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Abstract: In mineral resource estimation, identification of the geological domains to be used for
modeling, and the type of boundaries dividing them, is a major concern. Generally, the variables
within a domain are estimated with an assumption of the hard boundaries (sharp contact). However,
in many cases, the geologic structures that generate a deposit are transitional (overlapping of several
geologic domains). Consequently, boundary identification of the geological domains is essential for
an accurate estimate of resources. This paper considers a real application to examine whether the
addition of geologic information benefits grade estimation in the presence of transitional boundaries.
Results proved that the accuracy of the grade estimation can be improved by adding geological
information and there is a significant sensitivity in grade estimation results in the existence of
transitional boundaries.
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1. Introduction

Geo-engineering projects involve characterization of the geology of the area under study.
Identifying the exact borders of geological domains and assessing the uncertainty of these borders
are therefore crucial steps. Geostatistics, as proposed by Matheron [1], takes into account the spatial
variability and randomness inherent in any resource estimation. For instance, kriging, a geostatistical
estimation method, is used as an unbiased linear estimate of point values (point kriging) or block
averages (block kriging) with minimum error variance [2]. Different variants of kriging estimators
have been developed depending on the available source of information and spatial variability of the
variable in question [3]. Indeed, the literature on kriging methods and their applications is vast [3-6].

A geologic model of the constraints and borders of the mineralization zones must be constructed
prior to estimating a spatial variable in a mineral resource using geostatistics [7]. In many applications,
domain boundaries are often referred to as either “hard” or “soft” [8]. Figure 1 shows a very simplified
schematic figure of the differences between soft and hard boundaries. Boundaries are termed “hard”
when an abrupt change in average grade or variability occurs at the point of contact between two
geologic domains, as in the case of coal seams or sedimentary zinc deposits. In disseminated
mineralization, as seen in some porphyry Cu-Au or massive iron deposits, the type of boundary
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contact is gradational, i.e., the grades change transitionally across a boundary, in which case the contact
is referred to as having a transitional (soft) boundary [8].

(a) (b)

Figure 1. Schematic figures showing hard boundaries with sharp changes between geological domains
(a) and soft boundaries with transitional changes between geological domains (b).

Estimation in the presence of hard boundaries is straightforward since only samples within the
domain are used and there is no continuity between variables in adjacent geologic domains. Estimation
in the presence of soft boundaries, on the other hand, has to take into account overlapping and
continuity between spatial variabilities on either side of the boundaries. In addition, the boundary
may be defined by a change in the local mean grade, which is usually gradational rather than abrupt.
Soft boundaries allow variables from multiple domains to be used (by moving neighborhood) in the
estimation of each domain [9,10].

Several resource estimation techniques exist depending on the geologic information available
for the area in question and the study target. Many attempts have been made to improve estimation
accuracy in the case of transitional boundaries [8-10], and to model geologic domains [3,11-13].

In addition to basic linear geostatistical estimation methods, such as ordinary kriging (OK),
probabilistic tools using lithology indicators are also employed to develop geologic and mineralization
models [14,15]. Gossage [16] used indicator kriging (IK) for a complex structure mesothermal
gold deposit where the geologic data, which include lithology, alteration and veining, had been
independently reviewed in conjunction with geochemical drilling data. The author compared results
of the IK studies with the geologic/mineralization model and discussed the advantages of the IK
approach. In other case studies based on a probability criterion, IK methods have provided objective
modeling of a given geologic geometry [17-19].

Larrondo and Deutsch [8] proposed a linear model of co-regionalization (LMC) to evaluate grades
using data from adjacent rock types as multivariate variables. The methodology was applied to a
synthetic deposit and the results compared to the conventional approach using hard boundaries.
It proved a coherent alternative method of capturing deposit grade distribution in the case of complex
contacts between different rock types.

Ortiz and Emery [9,10] estimated grades within geologic domains by comparing several geostatistical
estimation methods in a copper mine case study. The estimation methods considered were:
OK considering hard boundaries between geologic domains; OK omitting the geologic boundaries;
traditional ordinary co-kriging (CK) of the grades assayed in different domains; and OK within dilated
geologic domains, i.e., incorporating samples from adjacent domains up to a given radius from the
boundary of the domain considered. The authors reported that kriging with dilated domains produces
more coherent results than the CK approach or OK using hard boundaries or no boundaries.

Séguret [20,21] developed an innovative estimation method named “partial grade” (PG). Focusing
on multi-domain geologic deposits where the spatial variability of the grades varies between different
geologic formations, he applied the partial grades concept to the product of indicators of the geologic
domains and the metal grade, if there was a border effect, a factor introduced to identify transition
between geologic domains [22]. Séguret tested the PG approach in four case studies: three porphyry
copper deposits, and one zinc deposit in Peru. In no case did the PG method improved the grade
estimation results since there was no important border effect [21].
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While several different techniques have been applied in various case studies for several different
purposes, no method has succeeded in providing a coherent estimation of distribution variability in
geologic deposits with transitional boundaries.

This paper describes the estimation methods applied to an iron deposit with transitional
boundaries in which the sequential framework adopted added geological information at each step.
Cross validation subsequently identified the best method of estimating a variable in the event of a
border effect. This work describes a first application where the presence of a border effect was clearly
detected. In this case, the PG method was shown to be a viable first application method to improve the
grade estimation results in domains with transitional boundaries. The results of different estimation
methods were compared with real values (blast hole data) for each exploited ore deposit block.

2. Materials and Methods

Estimating a variable in multi-domain geologic deposits with transitional boundaries requires
refined procedures on account of the complexity of the geologic domains and their interactions.
Uncertainties abound as to what input data, appropriate model (in this paper, means the best-fitted
model proved by cross-validation results) and estimation method to select. Of great significance are:

e  The selection of input data, and consequently, the choice between a global model (considering all
available data from various geologic domains) or a local model (selecting only one class of data
for each particular geologic domain and defining the neighborhood used for the estimation);

o  The uncertainty of the selected model (if the local model is chosen) and the natural continuity of
variables across boundaries [23];

e  The qualitative data, such as geologic information, that should be coded in quantitative variables
(indicators) and considered in the estimation procedures;

e  The evaluation of the advantages and disadvantages of estimation results while adding qualitative
geologic information to the model.

The following baseline investigations are, therefore, necessary:

L Statistical studies and data spatial analysis (borehole and blast hole data if available) for a
general understanding of the deposit and geologic domain spatial variability;

I Spatial variability studies of the target variable and continuity with nearby boundaries (with
comparison of local and global models);

I Transforming geologic information into indicators so as to conduct spatial analysis and
evaluate the correlation with the target variable;

Iv. Contact analysis to identify the type of geologic domains (hard or soft boundaries), using tools
such as contact plots, preferential relationship schemes, variogram ratio, etc.;

V. Determining possible appropriate geostatistical methods:

V-a. OK with the local model;
V-b. OK with the global model;

Adding geologic information for grade estimation:

V-c.  Indicator co-kriging (ICK e.g., using geological domains as indicators) to identify the
probability of each geologic domain in the ore body;

V-d. Indicator co-kriging (e.g., using geological domains as indicators) and a spatial
variable (e.g., grade), in the case of having indicators in all points of the ore deposits.
This method can be used when geological information (indicators as auxiliary variables)
are known at the target points (collocated CK);

V-e.  Indicator co-kriging (e.g., using geological domains as indicators) and a spatial variable
(e.g., grade), in the case of having indicators only in borehole samples but not in
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all points of the ore deposits. In this method, indicators (as auxiliary variables) are
unknown at the target points;

V-f.  Border effect study the between geologic domains and the possibility of performing
co-kriging of PGs [21];

VL Cross-validation of models, validating estimation results and interpretation of appropriate
methods with particular regard to transitional boundary-domains.

2.1. Statistical Studies

Statistical studies and spatial analysis should be the first step to understanding the characteristics
of the available quantitative data such as borehole and blast hole grade analysis. Qualitative data,
such as geologic information, including rock chronostratigraphy should be assessed to identify
homogeneous geologic domains within the deposit on the basis of data distribution. Moreover,
while selecting data, the ore body genesis, geo-metallurgical data and post-processing structures (e.g.,
faults, dykes, etc.) should be considered.

2.2. Local and Global Model

Geologists usually determine geologic domains at drilling, assessing features such as lithology,
mineralogy and drill core alteration. Deposit genesis and the type of geologic boundaries are also
useful factors [10,13]. In multi-domain deposits, rock-type classification presents a high degree of
uncertainty, when the boundaries between geologic domains are not evident (in soft boundaries).
This computational step significantly impacts deposit and geologic domain modeling, however. In the
local model (most frequently adopted in hard-boundary deposits), spatial variability and input data
are used to estimate variables inside each geologic domain. In many applications, the homogeneous
domains to be estimated are identified and separated by geologic domain and data distribution
(bimodal-distributions or multimodal-distributions) [23—-25]. When geologic domains are separated
by hard boundaries, geologists can generate a 3D geologic model, after which the target variable can
be estimated considering each geologic domain independently from the other domains. Hence, each
domain is estimated on the basis of its own statistical and spatial analysis, and separate variogram
model. In transitional boundaries, however, the variability measured at either side of a boundary is not
independent. In addition, the boundary may be defined by gradational change in the local mean grade.
Hence, spatial variable continuity cannot be employed in local model estimations. It follows that the
type of boundaries should be considered at the time of modeling. In the event of a soft boundary,
the information should be incorporated across the boundary in order to estimate the variable in a
particular geologic domain. Hence, the global model can be used to consider data from all or multiple
geologic domains and in order to study the spatial variability. Geologic information can, therefore,
be of use when assessing a spatial variable particularly with transitional boundaries.

2.3. Geologic Information

In order to include geologic information in resource estimation, geologic domains can be
interpreted as a series of random sets [26]. IK is performed on a binary-transformed sample population.
Other applications of IK are to model categorical variables, e.g., a sample belongs to a certain rock
type, or if a variable lies above or below a defined cut-off value [27]. Defining indicators for categorical
variables would lead to the following transformation:

1 if x €uniti

Vx, il;(x) = .
i(x) 0 otherwise

n classes 1)

where x is a point belonging to domain i, whose indicator is 1;(x).
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The sum of the indicators equals one (Equation (2)),

Li(x)= 1 Vx 2)

M-

Il
—_

Geologic information through indicators can be used in geostatistical modeling. Once all
indicators have been defined, a spatial variability analysis of the geologic domains should be
performed with direct and cross sample variograms to reveal the relation between the geologic
domains. In addition, when estimating a spatial variable, geologic indicators can be used as an
auxiliary variable in a CK. However, it should be noted that the results of point IK are only an
approximation of the probability of the variable at a certain point in a domain [28].

2.4. Type of Boundaries between the Geologic Domains: Hard or Soft

There are several tools to identify hard or soft boundaries between geologic domains: contact plots,
variogram ratios and preferential relationship schemes. They were developed to detect preferential
contacts and assess the spatial transition at the limits of the different domains [13,22,29]. Boundaries are
identified with the aid of geologic information, which serve as indicators alongside any kind of grade
data. The contact plots display the mean value of a variable in a geologic domain that is in contact
with another domain. A soft boundary is present when the grade within one or both domains exhibits
a strong trend near the boundary with no significant change in grade [29]. Preferential relationship
schemes can be used to detect and quantify the mutual behavior of geologic domains in different
directions when analyzing transitional boundaries [20]. By identifying the indicators and classifications
of the positive preferentiality values (e.g., in three directions), it is possible to indicate the value of the
transition. The formula is given in Appendix A.

The variogram ratios derive from the probabilistic interpretation of the direct and cross indicator
variograms and their ratios [22], as shown in Appendix A. The variogram ratios enable identification of
average grade increase or decrease when moving from one geologic domain into another. This variation
is called “border effect” and is the prerequisite for the PG method. The tools mentioned above can be
used to differentiate the transitional and hard boundaries in geologic domains.

2.5. Geostatistical Estimation Methods in the Case of Transitional Boundaries

The usual OK can be employed for grade estimation in transitional areas using global and local
models. Afterward, using the most suitable model (global or local), different methods with addition of
geologic information as an auxiliary variable (Materials and Methods, CK methods including methods
mentioned in V-c, V-d and V-e) can be compared. In addition, the PG method can be performed in the
presence of a border effect, its aim being to evaluate a categorical variable and its attributes with a
focus on transitional boundaries [20]. Equations (3) and (4) show the relationship between indicators
1;(x) (different geologic domains) and grade Z(x).

Z(x) = Z(x)~Z 1;(x)Vx 3)

2(x) = Y. 214 @

Zi(x) = Z(x)-1;(x)vx ®)



Minerals 2019, 9, 115 6 of 22

Zi(x) is called partial grade (PG). In fact, PG is an isotopic CK system based on the indicators of
the geologic domains and their products with the target variable:

Z;(V)K ©)

™=

Z(vV)K =
1

In this method, the optimal grade for the block estimation (V), can be performed by CK based on
the sequence of PGs.

2.6. Cross Validation of Models and Validation of Estimation Results

Cross validation enables the estimation methods to be checked [6]. The cross validation technique
is based on omitting some sample points x, from the set of variables Z(x) and then estimating them
by kriging from neighboring data Z(xg), « # B. Accordingly, at every sample point x, the Kriging
estimate Z, and the associated Kriging variance ¢, are calculated. Since the measured value
Zy = Z(xy) is known, the empirical Kriging error (E;) and standardized error (¢;) can be computed:

Ey=ZF—Z, @)

Eq
K,

®)

ey =
Estimation model quality can be evaluated using the mean square standardized error
(Equation (9)) with N data.

- Ly ©)
Noczl '

The best fit for the model is the value closest to one [6]. Other indices such as the regression slope
can be used to check the consistency of the selected neighborhood while cross-validating. Besides the
error variance and standardized error variance, examining the scatter plot of estimated and true values
is another possibility. These techniques will show which model is more reliable.

Estimation results can be validated in some applications if real data are available. For instance
in mining studies, grade evaluations made on the basis of limited information (from, for example,
boreholes) can be validated by the real grades of the blocks (the real grade of blocks are indicated by
the blasthole data that have been approximated by the mean of the blastholes [6,30]).

2.7. Application: The Sechahun Iron Mine

The Sechahun ore deposit is located in the central iron belt of Iran, 170 km East of Yazd (Figure 2a).
The ore body is located in pervasively altered volcano-sedimentary host rocks whose original chemistry
has been strongly modified by metasomatic alteration. Locally known as metasomatite, these altered
rocks are widespread at the deposit and show a gradual transition toward poor iron ore [31]. The main
iron mineral is magnetite. Previous studies have shown the different types of Sechahun iron ore to
be [23]:

e High-grade magnetite, or rich iron ore (w(Fe) > 45%);
e Low-grade magnetite, or poor iron ore (w(Fe) < 45%);
e Oxidized high-grade magnetite (hematitized).

The mine has been sampled by means of boreholes to a maximum depth of 345 m (Figure 2b).
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Figure 2. Location of Sechahun iron mine (a) and localized vertical boreholes (Z above the sea level) (b).

Iron deposit data derive from borehole samples. Since the mine has been in production since 2005,
there were 10 exploited levels available at the time of this research, each documented by blasthole
samples. A 3D geologic model was constructed on the basis of the borehole data, knowledge of the
genesis of the mineralization, and the blasthole data from preliminary exploitation levels [23].

2.7.1. Borehole Samples

Borehole samples were obtained from 42 vertical boreholes at an average drill hole spacing of 50 m.
Borehole data included the concentrations of Iron (Fe (%), Figure 3a), Phosphorous (P (%), Figure 3b),
and Sulfur (S (%), Figure 3c). Being naturally low as required for the particular mine’s processing plant,
P (%) and S (%) distributions were not considered (Table 1). The target of this work is the best precision
possible for Fe (%) grade estimation, by using and comparing different methods. The grade data
and geologic information of boreholes were available (Table 2). The geologic information consisted
of visual recordings by geologists and petrophysical classifications of drill cores (Figure 3d). As the
samples had different lengths, they were regularized to 2.0 m [32].

0.15 t Num. Samples 1537 Nunn. Samples 1289
e 0.80 Minimum 0.01
Maximim 0.70
0.70 Mean 0.05
Std.Dev 0.05
0.60
0.10
2 % 0.50
& g 040
& [
[t
0.05 0.30
0.20
0.10
0.00 0.00
0:  Af: 28 30 40 50, 600 7D 0.00 0.0 020 030 040 050 0.60 0.70
Fe (%) P (%)
(a) (b)

Figure 3. Cont.
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Figure 3. Histograms of borehole samples obtained from Fe (%) (a), P (%) (b), S (%) (c) and the
distribution of borehole samples in each geologic domain (d).

Table 1. Statistics of the grades.

Variable Number of Minimum  Maximum Mean (m) St'ant:lard Co'eff:ment of
Samples Deviation (o) Variation (o/m)
Fe (%) 1537 2.38 66.37 31.88 15.74 0.49
P (%) 1214 0.01 0.42 0.05 0.06 1.2
S (%) 1114 0.01 0.27 0.05 0.04 0.8

As shown in Table 1 and Figure 3a—c, the number of Fe, P and S samples differ because not
all samples were analyzed for each element. As a result, all samples indicate iron grades while
323 samples do not include a phosphorous grade, and about 423 samples indicate no sulfur grade.
The Fe distribution in Figure 3a shows bimodality, in other words, two distributed domains. Table 2
shows the statistical information of data from six identified geologic domains defined by geologists
independent of the grade analysis. As a result, as shown in Table 2, there are some low grades (Min:
26.16%) in the rich zone and some high grades (Max: 53.23%) in the poor zone. Poor and rich domains
have the largest number of samples, while waste and crush zones have the smallest number of samples

(Figure 4).
Red: Poor zone Red: Waste zone
e Blue: Rich zone 0.12% Blue: Metasomatite zone
Green: Other geological zones Green: Other geological zones
(.100 (L100
n w
E 0,075 B 0075
.
g £
B 0.050 ™ .00
0.025 0.025
0.000 0.000
Fe (%) Fe (%)
(a) (b)

Figure 4. The proportions of the grades data in different geologic domains. (a) shows the overlapping
of poor, rich and other geological zones, (b) shows the overlapping for waste, metasomatite and other

geological zones.
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Table 2. Statistical parameters of Fe samples in six geologic domains.

Geological Zones. of the Number of Data Grade Fe (%)

Iron Deposit Mean Minimum Maximum

Waste 43 12.54 2.38 26.10

Poor 482 30.50 11.90 53.23

Rich 278 57.29 26.16 67.79

Crush Zone 51 15.18 4.84 30.98

Dike 62 15.62 3.05 46.42

Metasomatite 136 15.06 4.11 28.37

2.7.2. Blasthole Samples

There are about 20,985 blasthole data from 10 levels of exploitation from a sampling grid of 3 m
(length) x 4 m (width) x 10 m (height). Figure 5 shows the location of the blastholes at production
level Z = 1585 m (above the sea level). As there was no geologic information from the blastholes,
the geologic domains were classified at the mine’s production values (20% cut-off grade, and a 45%
threshold) [23]. The blastholes were, therefore, classified on the basis of grade threshold only into three
main domains (exploitation domains):

1.  Waste zone: Fe < 20%;

2. Poor Zone: 20% < Fe < 45%;
3. Rich Zone: Fe > 45%.

Z=1580m

Legend
[ Poor unit
T B Rich unit

- Waste unit
[ ] No grade

78200 78300 X(m) 78500 78600 78700

Figure 5. Elevation Z = 1585 m of blastholes classified by cutoff grade and threshold (horizontal section).

The borehole samples were considered the primary data for the statistical studies, spatial analysis
of the iron concentration (Fe (%)), and therefore for the estimation of the ore deposit. The substantial
data provided by blastholes, on the other hand, can be used for comparing results obtained from the
different estimation methods.

3. Results

The statistical studies and spatial analysis of borehole samples were performed to characterize
the iron grade (Fe (%)). Since some of the geological structures, such as dikes and faults, were
post-mineralization structures in this application, dike and some crush zone samples were removed
from the dataset to enable a homogeneous study area. In addition, given the Fe (%) histogram and its
bi-modality distribution, local and global modeling should be discussed.

3.1. Local or Global Model

Given the specific geology of the area under study, three main exploited domains were chosen for
comparison using local and global models. The main exploited domains were named: poor, rich and
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waste respectively that are determined by geologists due to their geological sections. The geological
sections were obtained from the visual recordings and petrophysical classifications of drill cores
independent of the grade analysis). Three variogram models were fitted on three sample variograms:
poor, rich and waste (including the metasomatite geologic domain) in Table 3. The sample histograms
show overlapping poor, rich and waste grade distributions (Fe (%) in Figure 4). The rich histogram,
for example, has many samples with low Fe (%) (less than cut off), while high Fe (%) samples are
present in the poor and waste domains (Fe (%) < 45). Hence, choosing the global model or local
model was a critical point. As the horizontal and vertical sample variograms show similar behavior,
the application was considered as isotropic and all sample variograms are shown as vertical. On the
supposition that the boundaries were hard, the OK estimation for Fe (%) was performed within each
domain independently of the adjacent domains.

Table 3. Histogram, sample variogram (black points) and the variogram model (red line) for regularized
2.0 m samples for local models (waste, poor and rich domains).

Exploited Domains Histogram Variogram

4
g
Poor zone g
iy
0
200 30 4D 5 2 o
Fe (%) 0 50 b (m) 100 150
200
0.3
k4
g
Rich zone = = , J
e _____,..!-..-'—-‘«_—Tv'cq—."—
0.1 B eV A
0.0
d 7 2 50 75 100
Fe (20) h {m)
0.25 o
0.20 40
@ 30
§015 N )
g T S e e
Waste zone g = N VAW
Eo.10 ,f——-'—‘—_*— = 7
10/"")( N U
0.05 &
0.00 > o
10 0 30 40 0 10 20 30 40 50 60 70 S0 90

Fe (%) 1t (m)
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The global model was evaluated using borehole samples from all geologic domains. Since the
global model displayed isotropic behavior, only the vertical sample variogram was used in Figure 6.

400

300

0 50 100 150 200
b (m)

Figure 6. Vertical sample variogram (black points) and variogram model (red line) for regularized
2.0 m samples for the global model.

The variogram and its model in the global model are considered at small distance (less than
150 m) to have the quasi-stationary case. To check the consistency of the models, cross-validation was

performed. The cross-validation results for two models (local and global) are shown in Table 4 for
1400 target points.

Table 4. Cross-validation comparison using local and global models.

Method OK-Global Model OK-Local Poor OK-Local Rich OK-Local Waste
Mean error (%) —0.14 0.47 1.55 —2.25
Variance error (%)? 26.45 41.64 35.72 24.85
Variance standardized error 0.89 1.03 0.70 1.37

To improve estimation in the case of the local model, the cross-validation was repeated using data
from domains adjacent to the target geologic domain. The results are shown in Table 5.

Table 5. Cross-validation comparison using global models and local model with adjacent domain data.

Method OK-Global Model OK-Local Poor OK-Local Rich OK-Local Waste
Mean error (%) —-0.14 0.14 —0.15 —-0.13
Variance error (%)? 26.45 27.88 27.20 27.68
Variance standardized error 0.89 0.80 0.82 0.63

Given the overlapping geologic domains and the cross-validation consistency results, having
hard boundaries and estimation of geologic domains independently can be revoked. Grade estimation
using the local OK model for three main geologic domains is shown in Figure 7 (vertical section).

3645 35.95

32.90 32.23 2647

(a) (b)

Figure 7. Example of an estimated geologic vertical section using local models (a), and zoom of one
specific area (b).
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Since OK-based Fe (%) estimation was obtained using the local model and data from one
geologic domain, the Fe grade in two adjacent but different geologic blocks will differ substantially
(by more than 18%). This difference is another important uncertainty, especially in proximity to
transitional boundaries.

3.2. Adding Geologic Information

In order to include the geologic information in the estimation procedure, each geologic domain of
the Sechahun iron mine was defined as an indicator. Indicators allow geologic information to interact
in the estimation procedure:

Waste, Poor, Rich, Crush Zones and Metasomatite

Figure 8 shows the spatial variability of grades and indicators (sample variograms and the models
relating to Fe (%) and five indicators). In light of the isotropic behavior of the sample variograms,
all spatial analyses were performed in a vertical direction in order to take maximum sampling mesh
into account.

Indicator H
Memsomatite i
0 e
o S0 100 15
T () o R
]
5 | o004 D-50 |
&0 | et {
| 0.03 ' -
| D90 1= p0aff 0
LT S s i
g | oonff
| Indicator Crush zone
| 0.00he— L
-0.05 {
0 S0 100 150 0 50 100 150
b {m) e DA M gt .

Indicator Waste

~ hm)

i (h)

£

D-90
é\L\‘. ] f | 2| |
*___ N TSR TSSENRE TN e
1] 0 100 150 o 0 100 150 o 0 100 150 o 50 [[CNT a 50 100 1%0 o 50 100 1850

b {m) b {m) b {m) b (m) & (m)

Figure 8. Sample and modeled variograms of indicators and Fe (%) (direct and cross variograms):
Regularized 2.0 m samples in vertical direction.

Other estimation methods can incorporate geologic information by means of indicators and
grades. First, the ICK was applied to have an approximation map of geologic domains in different
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parts of the ore body. Figure 9 shows an example of the geologic vertical section obtained from ICK,
indicating the probability of geologic domains in the Sechahun iron mine. The CK was performed
using geologic domains indicators and the result is the probability fields of each geological domain
over the entire domain (which are the output of indicator kriging). Due to the results obtained from
the indicator kriging, the geologic domain with the maximum estimated probability was chosen as
the dominant domain for each block, evidenced in one color in Figure 9. Exceptionally, the use of ICK
method was to determine the geological domains independently from the grade estimation.

Figure 9. Vertical section of the estimated ore body showing indicator co-kriging (ICK) results.

In this study, co-kriging estimation of indicators is performed; results (e.g., section of Figure 9) are
the approximation of geological structures in the ore deposit. Due to the evidenced geologic domain
complexity, and the previous results (grade estimation errors nearby boundaries) it was necessary to
identify the type of boundaries and to select a coherent grade estimation method.

3.3. Hard or Soft Boundaries

In light of this case study’s geologic domain complexity, different tools were used to identify the
type of the boundaries. Contact plots were performed to show the mean Fe grades in two adjacent
geologic domains. However, since Fe (%) data for some geologic domains (such as waste and crush
zones, and dikes) were not enough, contact plots could not be calculated. In addition, since the number
of widely spaced pairs was insufficient to be able to constitute representative contact plots (Figure 10),
the boundary type could not be identified.

3 22 30¢
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]
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[ ] 25+ | g 12
50T Rich unit _ . o
H < \v 2 Metasomatite unit
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Figure 10. Contact plot showing the mean Fe (%) in a rich domain (left), and poor domain (right) (a);
contact plot showing the mean Fe (%) in a poor domain (left), and metasomatite domain (right) (b).
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Preferential relationship schemes were performed to show the transitional behavior between
different geologic domains. Preferential relationship schemes are useful in this instance since they
can detect mutual behavior of geologic domains in all directions (horizontal and vertical), including
dominant behavioral patterns and their probability. Figure 11 shows the preferential relationship
schemes in a North-South direction obtained from the positive preferentiality values between
different geologic domains (calculations in Appendix A). The highest probability is among poor
and metasomatite domains. The cut-off grade (the broken line in Figure 11) is considered as separating
domains with grades higher and lower than cut-off. In highly viable economic domains (higher than
cut-off, i.e., rich, poor and metasomatite), transition behaviors are notable.

Direction: North-South +45 l /T
—> Probability [0.0, 0.2] _ ;
——> Probability [0.2, 0.3[| - l T
—> Probability [0.3, 0.4[ |
——> Probability > 0.4 ' i
-

Figure 11. Preferential relationship schemes in North-South direction (45° tolerance). The top section
shows domains above cut-off (Fe > 20%), while the lower section indicates domains with Fe < 20%.

To identify the presence of the border effect, the prerequisite to perform the CK of PGs,
the variogram ratios were calculated for all the geologic domains in three directions: two horizontal
and one vertical direction, as shown in Figure 12 (Equations in Appendix B). Figure 12 especially
evidences that on crossing from a poor to a rich domain, the variogram ratio shows a considerable
mean iron grade increase (indicated by the dash blue circle in Figure 12), revealing the presence of a
border effect.
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Figure 12. Variogram ratio between indicator and partial grade divided by indicator variogram in
three directions (vertical direction: blue, horizontal directions (0, 90): red and green).
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Since the presence of the border effect makes the PG method possible, direct and cross-variograms
were calculated to identify the spatial structures between the indicators and PG, as shown in Figure 13.
The spatial variability of indicators and partial grades and, therefore, the co-kriging of partial grades
were performed only for the main geologic domains (poor, rich and metasomatite), because the most
important transitional behavior (linked with the highest probabilities in Figure 11) and the border
effect (Figure 12) were shown identically among the mentioned zones.
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Figure 13. Sample and modeled variograms of indicators and partial grades (direct and cross
variograms): Regularized 2.0 m samples in vertical direction.

3.4. Estimation Results

Different CK estimation methods were performed by adding the geologic information allowing
block grade estimation (CK of PGs; CK of indicators and Fe grade, considering indicators as auxiliary
variables known at target points and the CK of indicators and Fe grade, considering indicators
unknown at target points). The cross-validation results obtained from the aforementioned models and
from OK using the global model are presented in Table 6. Since the selected target data (930 points
from three main geologic domains) to perform cross-validation differ from the data used in Section 3.1,
the OK-global model results are different from Tables 4 and 5.
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Table 6. Cross-validation using the co-kriging (CK), partial grade (PG) and ordinary kriging
(OK)-global models.

Variance of

- o 3 . 0/)2
Methods Mean-Error (%) Variance-Error (%) Standardized Error (%)?
Partial Grade -0.12 27.73 0.83
CK-with indicators at target points —0.02 17.90 0.82
CK- without indicators at target points 0.12 26.08 0.99
OK global model —0.09 28.22 1.04

Cross-validation was performed in only the three main geologic domains (poor, rich and
metasomatite domains). Blasthole data are available from 10 exploitation levels in the Sechahun
iron mine, with the result that the estimation results obtained from different methods can be compared,
taking the average blasthole grade for each block as the real value of the block. An identical
25m x 25m X 10 m block model grid was used for all estimation methods. The weighted average of
the blasthole samples inside each block was calculated and assumed as the true value of each block
(Figure 14a). Only blocks with more than 16 blastholes were considered for validation so as to ensure
reliable results (Figure 14b). A minimum of 16 samples was assumed on the evaluation that more than
16 samples did not alter average block values.

Num.Samples 1503
0.125¢ 25 S
0 Minimum  1.00
. Maximum  63.00
0.100¢ 0.20¢ Mean 11.89 |4
Std.Dev 7.98
& &
% 0.075 % 0.15
=
5 g
i 0.050 Num.Samples 1052 i 010
Minimum 2.38
0.025} Maximum  67.79 0.05}
Mean 33.23
Std.Dev 17.10 6D
0.000~5"00 20 30 40 30 60 70 0 10 20 30 40 50 60
Fe (%) Number of blasts for each block
(a) (b)

Figure 14. Histogram of true block values obtained from the mean of blastholes (a) and histogram of
number of blastholes used for averaging the block values (b).

To identify the most coherent estimation method in transitional areas, the error for each estimated
block (difference between true and estimated value) was calculated. A code value from 1 to 3 (1 = OK,
2 =CK and 3 = PG) was assigned for each block and the optimum estimator (with minimum error) was
chosen and assigned a color at three exploitation levels (Figure 15). To identify the optimal estimator in
the main geologic domains, true block values (calculated from blasts) were classified into two sections
based on the mining plan thresholds: a cut-off of 20%, and a rich domain defined as 45% (Figure 15):

1. Waste: Fe (%) < 20 (cut-off) yellow
. Poor: 20 < Fe (%) < 45 orange
3. Rich: 45 < Fe (%) red

The following maps with statistical accounting blocks and optimum estimator (minimum error),
allow selection of the most precise method.
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(©)

Figure 15. Maps of real block values obtained from mean of blastholes with optimum estimation

method (e.g., three exploited levels). (a) is the horizontal section z = 1560 m, (b) is the horizontal section
z =1570 and (c) is the horizontal section z = 1580 m.

The optimal method is defined by the maximum number of blocks with the smallest error among
OK (global model), CK (method using geologic information as indicators) and PG (proportion of the
geologic information regarding Fe (%)). Results of this statistical block counting are shown in Table 7
for all the exploited levels:
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Table 7. Quantification of the optimal use of the estimation method in the case study.

Total Number Number of Blocks for Zone and Geological Methods
Levels (m)
of Blocks Rich Zone Poor Zone Waste Zone
OK CK PG OK CK PG OK CK PG
Z =1540 31 5 0 2 5 8 7 1 0 3
Z =1550 100 18 14 7 17 17 20 4 0 3
Z =1560 145 19 18 13 34 22 35 0 1 3
Z =1570 183 24 17 17 35 38 41 4 1 6
Z =1580 203 46 8 10 40 50 45 3 1 0
Z =1590 203 52 12 4 39 43 52 1 0 0
Z =1600 203 58 9 2 41 40 48 1 3 1
Z =1610 189 64 6 0 50 40 22 2 4 1
Total 1257 286 84 55 261 258 270 16 10 17
Total (%) 1257 22.7% 6.68% 4.4% 20.8% 205% 21.5% 13% 08% 13%

4. Discussion and Conclusions

Cross validation results show that compared with the local model, OK with the global model
was the most appropriate model for the ore body. Results obtained using the local model showed
that some areas with Fe (%) grade higher than cut-off were classified as “waste”. In addition, some
areas lying between poor and rich domains presented a very high difference (more than 8% of Fe
(%) values) than other blocks with similar location. The usual difference found was between 2-3%,
(see Figure 7b). This was because the local model considered hard boundaries and the data from only
one geologic domain, discarding any grade continuity in adjacent domains. However, using data
from adjacent domains with a moving neighborhood improved the estimation results. Nonetheless,
the cross validation results from Tables 4 and 5, show that the OK-global model leads to smaller error
variance, with the error mean coming closer to zero. Moreover, the standardized error variance in the
global model was closer to one, with the result that the global model proved more coherent for grade
estimation in the Sechahun iron mine.

To analyze the impact of adding geologic information (as indicators) in the case of transitional
boundaries, cross-validation was applied in different CK models (with/without indicators at target
points). Since the model with indicators at target points had a mean error closer to zero and a smaller
error variance, and standardized error variance closer to one, it was considered as the coherent CK
model. Since the CK model (with indicators at target points) has auxiliary variables (indicators) in
all target points, cross-validation shows more precise results with smaller variance, confirming that
additional geologic information can improve estimation results. The estimated approximation of ICK
maps shows the complexity of the geologic domains of the ore body. These ICK maps data would
benefit from further boundary analysis using more complicated methods (such as PG). Contact plots
and preferential relationship schemes have shown that the geologic boundaries in this case study are
not “hard” and are associated with gradational transitions of the mean Fe (%) grade, with the possible
exception of boundaries between dikes and crush zones (faults). Contact plots were not possible,
however, on account of the lack of samples from some geologic domains (such as dikes, crush and
waste zones). However, preferential relationship schemes, the appropriate tool for quantifying the
mutual behavior between different geologic domains, have shown that the transitional behaviors are
mainly evidenced between poor, rich and metasomatite domains. The variogram ratios confirmed
the existence of the border effect in this case study and the possibility of using PG method for grade
estimation. Estimation results were compared with the real values of each block (provided by blasthole
data) in the exploited levels of the Sechahun iron mine.

The rich domain validation results (Table 7) have shown the OK method with the global model
was the optimal estimator on account of zone homogeneity. This signifies that the rich zone is
characterized by spatial continuity and similar geologic features such as lithology, mineralogy and
alteration. With regard to the poor domain, the impact of geologic information was fundamental
since the PG estimator was the optimum method producing the smaller estimation error. As the
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preferential schemes and contact plots show, the poor domain was non-homogenous and had a border
effect. In the waste domain, very few available blocks had a sufficient number of blasthole samples,
making accurate interpretation difficult. However, applying different estimators depending on the
complexity of the case study and, in particular, adding geologic information, increased the accuracy of
the estimation results.

The study has shown resource estimation, particularly in transitional areas, to be sensitive to
geologic information, with estimation results improving when estimators including more geologic
information were used, as in the PG method. However, preliminary assessments of the contact zone
type must be carried out to identify hard/soft domains (using contact plots, preferential relationship
schemes and variogram ratios) before choosing the estimator. Future work will consider the effect of
non-stationarity near transitional boundaries using the universal kriging methods (universal ordinary
kriging and universal co-kriging). Moreover, conditional simulation methods will be compared with
estimation models in the case of soft boundaries.
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Appendix A
Preferential Relationship Schemes

The preferential relationship schemes are a tool to detect a general rule in the transitional behavior
of the geologic domains while studying the transitions between all the indicators (i,j). The indicators
(i,j), refer to the two geological domains. Transition behavior between geologic domains can be
identified by the variogram ratios (similar to the variogram for a pair of points separated by h)
obtained from the cross variograms between indicators i and j divided by the variogram of 7 indicator:

vi(h) = —=P(x € i,x +h ¢ i) with asill of ;(h) = p;(1 — p;) (A1)

7ij(h) = —E[1;(x)-1;(x + h)] with a sill of ;(h) = —pj.p; (A2)

The variogram ratio quantifies the probability of facing into domain j when leaving domain i.
Hence, the formula can be written by the definition of conditional probability:

¥ij(h)
vi(h)

In the Equation (A3), the point of x, is in the i domain, and it shows the probability to reach the j

=P(x+hejlxeix+h¢i) (A3)

domain, while leaving (x + /) the i domain.
In the stationary condition, the sill of this ratio is:

7Yij(h) _ P
Yi(h)  1—p;

(A4)

From the variogram ratio, the value of the ratio for /1 close to 0 presents the probability P(— j|i —)
of entering the j domain when leaving the i domain [20].
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To quantify the preferential contacts, the “preferentiality value” from i to j is:

Pi

pref(i =) = P( jli =)~ {2

(A5)

Figure Al shows a graphical example of the use of variogram ratio for the points (1) and (2).
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Figure A1l. Variogram ratio showing at point (1) the probability of entering the j domain when leaving
the i domain and at point (2) the preferentiality value [21].

In the particular case of Pref (i — j) > 0, the contact probability decreases with the distance
and so the 7 and j domains are preferentially in contact. This probability can be used to build the
preferential relationship schemes. It is necessary to perform the preferential relationship schemes in
different directions to check the anisotropies of the geologic bodies and their preferential locations in
space [20,21].

Equation (A5) can be calculated in the main directions (N-S, E-W and vertical) and pairs identified
with positive preferentiality values. Results for the present case study (5 domains) are given in Table A1.

Table Al. Preferentiality values. Each cell contains one value per direction from top to bottom: N-S,
W-E and vertical directions.

From/To Waste Poor Rich Crush Zone Metasomatite
Dir-1 —0.25 0.05 0.30 0.50
Waste Dir-2 —0.24 —0.20 0.00 0.00
Dir-3 —0.34 0.00 0.00 —0.18
—0.30 Dir-1 0.40 —0.10 0.10
Poor —0.14 Dir-2 0.26 —0.10 0.12
—-0.12 Dir-3 —0.22 —0.08 0.20
-0.15 0.30 Dir-1 0.00 —0.05
Rich —0.28 0.18 Dir-2 —-0.16 —0.14
—0.28 —0.34 Dir-3 0.00 —0.18
0.45 —0.25 —0.15 Dir-1 0.25
Crush Zone 0.20 0.28 —0.16 Dir-2 0.00
—-0.24 0.12 —0.16 Dir-3 —0.02
0.00 0.05 0.25 0.00 Dir-1
Metasomatite —0.12 0.24 0.08 0.00 Dir-2
—-0.18 —0.14 —0.10 0.00 Dir-3

Since the aim of the study was to detect preferential contacts, i.e., only positive preferentiality
values, and identify dominant behaviors, the results given in Table A1 are classified into four classes
and schemes for each direction. Figure 11 of the paper gives data for the North-South direction.
An arrow represents a spatial transition, while the color indicates the magnitude of the transition.
The preferential schemes obtained from Table A1, are not connected to the location of geological
domains in space. Therefore, the only rule that should be respected is about the arrows and their
colors, then the place and colors of domains can be changed.
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Appendix B
Border Effect

The cross variogram between the indicator of i domain and its partial grade Z;(x) is defined as:

1
7iz;(h) = SE[(Li(x + 1) = 1i(x))-(Zi(x + h) = Zi(x))] (A6)
and its ratio with the indicator variograms:

Yiz; (1)
Yi(h)

In Equation (A7), the point of x, is out of the i domain (x ¢ i), and it shows the average grade
when entering (x + k) in the i domain.

This ratio, showing decrease or increase of the average grade with the transition from one geologic
domain into another, is called the “border effect” [22]. Previous studies did not detect an important
border effect with the PG method [20,21].

All data analysis performed in this work was undertaken using Isatis software 2016.2 [33].

=E[Z(x+h)|x+heix¢i] (A7)
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