian parameters
plus all proportion parameters including π0, i.e., θ =
(π0, π1, . . . , πG, μ1, . . . , μG, �1, . . . , �G). Given the sam-
ple improper pseudo-log-likelihood function

ln(θ ) = 1
n

n∑
i=1

logψδ(xi, θ ), (3.2)

the RIMLE is defined as

θn(δ) = argmax
θ∈�

ln(θ ), (3.3)

where � is an appropriate constrained parameter space dis-
cussed below. θn(δ) is then used to cluster points as for model-
based clusteringmethods. Define pseudo posterior probabilities
in analogy with (2.2):

τ j(xi, θ ) :=

⎧⎪⎪⎨
⎪⎪⎩

π0δ

ψδ(xi, θ )
if j = 0

π jφ(xi, μ j, � j )

ψδ(xi, θ )
if j = 1, 2, . . . ,G;

for i = 1, 2, . . . , n,

and assign the points based on the following rule

J(xi, θ ) := argmax
j∈{0,1,2,...,G}

τ j(xi, θ ). (3.4)

Fixing δ, (3.1) does not define a proper probability model, but
(3.3) yields a useful procedure for data modeled as a propor-
tion of (1 − π0) of a mixture of Gaussian distributions plus a
proportion of π0 points not assigned to any meaningful cluster.
Regions of high density are rather associated with clusters than
with noise, so the noise regions should be those with the lowest
density. This could be achieved by using the uniform density as
in gmix.u, but for this the presence of gross outliers the depen-
dence of the uniform distribution on the convex hull of the data
still causes a robustness problem (Hennig 2004) .

The optimization problem in (3.3) requires that� is suitably
defined, otherwise θn(δ) may not exist. As discovered by Day
(1969), the Gaussian mixture likelihood can degenerate. This
problem extends to (3.1) as well. Let λk, j be an eigenvalue of� j
for some k = 1, 2, . . . , p and j = 1, 2, . . . ,G. Take a sequence
(θm)m∈N such that λk, j,m ↘ 0 and μ j,m = x1, then ln(θm) →
+∞. There are various ways to avoid this issue. Let λmax(θ ) and
λmin(θ ) be, respectively, themaximum and theminimum eigen-
values of the covariance matrices in θ , Coretto and Hennig (in
press a) adopted the “eigenratio constraint”

λmax(θ )/λmin(θ ) ≤ γ < +∞ (3.5)

with fixed γ ≥ 1. γ = 1 constrains all component covariance
matrices to be spherical and equal, as in k-means clustering,
while γ > 1 restricts the relative scatter discrepancy among
clusters. This type of constraint has been proposed by Dennis

(1981) and studied by Hathaway (1985) for one-dimensional
Gaussian mixtures. EM-algorithms for computing the ML of
multivariate Gaussian mixtures under (3.5) have been studied
by Ingrassia (2004) and Ingrassia and Rocci (2007), although
asymptotic properties of the corresponding MLE have not been
proved. The same constraints are used for TCLUST by García-
Escudero et al. (2008). There are a number of alternative con-
straints, see Ingrassia and Rocci (2011) and Gallegos and Ritter
(2009).

Although (3.5) prevents the unboundness of the likelihood
in standard mixture models and TCLUST, for RIMLE this is not
enough. Points not fitted by any of theGaussian components can
still be fitted by the improper uniform component. Therefore,
Coretto and Hennig (in press a) proposed an additional “noise
proportion constraint,”

1
n

n∑
i=1

τ0(xi, θ ) ≤ πmax, (3.6)

for fixed 0 < πmax < 1. The quantity n−1 ∑n
i=1 τ0(xi, θ ) can be

interpreted as the estimated proportion of noise points. Setting
πmax = 0.5 just implements a familiar condition in robust statis-
tics that at most half of the data should be classified as “out-
liers/noise.” The resulting restricted parameter space for RIMLE
is then

� : =
⎧⎨
⎩θ : π j ≥ 0 ∀ j ≥ 1; π0 +

G∑
j=1

π j = 1; 1
n

n∑
i=1

τ0(xi, θ )

≤ πmax; λmax(θ )

λmin(θ )
≤ γ

}
. (3.7)

Coretto and Hennig (in press a) showed that θn(δ) exists for any
δ ≥ 0 if #(xn) > G + 
nπmax� and that θn(0) exists under the
milder condition that #(xn) > G. For δ = 0, the RIMLE reduces
to ML for plain Gaussian mixtures. Let EP f (x) be the expecta-
tion of f (x) under x ∼ P. The RIMLE functional is defined as

θ(δ) = argmax
θ∈�G

EP logψδ(x; θ ). (3.8)

Existence of (3.8), consistency of θn(δ) on the quotient space
topology identifying all log-likelihood maxima and its break-
down point are shown in Coretto and Hennig (in press a).

3.2. Optimal Improper Density Level

Occasionally, subject matter knowledge may be available aid-
ing the choice of δ, but such situations are rather exceptional.
Here we suggest a data-dependent choice of δ. Note that δ is not
treated as a model quantity to be estimated here, but rather as
a tuning device to enable a good robust clustering. The aim of
the RIMLE is to approximate the density of clustered regions of
points when these regions look like those produced by a Gaus-
sian distribution. We define the “optimal” δ value as minimizer
of a criterion function measuring the discrepancy of the found
clusters from the Gaussian prototype. Given θn(δ), define the
clusterwise squared Mahalanobis distances to clusters’ centers
as

di, j,n = (xi − μ j,n)
′�−1

j,n(xi − μ j,n),
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and the clusterwise weighted empirical distribution of di, j,n,

M j(t; δ) = 1∑n
i=1 τ j(xi, θn(δ))

n∑
i=1

τ j(xi, θn(δ))1{di, j,n ≤ t},

j = 1, 2, . . . ,G. (3.9)

In M j , the ith point’s distance is weighted according to the
pseudo posterior probability that the ith observation has been
generated by the jth mixture component. If the jth cluster is
approximately Gaussian and μ j,n and � j,n are good approx-
imations of its location and scatter, we expect that squared
Mahalanobis distances to μ j,n of the points indeed belonging to
mixture component no. j (for which τ j(·) indicates the esti-
mated probability) will approximate a χ2

p distribution. With
χ2
p (a) being the value of the cdf of theχ2

p distribution at a, define
the Kolmogorov-type distance for the jth cluster

K j(δ) = max
i=1,...,n

∣∣∣M j(di, j,n; δ)− χ2
p (di, j,n)

∣∣∣ . (3.10)

The quality of the overall Gaussian approximation is then evalu-
ated by weighting K j(·) with the estimated component propor-
tion π j,n:

D(δ) = 1∑G
j=1 π j,n

G∑
j=1

π j,nK j(δ). (3.11)

For a given constant β ≥ 0, define the optimal icd level as

δn = argmin
δ∈[0,δmax]

[
D(δ)+ βπ0,n

]
. (3.12)

The corresponding optimally tuned RIMLE (OTRIMLE) will be
denoted as θn(δn). Existence and uniqueness of δn are not triv-
ial, see Section 3.3. Section 5.4 is about how D(δ) behaves as a
function of δ.

The straightforward choice for β , formalizing the “Gaussian
cluster” concept, is β = 0. However, often in practice it is not
so important that the clusters are of as precise Gaussian shape
as possible. β > 0 (but normally smaller than 1) formalizes that
less Gaussian shapes of clusters are tolerated if this brings the
estimated noise proportion down. As can be seen in Section 5,
choosing β = 1

3 leads to improvements if the true clusters are
t-distributed. Section 5.5 gives more details on the effect of
choosing β > 0.

3.3. Computation

For a fixed δ, the RIMLE can be appropriately computed using
an expectation–maximization (EM) algorithm. See Coretto and
Hennig (in press a) for details, and the online supplement for
details and background of the following. The outcome of the
EM-algorithm depends on the initialization. We used an ini-
tialization method inspired by the MCLUST software. To avoid
spurious clusters, we consider as valid initial partitions only
those containing at least min.pr×n observations in each clus-
ter (min.pr=0.005, say). As a first attempt to find such a valid
partition, nearest neighbor-based clutter/noise detection pro-
posed by Byers andRaftery (1998) is applied to identify an initial
noise guess. Agglomerative hierarchical clustering based onML
criteria for Gaussian mixture models proposed by Banfield and

Raftery (1993) is then used for finding initial Gaussian clusters
among the nonnoise. See the online supplement for the case that
the found partition is not “valid.”

The OTRIMLE can be found by computing RIMLEs on a
grid of δ values ranging from zero to some large enough δmax.
In practice, we solve the program (3.12) by the “golden section
search” of Kiefer (1953) over the candidate set δ ∈ [0, δmax]. In
most numerical experiments, we found that no more than 30
RIMLE evaluations are required. δmax can be chosen as highest
density value occurring within an initialized cluster, discarding
δ-values for which the RIMLE-solution ends up at the border of
the parameter space.

4. Definition of “True”Clusters andMisclassification

In most simulation studies in cluster analysis, in which data
are generated from mixture (or fixed partition) models, it is
assumed that the “true” clusters are identified with the mixture
components, and methods can then be evaluated by misclas-
sification rates. But this can be problematic. Consider the
comparison of ML estimators for Gaussian mixtures and for
mixtures of t-distributions. In most applications, both
approaches would be considered as potentially appropriate
for doing the same thing, namely, finding clusters that are uni-
modal and elliptical. In applications in which the clustering is of
main interest (as opposed to parameter estimation), researchers
would not mind much whether the density around their clus-
ter cores rather looks like a Gaussian or a t-distribution. But
implications for which points are considered as “true outliers”
versus “truly belonging to a cluster” would be different, because
some points generated by a t-distribution with low degrees of
freedom are indeed outlying with respect to the core of the
t-distribution from which they are generated.

More generally, the identification of clusters and mixture
components cannot be taken for granted. Hennig (2010) illus-
trated that the interpretation of Gaussian mixture components
as clusters depends on whether the components are separated
enough. And in robust clustering, one would often interpret a
group of a few points with low density as “noise” even if they
were generated by a Gaussian distribution.

We now define a “reference truth” for the mixture models
that are used in our simulation study, from which misclassi-
fication rates then can be computed. For motivation consider
Figure 1, which shows an artificial dataset drawn from a mix-
ture of two Gaussians and a uniform distribution. Figure 1(a)
shows the unlabeled dataset on which cluster analysis operates.
Figure 1(b) shows the points labeled by the mixture compo-
nents that generated them. Observe that there are three red stars
(generated from the uniform noise) in the middle of the region
where the two Gaussians have most of their mass. Furthermore,
there are green points from the left Gaussian component with
lower density that fall into the dense blue region. No method
can be expected to reconstruct all the cluster memberships in
such overlapping regions.

Figure 1(c) shows what we define as the “reference truth,”
defined next.

The idea is that we choose probability measures
P1,P2, . . . ,PG to correspond to the G “true clusters” (implying
that they “cluster,” that is, generate clearly distinguishable,
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Figure . An artificial dataset consisting of  points drawn from two two-dimensional Gaussian distributions and  points from a uniform distribution on the square
[−10, 10] × [−5, 15]. (a) unlabeled points, (b) colored according to the mixture components, (c) colors represent the two GR

α
(with α = 10−4); red stars belong to NR

α
.

although not necessarily nonoverlapping, data patterns). For
each of these, we define a region of points that can be consid-
ered as nonoutliers based on a mean and covariance matrix
functional, which are Fisher-consistent at the Gaussian dis-
tribution, but robust and existing for other distributions, too.
This defines a region of nonoutliers of Gaussian shape. We
consider all points “noise” that are outliers according to this
definition for all P1,P2, . . . ,PG. Quadratic discriminant analysis
assigns points to clusters that are nonoutliers with respect to
more than one of the Pj . This means that points are assigned to
clusters by optimal classification boundaries under the Gaussian
assumption, even if the components are in fact not Gaussian.
This formalizes using “Gaussian cluster prototypes” without
assuming that clusters really have to be Gaussian.

To this end, letmj and S j be the minimum covariance deter-
minant (MCD) center and scatter functional at Pj (Rousseeuw
1985). Cator and Lopuhaä (2012) proved existence of the MCD
functional for a wide class of probabilitymeasures. The S j can be
corrected for achieving consistency at Pj equal to the Gaussian
distribution (Croux and Haesbroeck 1999; Pison et al. 2002),
so that when Pj is Gaussian, mj and S j are the corresponding
mean vector and covariance matrix. Let π j be the expected pro-
portion of points generated from Pj. We allow

∑G
j=1 π j ≤ 1,

so that points could be generated by (noise-)distributions other
than P1,P2, . . . ,PG. Define the quadratic discriminant score for
assigning the point y ∈ R

p to the jth cluster by maximizing

qs(y;π j,mj, S j) : = log(π j)− 1
2
log(det(S j))

−1
2
(y − mj)

′S−1
j (y − mj),

for j = 1, 2, . . . ,G.

If clusters are indeed Gaussian, this is equivalent to (3.4).
Consider

Eα(mj, S j) := {y : (y − mj)
′S−1

j (y − mj) ≤ χ2
p (1 − α)},

whereχ2
p (1 − α) is the 1 − α quantile of theχ2

p distribution. For
a fixed α, the ellipsoid Eα(mj, S j) defines the subset of Rp that
hosts the jth cluster. The size of this ellipsoid is defined in terms

of χ2
p (1 − α), because for Gaussian Pj , Pj(Rp \ Eα(mj, S j)) =

α. For a fixed level α, the α-Gaussian region is defined as the
union of these ellipsoids:

GRα :=
G⋃
j=1

Eα(mj, S j),

and the noise region is given by NRα := R
p \ GRα .

Definition 1 (α-Gaussian cluster memberships). Given α ∈
[0, 1), a data-generating process (DGP) with cluster parame-
ters θC := {(π j,mj, S j), j = 1, 2, . . . ,G}, and a dataset xn :=
{x1, x2, . . . , xn}; the α-Gaussian cluster memberships are given
by

AGRα(xi; θC) : = 1{xi ∈ GRα} × argmax
j=1,2,...,G

j 1{ j = argmaxg=1,...,G qs(y;πg,mg, Sg)}.
(4.1)

AGRα(xi, θC) = 0 means that xi ∈ NRα .
This definition is inspired by the definition of outliers with

respect to a reference model as in Davies and Gather (1993)
and Becker and Gather (1999). A difference is that here the
parameter α does not directly control the probability of the
noise region. Once α and the triples (π j,mj, S j) are fixed for
all j = 1, 2, . . . ,G, the size of the noise region will depend
on the degree of overlap and Gaussianity of the ellipsoids in
GRα . α needs to be small because the idea of an outlier implies
that under the Gaussian distributions outliers are very rare. We
choose α = 10−4, which implies that the probability that there
is at least one outlier in n = 500 iid Gaussian observations is
0.0488.

The different robust clustering methods have different
implicit ways of classifying points as “noise” (noise component,
trimming, outlier identification in t-distributions). To make
them comparable, we use (4.1) to unify the point assignment of
the methods by computing AGRα(·) based on the parameters
estimated by the methods, from which we assume that estima-
tors of the triples (π j,mj, S j) (cluster proportion, center, and
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covariance matrix) can be computed (see Section 5.2). Let the
estimated cluster parameters be θ̂C,n. Amisclassification rate can
then be computed by applying an optimal permutation σ {·} of
cluster labels:

mcr(θC, θ̂C,n) = argmin
σ

1
n

n∑
i=1

1{AGRα(xi; θC)

= σ {AGRα(xi; θ̂C,n)}}. (4.2)

See the online supplement for computation of the MCD func-
tional for nonnormal distributions.

5. A Comparative Simulation Study

Here, we present a comprehensive simulation study comparing
the OTRIMLE with the methods introduced in Section 2.

5.1. Data-Generating Processes

The methods are compared on a total of 24 DGPs with
1000 Monte Carlo replicates each. Half of the DGPs produce
two-dimensional datasets. The remaining 12 DGPs are 20-
dimensional versions that are constructed adding independent
18-dimensional uncorrelated zero-means unit-variance Gaus-
sian and/or Student-t marginals. Therefore, clusters are always
only defined on the first two marginals. Note that the aim of
the simulation study is not variable selection; we designed
the DGPs so that clustering information is only in the first two
dimensions to be able to visualize and control the clustering pat-
terns, but we compare clustering methods that use all variables
(trying variable selection methods is beyond the scope of this
article). We do not think that variable selection or dimension
reduction is mandatory in clustering, because the meaning of
the clusters is determined by the involved variables, see the
discussion rejoinder in Hennig and Liao (2013). We choose
n = 1000 for two-dimensional designs and n = 2000 for the
20-dimensional versions. DGPs have been designed to test a
variety of “noise patterns,” numbers of clusters G, and patterns
of separation/overlap between different clusters.

We consider two main classes of DGP, namely, DGPs with a
uniform noise component on the first two marginals, and DGPs
that do not have a noise component. The first group includes the
following setups, all of which have clusters generated fromGaus-
sian distributions, and for p = 20 the 18 uninformative variables
areGaussian: (i) for “WideNoise”DGPs, the uniformnoise com-
ponent produces points that are widespread but overlap with the
clustered regions entirely; (ii) for “SideNoise” DGPs the uniform
noise component spreads points on a wide region that over-
laps slightly with some of the clusters; (iii) in “SunSpot” DGPs
there is a uniform component that produces few extremely out-
lying points. On the other hand, we consider DGPs that do not
include a noise component (i.e., π0 = 0). This second group
can be divided into three further subgroups: (i)/(ii) in “GaussT”
and “TGauss” DGPs, multivariate Student-t distributions with
three degrees of freedom are used. In “GaussT” these are used
as uninformative distributions for p = 20, whereas the first
two clustered dimensions use Gaussians; in “TGauss” the clus-
ters are generated by noncentral multivariate t3-distributions
and for p = 20 the 18 uninformative variables are Gaussian;

(iii) in “Noiseless” DGPs, all points are drawn from Gaussian
distributions.

For each of the six setups, there are variants with a lower and a
higher number of clusters G, p = 2 (denoted by “l”) and p = 20
(denoted by “h”), adding up to 24DGPs. The nomenclature used
in the following puts these at the end of the setup name, that is,
“TGauss.5h” refers to the “TGauss”-setupwith higherG = 5 and
higher P = 20. For “WideNoise,” “SideNoise,” and “GaussT,” the
lower G was 2 and the higher G was 3. For “SunSpot,” “TGauss,”
and “Noiseless,” the lower G was 3 and the higher G was 5. The
overlap between clusters as well as the combinations of cluster
shapes varied between DGPs. Full details of the definition of the
DGPs are given in the online supplement together with exem-
plary scatterplots of the first two dimensions of a dataset from
every setup.

5.2. Implementation ofMethods

Table 1 summarizes settings for the compared methods.
TCLUST and RIMLE/OTRIMLE are based on eigenratio con-
straints, but this is not the case for theMCLUST software (Fraley
et al. 2012) and the available implementation of mixtures of t-
distributions (McLachlan and Peel 2000). To have full compara-
bility of the solutions, the eigenratio constraints (see Section 3.3)
have been implemented by us for OTRIMLE/RIMLE, gmix,
tmix, and gmix.u; the latter is computed by use of the same
routine that is used for RIMLE /OTRIMLE. For TCLUST, the
constraints are in the original R-package.

For all methods, the eigenratio constraint has been set equal
to 20 for each of the 24 DGPs. The latter choice is motivated
by the fact that 20 is larger than the maximum true eigenratio
across the designs involved in the comparison, and it is in gen-
eral a value that often enables rather smooth optimization (obvi-
ously in reality the true eigenvalue ratios are not known, but for
variables with comparable scales and value ranges, 20 gives the
covariance matrices enough flexibility for most applications).
OTRIMLE has been tested with and without the penalty term
β = 1

3 in (3.12), denoted by ot.rimle (β = 0) and ot.rimle.p,
respectively. Other values for β , ranging from 0.1 to 0.5, have
been tried, and results did not change much. A difficulty with
TCLUST is that an automatic data-driven choice of the trim-
ming level is currently not available. In tclust.f we set the trim-
ming level to 10%. This choice is motivated by the fact the DGPs
produced an average proportion of points belonging to the NRα
set in the range [0%, 23%] (see Table 1 in Coretto and Hennig in

Table . Summary of the main settings for the methods under comparison.

Method Setup

gmix.u RIMLE with δ = 1/Vn , whereVn is volume of the smallest
hyperrectangle that contains the data.

ot.rimle OTRIMLE without penalty (β = 0).
ot.rimle.p OTRIMLE with penalty term β = 1/3.
tclust TCLUST with fixed trimming level set at ..
ot.tclust TCLUST with trimming level selected by the OTRIMLE criterion

without penalty (β = 0).
ot.tclust.p TCLUST with trimming level selected by the OTRIMLE criterion

with penalty term β = 1/3.
tmix ML for the Student-t mixture model (.) with v = 3 for all

components plus eigenratio constraints.
gmix ML for the Gaussian mixture model plus eigenratio constraints.
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press b). Furthermore, since the trimming level plays a role simi-
lar to δ in RIMLE/OTRIMLE, there are two versions of TCLUST
for which the same idea for automatic decisions the trimming
level is used as proposed here for OTRIMLE, see Section 3. In
ot.tclust and ot.tclust.p, the trimming level has been selected
using (3.12) with the trimming level playing the role of δ, and
the weights τ j(·) in M j(·) replaced by the 0–1 crisp weights of
TCLUST, again using β = 0 or β = 1

3 . For t-mixtures, in the
original proposal by McLachlan and Peel (2000), the degrees of
freedom are assumed to be equal across the mixture compo-
nents and are estimated from the data and covariance matrix
constraints are not considered. In tmix, we fix the degrees of
freedom to 3 and we incorporate eigenratio constraints, as for
the other methods. This is motivated as follows: (i) for some of
the DGPs (particularly the SunSpot designs) constraints were
needed to avoid spurious solutions; (ii) for some of the sampling
designs not based on Student-t distributions, estimation of the
degrees of freedom of the t-distribution produced an extremely
large variability in the misclassification rates; (iii) since a num-
ber of designs are based on Student-t with 3 degrees of freedom,
the decision to fix this parameter to 3 gives the t-mixture a slight
advantage, which seems fair given that the majority of setups
rather seem to favor noise component/trimming.

For some of the DGPs, the experience suggested that solu-
tions may depend strongly on the initialization. To reduce the
bias introduced by different initializations, all methods are ini-
tialized from the same partition, see Section 3.3 (an additional
set of R functions has been provided by TCLUST’s authors to
allow for this).

5.3. Results

The methods are compared using misclassification rates as
defined in (4.2). These are more relevant in clustering tasks
than parameter estimates. The results are graphically summa-
rized in Figure 2, while average misclassification rates with

standard errors are given in Table 2. Each square in the plot
is a color-coded representation of the misclassification rate
averaged over the 1000 Monte Carlo replicates for a given
method-DGP pair. Further details about average misclassifi-
cation rates are given in the online supplement. It also con-
tains boxplots of the misclassification rates for all method-DGP
pairs. Figure 2 shows clear evidence that using robust methods
is important. The gmix method only performs well for Noise-
less and some DGPs with Gaussians and t-distributions, but
most othermethods workwell (although slightly worse at times)
for these DGPs, too. tmix works well for most DGPs involv-
ing t-distributions, but for the other DGPs with noise/outliers,
it is often seriously worse than gmix.u, OTRIMLE, and
TCLUST.

gmix.u performs relatively well, although for a number
of DGPs it suffers strongly from high dimensionality. For
WideNose in two dimensions, gmix.u will equal in many cases
a proper ML estimator, so the method should be advantageous
here, and gmix.u is indeed best for these DGPs. However,
for the 20-dimensional WideNoise, taking a uniform distri-
bution over the smallest hyperrectangle containing the data
can no longer be the ML estimate for the noise-generating
mixture component, and its performance deteriorates
strongly.

Regarding the TCLUST methods, even though the auto-
matic trimming level of ot.tclust and ot.tclust.p did not always
improve the results, it demonstrated to provide a reasonable
choice for the trimming level. In fact, for all situations where the
true average noise proportion is about equal to the trimming
level of tclust, performances of tclust, ot.tclust, and ot.tclust.p
are very similar, meaning that the OTRIMLE criterion is a
good starting point for fixing the trimming rate. Compared to
the RIMLE-type methods, the performance of TCLUST suffers
in situations where there is a considerable degree of overlap
between clusters. For DGPs with overlap (such as WideNoise.2,
SunSpot.5, GaussT.2, and Noiseless.5), the misclassification

Figure . Level plot representing the sample mean of the Monte Carlo distribution of misclassification rates (percentage scale) for each DGP-method pair. Each square of
the plot represents the average misclassification according to the bottom gray color scale.
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Table . Monte Carlo average misclassification rates (%) with their standard errors in brackets. Misclassification rates are computed as in (.). Notice that both averages
(and standard errors) are reported in percentage scale.

Method

DGP gmix.u ot.rimle ot.rimle.p tclust ot.tclust ot.tclust.p tmix gmix

WideNoise.l .(.) .(.) .(.) .(.) .(.) .(.) .(.) .(.)
WideNoise.h .(.) .(.) .(.) .(.) .(.) .(.) .(.) .(.)
WideNoise.l .(.) .(.) .(.) .(.) .(.) .(.) .(.) .(.)
WideNoise.h .(.) .(.) .(.) .(.) .(.) .(.) .(.) .(.)
SideNoise.l .(.) .(.) .(.) .(.) .(.) .(.) .(.) .(.)
SideNoise.h .(.) .(.) .(.) .(.) .(.) .(.) .(.) .(.)
SideNoise.l .(.) .(.) .(.) .(.) .(.) .(.) .(.) .(.)
SideNoise.h .(.) .(.) .(.) .(.) .(.) .(.) .(.) .(.)
Sunspot.l .(.) .(.) .(.) .(.) .(.) .(.) .(.) .(.)
Sunspot.h .(.) .(.) .(.) .(.) .(.) .(.) .(.) .(.)
Sunspot.l .(.) .(.) .(.) .(.) .(.) .(.) .(.) .(.)
Sunspot.h .(.) .(.) .(.) .(.) .(.) .(.) .(.) .(.)
TGauss.l .(.) .(.) .(.) .(.) .(.) .(.) .(.) .(.)
TGauss.h .(.) .(.) .(.) .(.) .(.) .(.) .(.) .(.)
TGauss.l .(.) .(.) .(.) .(.) .(.) .(.) .(.) .(.)
TGauss.h .(.) .(.) .(.) .(.) .(.) .(.) .(.) .(.)
GaussT.l .(.) .(.) .(.) .(.) .(.) .(.) .(.) .(.)
GaussT.h .(.) .(.) .(.) .(.) .(.) .(.) .(.) .(.)
GaussT.l .(.) .(.) .(.) .(.) .(.) .(.) .(.) .(.)
GaussT.h .(.) .(.) .(.) .(.) .(.) .(.) .(.) .(.)
Noiseless.l .(.) .(.) .(.) .(.) .(.) .(.) .(.) .(.)
Noiseless.h .(.) .(.) .(.) .(.) .(.) .(.) .(.) .(.)
Noiseless.l .(.) .(.) .(.) .(.) .(.) .(.) .(.) .(.)
Noiseless.h .(.) .(.) .(.) .(.) .(.) .(.) .(.) .(.)

rate of TCLUST is completely dominated by misclassifications
between clusters (to see this consider Tables 2 and 4 in the online
supplement). The reason is that the TCLUST parameters are
based on a classification-type likelihood, which relies on the sep-
aration between clusters. The TCLUST also seems to not toler-
ate the large number of Student-t marginals of GaussT.2h and
GaussT.3h. TCLUST performs well for a number of DGPs and
is clearly best in WideNoise.2h.

The OTRIMLE methods show a very good overall per-
formance. They produce high misclassification rates only for
some 20-dimensional DGPs for which all methods are in
trouble (performances for GaussT.2h are generally bad with
even tmix, the best method there, producing an average mis-
classification rate of more than 30%), and they are best for
a number of DGPs, particularly 20-dimensional WideNoise
and some TGauss-DGPs. The comparison between ot.rimle
and ot.rimle.p is mixed (as between ot.tclust and ot.tclust.p),
with β = 1

3 improving matters clearly for TGauss.2l and
TGauss.3l (the shape of the t-distribution encourages ot.rimle
to assign too many points to the noise; see Tables 2 and 3
in the online supplement, but being significantly worse for
WideNoise.3h.

Comparing OTRIMLE with gmix.u, there are a number of
DGPs for which gmix.u has a slightly lower misclassification
rate than one or both of ot.rimle and ot.rimle.p. In all of these
DGPs, all of gmix.u, ot.rimle, and ot.rimle.p basically produce
the same clustering structure, with disagreement only about
the classification of some borderline points. Differences are
more substantial in the setups in which gmix.u is worse. For
WideNoise.2h, gmix.u in most cases does not detect any noise,
so that one of the clusters consists mainly of noise. For Wide-
Noise.3h, sometimes all or much noise is merged into a cluster,
with some impact on the clustering structure. For GaussT.3h,

substantial amounts of outliers are integrated into the
clusters.

5.4. Behavior of D(δ)

Here, we investigate the behavior of D(δ) as a function of δ via
Monte Carlo experiments under various DGPs from Section 5.
For each of these DGPs, we produced 100 independent samples.
We computed D(δ) for a grid of δ values taken from an interval
[2.22 × 10−308, 1], adding δ = 0. In Figure 3, we report Monte
Carlo averages±standard errors forD(δ) for two selectedDGPs:
WideNoise.3h and GaussT.3h. These are defined in Section 5.1,
both with p = 20. The main difference is that noise is produced
by a two-dimensional uniform distribution in WideNoise.3h,
whereas in GaussT.3h dimensions 3–20 are from centered t3
distributions, generating some outliers. Figure 3 reports the
behavior of D(δ) for log(δ) > −200. For smaller values of δ
(including δ = 0) the behavior of the curves was basically con-
stant. In both graphs there is a clear minimum, although for
GaussT.3h this minimum lies on the border. For WideNoise.3h
the OTRIMLE criterion has a nice convex behavior around its
minimum. In GaussT.3h, in dimensions 3–20 the distributional
shape of the clusters deviated from Gaussianity by heavier tails,
although the core of the distribution looks similar to a Gaus-
sian. D(·) then enforces a Gaussian shape by assigning many
points to the noise component. The result is that π0,n becomes
large, and the optimal δ happens at point where larger val-
ues of δ do not produce parameter estimates within the con-
strained set anymore (unless the constraint is enforced). The
latter is a reason for the use of the penalty term in (3.12) (see
also Section 5.5). For the remaining 22 DGPs of Section 5.1, we
found similar patterns (mostly similar to Widenoise.3h here).
Another observation in Figure 3 is that around the minimum
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Figure . Monte Carlo average for OTRIMLE criterionD(δ) (blue solid line)± standard errors (dotted lines) computed over a grid of values for δ ∈ {0} ∪ [2.22 × 10−308, 1].
The two plots refer to DGPs “WideNoise.h”and “GaussT.h” in Section .

D(δ) seems to be quite stable for different datasets from the same
design.

5.5. Effect of β

For all 24 DGPs considered in Section 5.1, we also investigated
the behavior of the noise proportion π0,n as a function of β ,
see (3.12). For each design, we produced 100 independent sam-
ples, and for each of these we computed the OTRIMLE solu-
tion θn(δn) for various values of β ∈ [0, 1]. Figure 4 reports
the Monte Carlo average of the estimated noise proportion
π0,n± standard error. For both WideNoise.3h and GaussT.3h,
an increase in β reduces smoothly the estimated noise propor-
tion. There is some difference, however, in scales. The impact
of β is much stronger for GaussT.3h, and the same happens
for all those sampling designs in which within-cluster distribu-
tions deviate from Gaussianity. Results for other DGPs are quite
similar.

The discovery of the overall clustering structure was never
affected by changing β between 0 and 0.5 for the DGPs from
Section 5. In the majority of cases, there was no change of the
clustering at all. The only difference was that larger β some-
times produced a lower percentage of data classified as noise.
In the case that t3-distributions were involved, this was good,

becausewithβ = 0 only fairly small central cores (60%–70%) of
the points generated by t-distributionswere assigned to the clus-
ters, whereas for larger β only points were classified as noise that
were really quite “outlying.”On the other hand,with a largerβ , in
data fromDGPs with Gaussian clusters and some noise that was
not clearly separated from the clusters, more “true” noise points
were assigned to the clusters. There is no objective rule for what
percentage of points from a t-distribution should be considered
as “truly” outlying, and therefore it needs to be decided by the
user how “tolerant” OTRIMLE is desired to be toward heavier
distributional tails than the Gaussian ones.

Figure 5 shows a situation in which the choice of β affects the
clustering a lot. The dataset consists of 100 observations each of
N (0, 1) andN (3, 1) along the x-axis and 12 observations from
N (12, 25). OTRIMLE was fitted withG = 2. The first two mix-
ture components are not very well separated. β = 0 does not
penalize noise, and therefore the observations from the third
component are declared “noise” and the first two components
are separated. However, β = 1

3 merges the first two components
and declares the third one the second cluster. The “switching
point” between these two ways of “interpreting” the clustering
structure is at aboutβ = 0.3; larger values ofβ donot change the
clustering anymore. Despite the “true” G being 3 here, regard-
ing interpretation, depending on the application it may well
make sense to either treat the smallest mixture component as

Figure . Monte Carlo average for the estimated noise proportion π0,n (blue solid line)± standard errors (dotted lines) computed over a grid of values for β ∈ [0, 1]. The
two plots refer to DGPs called “WideNoise.h”and “GaussT.h” in Section .
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Figure . Clusterings with β = 0 and β = 1
3 on artificial data example.

noise/outliers, or to merge the first two components to a single
cluster. β tunes the method to rather produce noise, or to rather
tolerate not-so-Gaussian components in cases like this.

6. Applications

In this section, we apply OTRIMLE and the alternative methods
mentioned before to two real datasets. The first example does
not come with any “ground truth,” whereas the second one has
“true” classes.

6.1. DortmundData

We here analyze a dataset giving information about 170 dis-
tricts of the German city of Dortmund, which is described
in Sommerer and Weihs (2005). We used five sociological
key variables and transformed them in such a way that fit-
ting Gaussian distributions within clusters makes sense. The
resulting variables are the logarithm of the unemployment rate
(“unemployment”), the birth/death balance divided by number
of inhabitants (“birth.death”), the migration balance divided by
number of inhabitants (“moves.in.out”), the logarithm of the
rate of employees paying social insurance (“soc.ins.emp”), and
the square root of the number of inhabitants (“inhabitants”).

All variables were centered and standardized by the
median absolute deviation. Figure 6 shows a scatterplot of
birth.death and moves.in.out. To deal with overplot-
ting, an existing extreme outlier with values ≈ (−200, 50) is
not shown. Figure 7 shows a scatterplot of unemployment
and soc.ins.emp. Figure 7 shows some more moderate
outliers. The left side of Figure 6 shows a clustering from fitting
a plain Gaussian mixture with G = 4 to all five variables by
R’s MCLUST package. Cluster 4 is a one-point cluster made of
the extreme outlier. Clusters 1 and 3 basically fit two different
varieties of moderate outliers, whereas all the more than 120
districts that are not extreme regarding these two variables
are put together in a single cluster. Clearly, it would be more
desirable to have a clustering that is not dominated somuch by a
few odd districts, given that there is some meaningful structure
among the other districts. Such a clustering is produced by the
OTRIMLE method, shown on the right side of Figure 6 and on
the left side of Figure 7. The clustering is nicely interpretable
with cluster no. 3 collecting a group of districts with higher
migration balance and very scattered birth/death rate, cluster
no. 1 being a high variation cluster characterized by high unem-
ployment or high number of employees paying social insurance,
cluster no. 2 being a homogenous group with medium number
of employees paying social insurance and rather high but not
very high unemployment, and cluster no. 4 collecting most

Figure . Scatterplot of birth.death and moves.in.out from Dortmund dataset with MCLUST clustering (left) and OTRIMLE clustering (right) with G = 4.
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Figure . Scatterplot of soc.ins.emp and unemployment from Dortmund dataset with OTRIMLE clustering (left) and TCLUST clustering with trimming rate %
(right) with G = 4.

districts with low values on both of these variables. For this
dataset, values between β = 0 and β = 0.5 yield the same
clustering (with eigenratio constraint γ = 20), despite the fact
that β = 0 leads to log(δ) = −11.5 and π0,n = 0.055, whereas
for β = 0.5, (3.12) produces log(δ) = −11.9 and π0,n = 0.054.

Looking at the methods introduced in Section 2, it turns
out that substantial disagreement may exist between different
robust clustering methods. Applying the methods implemented
in tclust and discussed in García-Escudero et al. (2011),
α = 0.07 was found to be a good trimming rate for TCLUST
with G = 4 here. The resulting clustering is compared with
OTRIMLE’s in Figure 7. Although what was trimmed is almost
identical to OTRIMLE’s “noise,” the clustering is somewhat dif-
ferent, with TCLUST’s clusters no. 1 and 4 ranging into the
area of “high variation characterized by high unemployment or
high number of employees paying social insurance” as mainly
represented by cluster no. 3 of TCLUST and cluster no. 1 of
OTRIMLE. It is hard to interpret OTRIMLE’s cluster no. 4 using
any pair of variables. This can be seen in the online supplement
(Coretto and Hennig in press b), as well as solutions of the other
methods.

6.2. Folk SongData

The second dataset was provided by Daniel Müllensiefen. The
observations are 776 folk song melodies, 586 of which are
from Luxembourg and the remaining 190 are from Warmia in
Poland. These are the “true” classes. The melodies are originally
from the ESAC melody database (Schaffrath 1992). The 18 fea-
tures (see the online supplement (Coretto and Hennig in press
b) for a list) were computed by the software “FANTASTIC”
(Müllensiefen 2009).

Visual inspection reveals that there are many unusual
melodies, that is, outliers in the dataset. The main bulks of
melodies from Luxembourg and Warmia differ systematically
from each other, although there is much overlap and no strong
separation. For measuring to what extent clusterings computed
withG = 2 coincidedwith the two regions, we used the adjusted
Rand index (ARI; Hubert and Arabie 1985) with an expected
value of 0 for two random clusterings and a maximum of 1 for
perfect agreement. OTRIMLE with settings as above (β = 0,

γ = 20) classified 36.9% of the observations as “noise.” The
ARI between the OTRIMLE solution and the original regions
is 0.155. For this (as for the other clustering methods), the
OTRIMLE solution was interpreted as a three-cluster solution
with “noise” as third cluster. Default MCLUST yields an ARI
= −0.045, MCLUST with noise yields ARI = −0.017, ot.tclust
yields ARI = 0.016 (the original TCLUST function with trim-
ming rate 0.369 as suggested by OTRIMLE above achieves ARI
= 0.089), and tmix yields ARI= 0.083.OTRIMLE’s ARI-value,
though clearly better than that of the other methods, is not par-
ticularly high, but computing the ARI only on the observations
that were not classified as noise achieves ARI= 0.392 (the solu-
tion with β = 1

3 is slightly worse here but slightly better above
regarding the ARI including the noise points), which suggests
that there is a clear correspondence between OTRIMLE’s clus-
tering and melodies that are typical for the regions.

7. Concluding Remarks

Despite our effort to make the simulation study fair, ultimately
it would be good to have comparisons of methods run by
researchers who did not have their hand in the design of any
of the methods. Every method was best for certain DGPs in
the simulation study, and simulation studies could be designed
that make any method “win.” Readers need to make up their
own mind about to what extent our study covered situations
that are important to them. One of our major aims was to con-
front all methods with DGPs that do not exactly match their
model assumptions, but for which the methods nevertheless
could be legitimately used. In fact, we incorporated crucial ideas
from both MCLUST (initialization) and TCLUST (eigenvalue
ratio constraints), and the combination of these ideas used here
could actually be beneficial for all methods. The methods pre-
sented in this article will soon be available in the new R-package
OTRIMLE.

The problem of determining the number of clusters G is
very important in practice. Here are two possible approaches for
RIMLE. First, the most popular approach for fitting plain mix-
ture models, namely, the Bayesian Information Criterion, can
be used (treating RIMLE/OTRIMLE improper constant density
as a proper one), Fraley and Raftery (1998). Second, G could
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be decided in an exploratory way by monitoring the changes of
the pseudo-likelihood over different values ofG in a similar way
to what is done for TCLUST in García-Escudero et al. (2011).
Investigating these approaches in depth is beyond the scope of
this article.

SupplementaryMaterials

Supplementary materials contain: (i) additional details about methods and
algorithms; (ii) detailed definitions of the sampling designs for the simu-
lation study along with boxplots and summary tables for misclassification
rates (iii) additional plots for real data applications; (iv) R software with
instructions to reproduce the comparative simulation study and applica-
tions to real data.
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