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Abstract: In the Drury-Arveson space, we consider the subspace of functions whose Taylor coe�cients are
supported in a set Y ⊂ Nd with the property that N/X + ej ⊂ N/X for all j = 1, . . . , d. This is an easy example
of shift-invariant subspace, which can be considered as a RKHS in is own right, with a kernel that can be
explicitly calculated for speci�c choices of X. Every such a space can be seen as an intersection of kernels
of Hankel operators with explicit symbols. Finally, this is the right space on which Drury’s inequality can
be optimally adapted to a sub-family of the commuting and contractive operators originally considered by
Drury.
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1 Introduction
We begin by �xing some notation and delimiting the framework we work in. Let H be an abstract Hilbert
space and for d ≥ 2 consider a d-tuple of operators A = (A1, . . . , Ad) ∶ H → Hd. It is not di�cult to see that
the formal adjoint operator A∗ ∶ Hd → H acts as follows

A∗k =∑
j
A∗j kj , for k = (k1, . . . , kd) ∈ Hd .

Given a polynomial Q in d variables, say Q(z) = ∑k ckzk, where z = (z1, . . . , zd), k ∈ Nd and the sum is �nite,
we write Q(A) for the operator from H to itself given by

Q(A) =∑
k
ckAk =∑

k
ckAk1

1 . . . Akd
d .

Following Drury, we will relate A to an operator acting on a Hilbert space of holomorphic functions of several
variables on the unit ball. We write Bd for the open unit ball {z = (z1, . . . , zd) ∈ Cd ∶ ∣z∣ < 1}, where
∣z∣2 ∶= ∑d

j=1 ∣zj ∣2. Assuming that multiplication by zj de�nes a bounded linear operator (and it does on the
spaces we are dealing with), on such a space we can consider a very natural d-tuple of operators, namely the
d-shift

Mz = (M1, . . . ,Md) ∶ H → Hd ,

where Mj ∶ f(z)↦ zj f(z).
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De�nition 1.1. The Drury-Arveson space is the space Hd of functions f(z) = ∑n∈Nd a(n)zn holomorphic on the
unit ball Bd ⊂ Cd, such that

∥f∥2
Hd ∶= ∑

n∈Nd

∣a(n)∣2β(n)−1 <∞,

where the weight function β ∶ Nd → N is given by β(n) = ∣n∣!/n!.

This space has a reproducing kernel. For f ∈ Hd and z ∈ Bd, we have

f(z) =∑
n
anzn =∑

n
an

zn

β(n)
β(n) = ⟨f , kz⟩Hd ,

with kz(w) = ∑n β(n)z
nwn for w ∈ D.

The series can be explicitly calculated and we get

kz(w) = ∑
n∈N

β(n)znwn =∑
k≥0

∑
∣n∣=k

(k
n
)znwn =∑

k≥0
(

d
∑
j=1

zjwj)
k
=∑

k≥0
(z ⋅ w)

k
= 1

1 − z ⋅ w
.

This function space was �rst introduced by Drury in [3], then further developed in [1]. See also [7]. It naturally
arises as the right space to consider when trying to generalize to tuples of commuting operators a notable
result by Von Neumann, saying that for any linear contraction A on a Hilbert space and any complex
polinomial Q, it holds

∥Q(A)∥ ≤ ∥Q∥M(H2),

whereM(H2) = H∞ denotes the multiplier space of the Hardy space of the unit disc H2.
In fact, Drury shows that for a d-tuples of operators A = (A1, . . . , Ad) ∶ H → Hd, d ≥ 2, such that

[Ai , Aj] = 0 and ∥A∥ ≤ 1, it holds
∥Q(A)∥ ≤ ∥Q∥M(Hd).

The map T given by
(Tg)(z) ∶= ∑

n∈Nd

g(n)β(n)zn ,

de�nes an isometric isomorphism from `2(Nd , β) to Hd. This correspondence in particular tells us that the
shift operator on `2(Nd , β), given by

Sjg(n) =χNd+ej(n)g(n − ej)β(n − ej)β(n)−1,

and the multiplication operator Mj on Hd are unitarily equivalent, i.e. it turns out that MjT = TSj for all
j = 1, . . . , d.

2 A class of shift invariant subspaces of Hd

We are interested in considering subspaces of Hd of functions having Taylor coe�cients with a prescribed
support. Given some subset X of Nd, we write `2(X, β) for the closed subspace of `2(Nd , β) of functions
supported in X. We say that a set X ⊆ Nd is monotone, if its complement in Nd is shift invariant, namely

Nd ∖ X + ej ⊂ Nd ∖ X for all j = 1, . . . , d, (1)

where Nd ∖ X is the complement of X in Nd. In all what follows we always consider X to be a monotone set.
Given g ∈ `2(Nd ∖ X, β), for n ∈ X we have Sjg(n) = 0 since n − ej ∈ X as well (or it has a negative

component). Therefore `2(Nd ∖ X, β) is a shift-invariant subspace of `2(Nd , β). To any such a set X, we can
associate the space Hd(X) of functions of Hd whose Taylor coe�cients vanish on Nd ∖ X. Since MjT`2(Nd ∖
X, β) = TSj`2(Nd ∖ X, β), it follows that Hd(Nd ∖ X) is a shift-invariant subspace of Hd.

We can construct compressions of tuples of operators to the subspaces associated to themonotone set X.
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In particular, let Bj = S∗j denote the backwards shift operator on `2(Nd , β), given by Bjg(n) = g(n + ej).
We consider the d-tuple of operators

BX = (BX
1 , . . . , BX

d) ∶ `
2(X, β)→ `

2(X, β)d ,

where for each j = 1, . . . , d,
BX
j = PXBj∣`2(X,β),

being PX the orthogonal projection of `2(Nd , β) onto `2(X, β). In other words, BX
j is the compression of the

standard jth-backwards shift operator Bj to `2(X, β).
Observe that the adjoint of BX is a row contraction from `2(X, β)d to `2(X, β),

(BX)∗(g1, . . . , gd) =∑
j
(BX

j )∗gj .

In the same way, we write MX
z for the compressed d-tuple (MX

1 , . . . ,MX
d), where

MX
j = PXMj∣Hd(X)

,

PX being in this context the orthogonal projection from Hd onto Hd(X).

3 Hankel operators and shift invariant subspaces
Shift-invariant subspaces for the Drury-Arveson space are characterized in [5], where it is shown that they
can be represented as intersections of countably many kernels of Hankel operators, to be de�ned shortly. See
also the PhD thesis [8].

Consider aHilbert spaceHof holomorphic functions on theunit ballBd, such that functionsholomorphic
on Bd are dense in it. The function b ∈H is a symbol if there exists C > 0 such that

∣⟨fg, b⟩H∣ ≤ C∥f∥H∥g∥H for all f , g ∈ Hol(Bd).

Endowing the spaceH ∶= {f̄ ∶ f ∈ H} with the inner product ⟨f̄ , ḡ⟩
H
∶= ⟨g, f ⟩H, we say that Hb ∶ H → H is a

Hankel operator with symbol b ∈H if there exists C > 0 such that

⟨Hb f , ḡ⟩H = ⟨fg, b⟩H for f , g ∈ Hol(Bd).

OnHd, consider theHankel operatorwith symbol b(z) = zm, for somem ∈ Nd.Wehave f ∈ kerHb i� ⟨fg, b⟩ = 0
for all g ∈ Hol(Bd). Since,

⟨fg, b⟩Hd = f̂g(m)β(m) = (∑
n,k

f̂(k)ĝ(n)zn+k)∧(m)β(m) = β(m)∑
k
f̂(k)ĝ(m − k),

it follows that f ∈ kerHb i� f̂(k) = 0 for k ≤ m, i.e. f̂ ≡ 0 on the rectangle Rm = {n ∈ Nd ∶ nj ≤ mj ∀j}. Hence,
f ∈ Hd(Nd ∖ X) with X = Rm. This is the easiest example of shift-invariant subspace of the Drury-Arveson
space with explicit symbol.

Actually, each set X satisfying (1) can be associated to a collection of Hankel symbols. Observe that X is
bounded if and only if for all j there exists n ∈ Nd ∖ X such that n ∈ Nej. In such a case, X is a �nite union of
rectangles, X = ⋃k=1,...,K Rmk and hence,

Hd(Nd ∖ X) = ⋂
k=1,...,K

kerHzmk .

If X is unbounded, then for every j such that Nd ∖ X ∩Nej = ∅, we have an increasing sequence of rectangles
covering the strip unbounded in the j − th direction. Summing up, it follows that

Hd(Nd ∖ X) =
∞

⋂
k=1

kerHzmk .
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4 | N. Arcozzi, M. Levi

4 Drury type inequality
In the introduction we have de�ned polynomials valued on operators, Q(A). The concept of operators being
variables of functions can be properly extended. Following Nagy and Foias [9], given a contraction A on a
Hilbert space H one can de�ne the holomorphic functional calculus

ϕ(A) ∶=∑
k
ckAk ,

whenever ϕ ∈ A ∶= {a(z) = ∑k ckzk ∶ a ∈ Hol(D), a continuous on D, (ck) ∈ `∞}.
Now, for any ϕ ∈ Hol(D), the function ϕr(⋅) ∶= ϕ(r⋅) is in the classA for r ∈ (0, 1). Moreover, if ϕ ∈ H∞,

we have the uniform bound ∣ϕr(z)∣ ≤ ∥ϕ∥∞, for z ∈ D, 0 < r < 1. Hence, for every ϕ ∈ H∞ it can be de�ned the
functional calculus

ϕ(A) = lim
r→1−

ϕr(A),

whenever the above limit exists in the strong operator topology, which is always the case when A is a
completely non-unitary contraction (see [9]).

In particular, for ϕ ∈M(Hd) ⊂ H∞ and A = Mz, we can de�ne the operator of multiplication by ϕ via the
functional calculus

Mϕ = ϕ(Mz) = lim
r→1−

ϕr(Mz). (2)

This de�nes a bounded operator from Hd to itself, and its adjoint is clearly given by (Mϕ)∗ =
limr→1−(ϕr(Mz))∗.

We have the following version of Drury’s inequality.

Theorem 4.1. Let H be an abstract Hilbert space and A = (A1, . . . , Ad) ∶ H → Hd, d ≥ 2 a d-tuple of operators
such that
(i) AiAj = AjAi for i, j = 1, . . . , d.
(ii) ∥Ah∥Hd ≤ ∥h∥H for all h ∈ H.
Let X be the complement in Nd of the set N ∶= {n ∈ Nd ∶ An = 0}. Then for every complex polynomial Q of d
variables, we have

∥Q(A)∥ ≤ ∥Q(BX)∥ ≤ inf{∥ϕ∥M(Hd) ∶ ϕ ∈M(Hd),ϕ(MX
z ) = Q(MX

z )}. (3)

Proof. For N = ∅ we have X = Nd and this is just Drury’s theorem, while for N = Nd ∖ {0}, A reduces to a
d-tuple of zeros (we set 00 to be the identity). So, suppose that {0} ⊊ X ⊊ Nd.

It is enough to show that the theorem is true when (ii) is replaced by the stronger condition

(ii)’ ∥Ah∥Hd ≤ r∥h∥H for all h ∈ H,

where r ∈ (0, 1).
We write H̃(X) for the space `2(X, Ȟ, β), where Ȟ has the same underlying space as H but a di�erent

norm, ∥h∥Ȟ = ∥Dh∥H, where D is the defect operator of A, D =
√
I − A∗A, (see [3] for the details). Drury

constructs an injective isometry θ ∶ H → H̃(Nd), θh(n) ∶= Anh, and shows that B̃mθ = θAm for allm ∈ Nd (here
B̃ is the d-tuple of backshifts on H̃(Nd)).

We rephrase this in our setting. Let πX be the orthogonal projection of H̃(Nd) onto H̃(X), B̃X
j ∶= πX B̃j ∣H̃(X)

and ψ ∶= πX ○ θ.
Since θ is an isometry, it is easy to see that that

ψ is an isometry ⇐⇒ θh = 0 on Nd ∖ X ⇐⇒ An = 0 for n ∈ Nd ∖ X. (4)

We have
ψAj = πX B̃jθ, and B̃X

j ψ = πX B̃j ∣H̃(X)πXθ = πX B̃jπXθ.
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For n ∈ X and h ∈ H,

(B̃j − B̃jπX)θh(n) = θh(n + ej) − πXθh(n + ej) =
⎧⎪⎪⎨⎪⎪⎩

0 n + ej ∈ X
θh(n + ej) n + ej /∈ X

which equals zero by (4). It follows that

ψAm = (B̃X)mψ for all m ∈ N.

At this point, it is standard (for example follow [3]) that for every complex polynomial Q we have,

∥Q(A)∥ ≤ ∥Q(BX)∥ = ∥Q(MX
z )∥. (5)

The equality above follows from the intertwining relation MX
j T = T(BX

j )∗, where the operator T in our case
is the isometric isomorphism from `2(X, β) to Hd(X) given by (Tg)(z) ∶= ∑n∈X g(n)β(n)zn. For f(z) =
∑n anzn ∈ Hd(X), we have MX

j f(z) = ∑n∈X∩X+ej an−ej z
n, and so

∥MX
j f∥2

Hd = ∑
n∈X∩X−ej

∣an ∣2β(n + ej)−1 ≤ ∑
n∈X∩X−ej

∣an ∣2β(n)−1 ≤ ∥f∥Hd .

Then, all polynomials are multipliers for Hd and

∥Q(MX
z )∥ = ∥PXQ(Mz)∥ ≤ ∥Q(Mz)∥ = ∥Q∥M(Hd). (6)

Of course, there are in general many functions ϕ such that PXϕ(Mz) = PXQ(Mz). In particular, let ϕ be a
multiplier of Hd such that ϕ̂(n) = Q̂(n) for n ∈ X. Then, for any g ∈ Hd we have,

∥PXQ(Mz)g − PXϕ(Mz)g∥Hd ≤ ∥PX(Q(Mz) − ϕr(Mz))g∥Hd + ∥PX(ϕ(Mz) − ϕr(Mz))g∥Hd

≤ ∥∑
X
ϕ̂(n)(1 − r∣n∣)Mn

z g∥Hd + ∥ϕ(Mz)g − ϕr(Mz)g∥Hd

≤∑
X
(1 − r∣n∣)ϕ̂(n)∥Mn

z g∥Hd + ∥ϕ(Mz)g − ϕr(Mz)g∥Hd .

The term on the right goes to zero as r → 1−, so it follows PXQ(Mz) = PXϕ(Mz). Then, (6) can be generalized
as follows

∥Q(MX
z )∥ = ∥PXϕ(Mz)∥ ≤ ∥ϕ(Mz)∥ = ∥ϕ∥M(Hd),

for any ϕ ∈M(Hd) such that ϕ̂(n) = Q̂(n). We have then proved that,

∥Q(A)∥ ≤ ∥Q(BX)∥ ≤ inf{∥ϕ∥M(Hd) ∶ ϕ ∈M(Hd),ϕ(MX
z ) = Q(MX

z )}.

Remark 4.2. Observe that the �rst inequality in the theorem is optimal if the backshift d-tuple BX satis�es (i)
and (ii) and if {n ∈ Nd ∶ (BX)n = 0} equals N. It is clear that condition (ii) holds for BX, for every choice of X.
Also, n ∈ N if and only if n +m ∈ N for allm ∈ Nd and since N = Nd ∖ X this is equivalent as asking f(n +m) = 0
for all m ∈ Nd, f ∈ `2(X, β). But f(n +m) = (BX)n f(m) and so {n ∈ Nd ∶ (BX)n = 0} = N.

On the other hand, the commuting property (i) is not ful�lled on most sets X. Of course, if X is chosen such
that `2(X, β) is backshift-invariant, then BX = B∣

`2(X,β) and (i) and (ii) hold, see [3]. More in general, doing
standard calculations it is not hard to see that BX satis�es (i) if and only if

n, n + ei + ej , n + ei ∈ X Ô⇒ n + ej ∈ X, for i, j = 1, . . . , d. (7)

This is a shape-condition on the set X, saying that it cannot have any subset with one of the following
con�gurations

Fig. 1. Fat dots are elements of not permitted subsets of X.
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6 | N. Arcozzi, M. Levi

It is clear that X = NC satis�es (7), since n + ej ∈ Nd ∖ X for some j would imply n + ej + ei ∈ Nd ∖ X for all
i = 1, . . . , d. It follows that the inequality in the theorem is optimal.

5 Further considerations
We want to look closer at the second inequality in (3). In particular, we are interested in understanding if
it is an equality indeed. The reason to be optimistic in this sense comes from a theorem proved by Sarason
in [6] (see also [4, Theorem 3.1]) in the one-dimensional case, i.e. for the Hardy space. Let K be a closed
backshift-invariant subspace of the Hardy space H2, and write SK for the compression of the shift operator to
this subspace. Sarason proved the following.

Theorem 5.1. Let T beanoperator commutingwith SK . Then there exists a functionϕ ∈ H∞ such that T = ϕ(SK)
and ∥T∥ = ∥ϕ∥H∞ .

Now, on H1 = H2 the operator T = Q(MX
z ) clearly commutes withMX

z , so there exists a function ϕ ∈M(H2) =
H∞, possibly di�erent from the polynomial Q, such that T = ϕ(MX

z ) and ∥T∥ = ∥ϕ∥M(H1). Then, (3) would
become

∥Q(A)∥ ≤ ∥Q(BX)∥ = ∥Q(MX)∥ = ∥ϕ∥M(H1).

So we have equality in the case d = 1. For higher dimensions, we have the following generalized commutant
lifting theorem (see [2, Theorem 5.1]).

Theorem 5.2. Let k(z,w) be a nondegenerate positive kernel on a domain Ω such that 1/k has 1 positive
square. Let H(k) be the associated RKHS. Suppose that W ⊂ H(k) is a ⋆-invariant subspace and that T is a
bounded linear contraction from W to itself such that

T∗M∗
ϕ∣W = M∗

ϕT∗, (8)

for all ϕ ∈M(H(k)). Then, there exists a a multiplier ψ ∈M(H(k)) such that ∥(Mψ)∥ ≤ 1 and (Mψ)∗∣W = T∗.

Asking that 1/k has 1 positive square means that the self adjoint matrix {1/k(zi , zj)}Ni,j=1 has exactly one
positive eigenvalue, counted withmultiplicity, for every �nite set of disjoint points {z1,⋯, zN} ⊂ Bd. It is well
known that the Drury-Arveson kernel has this property.

So, in order to apply the theorem, take Hd as the RKHS and let W = Hd(X). We have to show that Hd(X)
is ⋆-invariant, i.e. that for every ϕ ∈M(Hd) it holdsM∗

ϕHd(X) ⊂ Hd(X). Suppose that themultiplier function
ϕ has the power series expansion ϕ(z) = ∑n anzn. Then ϕr(z) = ∑n an(r)zn, where an(r) = anr∣n∣. Using the
fact that (Mnj

j )∗ = (M∗
j )

nj and the uniform absolute convergence of the series, we get

(ϕr(Mz))∗ = (∑
n
an(r)Mn

z )
∗

=∑
n
an(r)(Mn

z )
∗ =∑

n
an(r)((M∗

1)n1 , . . . , (M∗
d)

nd). (9)

To prove the ⋆-invariance, thanks to (2) it is enough to show that (ϕr(Mz))∗ maps Hd(X) in itself for all r, but
this is immediate by (9), since M∗

j does.
The operator T = Q(MX

z ) = PXMQ maps continuously Hd(X) to itself. Moreover we have,

T∗M∗
ϕ∣Hd(X) = M∗

QPXM
∗
ϕ∣Hd(X) = M∗

QM
∗
ϕ∣Hd(X).

It follows that for f ∈ Hd(X) it holds

T∗M∗
ϕf = M∗

QM
∗
ϕf = (MϕMQ)∗f = (MQMϕ)∗f = M∗

ϕM∗
Q f = M∗

ϕM∗
QPX f = M∗

ϕT∗f .

Therefore, we have T∗M∗
ϕ∣Hd(X) = M∗

ϕT∗.
Hence Theorem 5.2 applies, and there exists a multiplier ψ ∈M(Hd) such that (Mψ)∗∣W = (Q(MX

z ))∗. In
particular, it follows

∥Q(MX
z )∥ = ∥Mψ ∣Hd(X)∥. (10)
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Question. Does this help in proving that equality holds in place of the second inequality in (3) for any dimension
d > 1?

6 A closed formula for the reproducing kernel on slabs
Let X be some subset of Nd satisfying (1). Clearly, the space Hd(X) has a reproducing kernel kX(w, z) which
is given by the orthogonal projection of the Drury-Arveson kernel onto Hd(X), in the sense that

kX(w, z) = PXk(w, z) = PXkz(w) =∑
n∈X

β(n)znwn . (11)

For some special choices of the set X we are able to get a closed formula for the reproducing kernel in
(11). In particular, this can be done when X is what we call a slab, S1 = {n ∈ Nd ∶ n1 = 0, . . . , N1}.

Proposition 6.1. For X = S1 it holds

kS1(w, z) = 1
1 − z ⋅ w

(1 − z1w1

1 − z ⋅ w + z1w1
)
N1
. (12)

Proof. Set t = zw. As a �rst step, suppose that d = 2. Using the fact that for j, k ∈ N it holds

∞

∑
j=0

(j + k
j

)xj = 1
(1 − x)k+1 ,

we get

kX(w, z) =∑
n∈X

β(n)znwn =
N1

∑
n1=0

∞

∑
n2=0

(n1 + n2

n2
)tn1

1 tn2
2 =

N1

∑
n1=0

tn1
1

1
(1 − t2)n1+1

= 1
1 − t2

N1

∑
n1=0

( t1

1 − t2
)
n1
= 1

1 − t2

1 − ( t1
1−t2

)
N1

1 − t1
1−t2

=
1 − ( t1

1−t2
)
N1

1 − t1 − t2
= 1

1 − z ⋅ w
(1 − z1w1

1 − z ⋅ w + z1w1
)
N1
.

Now, suppose that (12) holds onNd−1. Again, suppose to re-order the basis e1, . . . , ed so that j = 1. OnNd we
have

kX(w, z) =
N1

∑
n1=0

∞

∑
n2=0

⋅ ⋅ ⋅
∞

∑
nd=0

((∣n∣ − nd) + nd
nd

)(n1 + ⋅ ⋅ ⋅ + nd−1)!
n1! . . . nd−1!

tn1
1 . . . tndd

=
N1

∑
n1=0

∞

∑
n2=0

⋅ ⋅ ⋅
∞

∑
nd−1=0

(n1 + ⋅ ⋅ ⋅ + nd−1)!
n1! . . . nd−1!

tn1
1 . . . tnd−1

d−1
1

(1 − td)n1+⋅⋅⋅+nd−1+1

= 1
1 − td

N1

∑
n1=0

∞

∑
n2=0

⋅ ⋅ ⋅
∞

∑
nd−1=0

(n1 + ⋅ ⋅ ⋅ + nd−1)!
n1! . . . nd−1!

( t1

(1 − td)
)
n1
+ ⋅ ⋅ ⋅ + ( td−1

(1 − td−1)
)
nd−1

= 1
1 − td

1
1 −∑d−1

i=1
ti

(1−td)
(1 −

t1
1−td

1 −∑d−1
i=2

ti
(1−td)

)
N1

= 1
1 −∑d

i=1 ti
(1 − 1

1 −∑d
i=2 ti

)
N1

= 1
1 − z ⋅ w

(1 −
zjwj

1 − z ⋅ w + z1w1
)
N1
.
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