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A Primal Decomposition Method with Suboptimality Bounds
for Distributed Mixed-Integer Linear Programming

Andrea Camisa1, Ivano Notarnicola1, Giuseppe Notarstefano2

Abstract— In this paper we deal with a network of agents
seeking to solve in a distributed way Mixed-Integer Linear
Programs (MILPs) with a coupling constraint (modeling a
limited shared resource) and local constraints. MILPs are NP-
hard problems and several challenges arise in a distributed
framework, so that looking for suboptimal solutions is of
interest. To achieve this goal, the presence of a linear coupling
calls for tailored decomposition approaches. We propose a fully
distributed algorithm based on a primal decomposition approach
and a suitable tightening of the coupling constraints. Agents
repeatedly update local allocation vectors, which converge to
an optimal resource allocation of an approximate version
of the original problem. Based on such allocation vectors,
agents are able to (locally) compute a mixed-integer solution,
which is guaranteed to be feasible after a sufficiently large
time. Asymptotic and finite-time suboptimality bounds are
established for the computed solution. Numerical simulations
highlight the efficacy of the proposed methodology.

I. INTRODUCTION

In this paper we consider constraint-coupled Mixed-
Integer Linear Programs (MILP) with the following structure

min
x1,...,xN

NP
i=1

c>i xi

subj. to
NP
i=1

Aixi � b

xi 2 Xi, i 2 {1, . . . , N}

(1)

where Ai 2 RS⇥ni , and b 2 RS describe S coupling
constraints, and the local constraints Xi are mixed-integer
polyhedral, compact and nonempty sets Xi = {xi 2 ZZi ⇥
RRi | Dixi � di}, with Zi + Ri = ni. Throughout the
paper, we use the symbols � and ⌫ to indicate element-
wise inequality for vectors. As customary, we assume (1)
is feasible. We want to address problem (1) in a distributed
computation framework in which agents of a network com-
municate only with neighbors. Since these problems typically
arise as instances of dynamic optimization problems that
need to be repeatedly solved in real-time, we look for
fast distributed algorithms to compute feasible (possibly
suboptimal) solutions. Several problems in cyber-physical
network systems as, e.g., in cooperative robotics or smart
grids, can be cast as (1). An interesting scenario arises in
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Distributed Model Predictive Control, where a large set of
dynamical systems, described by local constraints Xi (with
both continuous and integer variables), needs to coopera-
tively solve a common control task and their states, outputs
and/or inputs are coupled through coupling constraints.

We organize the relevent literature in two parts. First,
we review primal and dual decomposition methods for
significant types of problems. In the tutorial papers [1],
[2], primal and dual decomposition techniques are reviewed.
A distributed primal decomposition approach is proposed
in [3] to solve smooth resource allocation problems. In [4]
a regularized saddle-point algorithm for convex networked
optimization problems is analyzed. In [5] distributed algo-
rithms based on Laplacian-gradient dynamics are used to
solve economic dispatch over digraphs. In [6] novel conver-
gence rates for distributed resource allocation algorithms are
proven. In [7] the convergence rate of a distributed algorithm
for the minimization of a common cost under a resource con-
straint is established. Distributed algorithms for constraint-
coupled problems have been proposed in [8], [9]. Second,
we review parallel and distributed algorithms for MILPs.
In [10] a Lagrange relaxation approach is used to decompose
MILPs arising in demand response control in smart grids.
In [11] a heuristic for embedded mixed-integer programming
is proposed to obtain approximate solutions. First attempts
of proposing a distributed approximate solution for MILPs
are [12], [13]. Recently, a distributed algorithm, based on
cutting-planes, has been proposed in [14] to solve common
cost MILPs. Although this method could be applied to (1),
each agent would know the entire solution vector (without,
e.g., preserving privacy). A pioneering work on fast, master-
based parallel algorithms to find approximate solutions of
problem (1) is [15]. Here the key idea is to tighten the
coupling constraint and then apply a dual decomposition
method to get mixed-integer points violating the restricted
coupling constraint but not the original one. In [16], an
improved iterative tightening procedure has been proposed
to obtain enhanced performance guarantees. In both works
[15], [16], a master processing unit is needed. The first, fully
distributed implementation of the above dual decomposition
based methodology is proposed in [17].

In this paper we pursue the same main goal as in [15]–
[17], namely to provide a fast algorithm to compute a
feasible mixed-integer solution of (1) with guaranteed sub-
optimality bounds. In particular, we consider a distributed
computation framework over networks, even though we
will point out how to implement the method in a parallel
architecture. Differently from the above works, based on
dual decomposition, we propose a distributed algorithm



relying on primal decomposition. A building block for the
proposed scheme is a distributed algorithm to solve convex
programs. It is based on a relaxation approach combined
with a distributed primal decomposition scheme. Although
the new algorithm strongly relies on the scheme proposed
in [9], it represents a contribution per se. Indeed, we give
a new insightful interpretation as a primal decomposition
scheme with distributed negotiation among the agents of
optimal local allocations. This distributed algorithm is used
to solve a LP approximation of (1) with restricted coupling
constraints. The resulting (local) allocation vectors allow
agents to retrieve a mixed-integer solution by solving a local
MILP with minimal violation of the allocation vector. We
are able to: (i) establish tight (asymptotic and finite-time)
restrictions of the coupling constraint such that the computed
mixed-integer solutions are feasible for (1), and (ii) provide
proper (asymptotic and finite-time) suboptimality bounds.
Preliminary numerical computations highlight the tightness
of our restriction and show low suboptimality gap.

The paper unfolds as follows. In Section II we recall
some preliminaries. In Section III we derive our distributed
algorithm, analyzed in Section IV. Numerical computations
are provided in Section V. Due to space constrains all proofs
are omitted and will be provided in a forthcoming document.

II. PRELIMINARIES AND DISTRIBUTED FRAMEWORK

A. LP Approximation of the Target MILP and its Properties
In order to design fast algorithms to find approximate

solutions of (1), following [15], it is useful to introduce
an approximate version of the problem. The approximation
is a linear program obtained by replacing the local (mixed-
integer) constraints Xi with their polyhedral convex hull
denoted by conv(Xi), and the total resource vector b with a
restricted resource vector b��, with � ⌫ 0 2 RS . In order
to clearly distinguish the decision variables of the original
(MILP) and approximated (LP) problems, from now on, we
will use zi 2 Rni to denote the continuous counterpart
of the mixed-integer variable xi 2 ZZi ⇥ RRi . The LP
approximation can thus be written as

min
z1,...,zN

NP
i=1

c>i zi

subj. to
NP
i=1

Aizi � b� �

zi 2 conv(Xi), i 2 {1, . . . , N}.

(2)

We now briefly discuss some properties of this approxi-
mation. First of all, for � = 0, problem (2) is a relaxation
of (1). A well-known property of such a relaxed problem
is that its dual problem coincides with the dual of (1), see
e.g., [18]. Since in general MILP (1) has a duality gap and
problem (2) enjoys strong duality, then the costs of (2), with
� = 0, and (1) differ exactly by the MILP duality gap.

The high-level idea motivating the restriction � is to
exploit problem (2) to compute mixed-integer points sat-
isfying the local constraints Xi, but violating the coupling
constraint no more than �. We will see in the next section

that not only the magnitude, but also the meaning of the
restriction that we use in our approach is different from the
ones proposed in dual decomposition schemes. A common,
standing assumption required for methods based on a given
restriction � ⌫ 0 of the coupling constraints is the following.

Assumption 2.1 (On the restricted LP): Problem (2) is
feasible and its optimal solution is unique. ⇤

Finally, we recall a result in [19] which will play a key role
in our analysis, shows that any vertex (including the optimal
one) of (2) is partially mixed-integer, and provides a bound
on the number of agents whose solution is not mixed-integer.

Lemma 2.2 ([19], Theorem 1): Let Assumption 2.1 hold
and let (z̄1, . . . , z̄N ) be a vertex of problem (2). There exists
a set IINT ✓ {1, . . . , N}, with cardinality at least |IINT| �
N � S � 1, such that z̄i 2 Xi for all i 2 IINT. ⇤
B. Primal Decomposition

Primal decomposition allows to obtain a master-
subproblem architecture from constraint-coupled convex pro-
grams such as (2). Local allocation vectors at each node,
adding up to the total resource b��, are iteratively adjusted
until they converge to the optimal allocation. Thus, each node
can asymptotically retrieve its portion of optimal solution
of (2) by using its local allocation, [20], [21].

Formally, in a primal decomposition approach, prob-
lem (2) can be restated into a hierarchical master-subproblem
formulation, with a master problem

min
y1,...,yN

NP
i=1

pi(yi)

NP
i=1

yi = b� �

yi 2 Yi, i 2 {1, . . . , N}

(3)

where, for each i 2 {1, . . . , N}, pi(yi) is defined as the
optimal cost of the i-th subproblem

pi(yi) = min
zi

c>i zi

subj. to Aizi � yi

zi 2 conv(Xi),

(4)

and Yi ✓ RS denotes the set of yi such that (4) is well-
posed (i.e., the set of yi such that there exists at least a
z̄i 2 conv(Xi) with Aiz̄i � yi).

Due to the presence of Yi, solving (3) is not trivial,
especially in a distributed computation framework. Several
works as, e.g., [3], investigate a simplified set-up without
local constraints, so that Yi ⌘ RS . Recently, in [9] a
methodology to overcome this issue has been proposed. We
will pursue the same idea to devise a distributed primal
decomposition approach for (2), that will act as a building
block for our distributed algorithm.

C. Distributed Computation Framework
We consider a network of N processors communicat-

ing according to a connected and undirected graph G =
({1, . . . , N}, E), where E ✓ {1, . . . , N} ⇥ {1, . . . , N} is
the set of edges. If (i, j) 2 E , then nodes i and j can



exchange information (and in fact also (j, i) 2 E). We
denote by Ni the set of neighbors of node i in G, i.e.,
Ni = {j 2 {1, . . . , N} | (i, j) 2 E}. Each node i knows
only its local constraint Xi, its portion ci of the total cost
and the matrix Ai of the coupling constraint. The goal is that
each agent computes an approximation for its portion x?

i of
an optimal solution of (1) by means of local communication
with neighboring agents only.

III. DISTRIBUTED PRIMAL DECOMPOSITION FOR
FEASIBLE MILP SOLUTION

In this section we introduce our distributed optimization
algorithm and discuss implementation features. We provide a
constructive argument leading to the proposed method, con-
sisting of two routines described in the next two subsections.

A. Distributed Primal Decomposition Method for LP Solu-
tion over Networks

Following the approach proposed in [9], we can derive
a distributed algorithm to solve (2) by combining a (dis-
tributed) primal decomposition method with a relaxation ap-
proach. The algorithm reads as follows. Each agent updates
a local vector ((zti, vti),µt

i) as a primal-dual optimal solution
pair of (6), with M > 0. Then, it gathers µt

j from j 2 Ni

and updates its local estimate of the optimal allocation vector
yt+1
i with (7), where ↵t is an appropriate step-size sequence.
Assumption 3.1 (Diminishing Step-size): The step-size

sequence {↵t}t�0, with each ↵t � 0, satisfies the conditionsP1
t=0 ↵

t = 1,
P1

t=0

�
↵t
�2

< 1. ⇤
We can now state the convergence properties of the pro-

posed algorithm, in which agents solve the relaxed (always
feasible) version (6) of problem (4), and then update their
resource allocation vector yi according to a linear update.

Proposition 3.2: Let Assumptions 2.1 and 3.1 hold and
let the local allocation vectors y0

i be initialized such thatPN
i=1 y

0
i = b � �. Then, there exists a sufficiently large

M > 0 for which the distributed algorithm (6), (7) generates
an allocation vector sequence {yt

1, . . . ,y
t
N}t�0 such that

(i)
PN

i=1 y
t
i = b� �, for all t � 0,

(ii) limt!1 kyt
i � y?

i k = 0 for all i 2 {1, . . . , N}, where
(y?

1, . . . ,y
?
N ) is an optimal solution of (3);

(iii) any limit point of the primal sequence
{zt1, . . . , ztN}t�0 associated to {yt

1, . . . ,y
t
N}t�0, say

(z11 , . . . , z1N ), is an optimal solution of problem (2),
and the corresponding cost

PN
i=1 c

>
i z

1
i is equal to

the optimal cost of (2). ⇤
As a corollary of (iii), the sequences {vti}t�0, i 2
{1, . . . , N}, converge to zero.

B. Feasible Mixed-Integer Solution Computation
The distributed algorithm (6)-(7), in general, does not

provide asymptotically a mixed-integer solution. Thus, if y1
i

is the asymptotic assignment of agent i, the MILP

min
xi

c>i xi

subj. to Aixi � y1
i

xi 2 Xi,

(5)

admits an optimal solution which is also the solution of
problem (4) with yi = y1

i , for (at least) N � S � 1 agents.
Thus, if the remaining (at most) S+1 agents find a solution
to (5), all the agents have a mixed-integer point satisfying
both the local constraints and the coupling constraints. To
this end, it is sufficient that for each agent i for which the
LP solution is not mixed integer, there exists at least one
feasible point x̄i 2 Xi such that Aix̄i � y1

i .
However, this does not happen in general because the

negotiated local allocation vectors are based on local con-
straints conv(Xi) rather than Xi. Thus, we adopt a relaxation
approach similar to the one proposed for the LP approxima-
tion. That is, we let agents solve a relaxed version of (5)
in which the cost c>i xi must be minimized while allowing
for a minimal violation of the coupling constraint. This can
be done by solving (8), where we use the notation lex-min
to indicate that ⇢i and ⇠i are minimized in a lexicographic
order (we will discuss next how to solve (8)).

C. Distributed Algorithm: Description and Implementation
Discussion

In the following table we summarize our Distributed
Primal Decomposition for Feasible MILP Solution (DiP-
FEAS-MILP) algorithm from the perspective of node i.

Distributed Algorithm DiP-FEAS-MILP

Initialization: y0
i such that

PN
i=1 y

0
i = b� �

Evolution:
Compute µt

i as a dual optimal solution of

min
zi,vi

c>i zi +Mvi

subj. to µi : Aizi � yt
i + vi1

zi 2 conv(Xi), vi � 0

(6)

Gather µt
j from j 2 Ni and update

yt+1
i = yt

i + ↵t P
j2Ni

�
µt

i � µt
j

�
(7)

Compute xt
i as an optimal solution of

lex-min
⇢i,⇠i,xi

⇢i

subj. to c>i xi  ⇠i

Aixi � yt
i + ⇢i1

xi 2 Xi, ⇢i � 0.

(8)

Remark 3.3 (Parallel Implementation): We point out that
a parallel implementation of the DiP-FEAS-MILP distributed
algorithm can be obtained by letting a central unit update
the allocation vectors yt

i . This can be done by means of a
centralized subgradient replacing (7). ⇤

From an implementation point of view, in most cases
an explicit description of conv(Xi) in terms of inequalities
might not be available. Then, column generation techniques
can be used to approximate conv(Xi), see, e.g., [22]. How-
ever, since the algorithm only requires µt+1

i to evolve,



agents can obtain an estimate by locally running a dual
subgradient method to find a dual optimal solution of (6)
without resorting to a description of conv(Xi). Indeed, being
the Lagrangian of (6) a linear function of the primal variable
zi, a subgradient of the dual function at µt

i can be easily
computed as Aix̄i � yt

i , with x̄i an optimal solution of

min
xi2Xi

(c>i + (µt
i)

>Ai)xi = min
zi2conv(Xi)

(c>i + (µt
i)

>Ai)zi,

where the equality follows from the linearity of the cost.
Moreover, if agent i wants to know J LP,t

i , c>i z
t
i +Mvti

at a given time instant t, by strong duality, can evaluate
minxi2Xi(c

>
i + (µt

i)
>Ai)xi � (µt

i)
>yt

i . The sum of these
quantities will appear in the suboptimality bound in finite-
time, so that it is computable in a distributed way by using
an average consensus algorithm.

We now show a simple way to perform the lex-min
optimization in (8). First, agents compute ⇢ti as the optimal
cost of

min
⇢i,xi

⇢i

subj. to Aixi � yt
i + ⇢i1

xi 2 Xi, ⇢i � 0.

(9)

Then, they compute xt
i as an optimal solution of

min
xi

c>i xi

subj. to Aixi � yt
i + ⇢ti1

xi 2 Xi.

(10)

IV. FEASIBILITY GUARANTEES AND
SUBOPTIMALITY BOUNDS OF DIP-FEAS-MILP

In this section we analyze the performance of DiP-FEAS-
MILP distributed algorithm. We first derive the restriction
on the coupling constraint needed to ensure asymptotic
feasibility. Then we provide (asymptotic and finite-time)
feasibility guarantees and suboptimality bounds, which can
be computed once the algorithm solution is available.

A. Tight Restriction for Asymptotic Feasibility

We derive an upper bound of the violation ⇢i for any ad-
missible LP allocation y1

i . This allows us to find a minimal,
a-priori restriction �, of the coupling constraint. For all i,
consider a “lower bound” vector Li with components

Ls
i = min

xi2Xi

As
ixi,

where As
i is the s-th row of Ai. Ls

i can be equivalently com-
puted by minimizing over conv(Xi). Thus, each admissible
allocation y1

i satisfies y1
i ⌫ Li. To compute the maximum

violation ⇢i, due to the mismatch between xt
i and zti, let

(xL
i , ˜̀i) be an optimal solution to

min
xi,`i

`i

subj. to Aixi � Li � `i1

xi 2 Xi, `i 2 R.

Then, denoting x1
i a solution to (8) with y1

i , it holds

Aix
1
i � y1

i � Aix
1
i � Li �

⇣
max

s2{1,...,S}
As

ix
L
i � Ls

i

⌘
1,

for any admissible y1
i . Therefore, a restriction �, guaran-

teeing feasibility of (x1
1 , . . . ,x1

N ) with respect to MILP (1),
can be obtained by setting � = �ASY1, with

�ASY , (S + 1) max
i2{1,...,N}

max
s2{1,...,S}

⇣
As

ix
L
i � Ls

i

⌘
. (11)

We point out that the restriction (11) can be computed in
a distributed way by using a max-consensus algorithm. In
Figure 1, we give an illustrative example of the restriction
with 3 constraints and 2 agents.

0 local resource
value

L1
1 A1

1x
L
1

L1
2 A1

2x
L
2

0 needed
allocation

A1
1x

L
1 � L1

1

A1
2x

L
2 � L1

2

�ASY

S+1

Fig. 1. Graphical representation of the restriction � for a problem with
S = 3 constraints and N = 2 agents.

Before proceeding with the analysis, we compare our
restriction (11) with the one proposed in [15], i.e.,

�s = S max
i2{1,...,N}

⇣
max
xi2Xi

As
ixi � Ls

i

⌘
, (12)

with s 2 {1, . . . , S}. Notice that, in place of the worst-
case maxxi2Xi A

s
ixi, we use As

ix
L
i , obtained at the “lowest”

feasible point xL
i 2 Xi closest to Li. On the other hand, our

scaling factor S + 1 is larger than S. Finally, we notice that
when all the As

i are equal for all s 2 {1, . . . , S}, then the
two restrictions coincide, except for the scaling factor. This
situation occurs for very structured problems, such as in the
case study analyzed in [15], for which our restriction can be
obtained by scaling (12) by (S + 1)/S. Finally, in certain
problem set-ups, such as in partial shipments [19], the local
constraint sets are such that 0 2 Xi and Aixi ⌫ 0 for all
xi 2 Xi. Then, by construction, Li = 0 and ˜̀

i = 0 for all
i 2 {1, . . . , N}. It follows that, for these special problems,
�ASY boils down to zero, so that no restriction is needed.
This holds true in general for problems in which AixL

i = Li

for all i 2 {1, . . . , N} for some xL
i 2 Xi.

B. Asymptotic Guarantees
In this subsection we assume the allocation vectors are

initialized such that
PN

i=1 y
0
i = b� � with � = �ASY1.

Theorem 4.1 (Feasibility): Let Assumption 2.1 and As-
sumption 3.1 hold. Consider the allocation vector sequence
{yt

1, . . . ,y
t
N}t�0 generated by DiP-FEAS-MILP converging

to (y1
1 , . . . ,y1

N ). Let (⇢1i , ⇠1i ,x1
i ) be a lex-optimal so-

lution of (8) corresponding to y1
i for all i 2 {1, . . . , N}.

Then, (x1
1 , . . . ,x1

N ) is a feasible solution for MILP (1), i.e.,
x1
i 2 Xi for all i 2 {1, . . . , N} and

PN
i=1 Aix1

i � b. ⇤



Before stating the suboptimality bound, we need constraint
qualification on the restricted coupling constraint.

Assumption 4.2 (Slater Constraint Qualification): There
exists a point (bz1, . . . ,bzN ) such that bzi 2 conv(Xi)

⇣bz , min
s2{1,...,S}

⇣
bs � �s �

NP
i=1

As
ibzi

⌘
> 0. (13)

The following result establishes an asymptotic suboptimal-
ity bound for DiP-FEAS-MILP.

Theorem 4.3 (Suboptimality Bound): Consider the same
assumptions and quantities of Theorem 4.1 and let also
Assumption 4.2 hold. Then, (x1

1 , . . . ,x1
N ) satisfies the sub-

optimality bound
NP
i=1

c>i x
1
i � JMILP 

S+1P
s=1

(c>isx
1
is � pis(y

1
is ))

+
�ASY

⇣bz

NP
i=1

⇣
c>i bzi � pi(y1

i )
⌘ (14)

where JMILP is the optimal cost of (1), pi(yi) is defined in (4),
(bz1, . . . ,bzN ) is a Slater point and is is the index sequence
of the (at most) S+1 agents with z1i /2 Xi (where zi is the
local optimal solution corresponding to y1

i ). ⇤
C. Finite-Time Guarantees

In this subsection, we establish finite-time guarantees for
DiP-FEAS-MILP. For the asymptotic results, we used the
restriction (11). Here, we consider an augmented restriction
� = (�ASY + �)1, with an arbitrary (small) � > 0.

Theorem 4.4 (Finite-time Feasibility): Let Assumptions
2.1 and 3.1 hold. Consider the mixed-integer sequence
{xt

1, . . . ,x
t
N}t�0 generated by DiP-FEAS-MILP with y0

i

initialized such that
PN

i=1 y
0
i = b� (�ASY + �)1 for a given

� > 0. There exists a sufficiently large (finite) time T� > 0
such that the vector (xt

1, . . . ,x
t
N ) is a feasible solution

for problem (1), i.e., xt
i 2 Xi for all i 2 {1, . . . , N} andPN

i=1 Aixt
i � b, for all t � T� . ⇤

In general, the amount of time T� needed to ensure
feasibility increases as � approaches zero. Conversely, the
faster to guarantee feasibility the larger the restriction should
become. Now, we introduce a suboptimality bound on the
computed solution that can be evaluated when the algorithm
is halted prematurely.

Theorem 4.5 (Finite-time Suboptimality Bound):
Consider the same assumptions and quantities of
Theorem 4.4. Moreover, let Assumption 4.2 hold and
let ✏i > 0 be arbitrary small numbers, for i 2 {1, . . . , N}.
Then, there exists a sufficiently large (finite) time T� > 0
such that the vector (xt

1, . . . ,x
t
N ) satisfies for all t � T� the

suboptimality bound
NP
i=1

c>i x
t
i � JMILP 

NP
i=1

(c>i x
t
i � J LP,t

i )

+
NP
i=1

kµt
ik1✏i + �(�ASY + �),

(15)

where � = 1
⇣bz

NP
i=1

⇣
max
xi2Xi

c>i xi � min
xi2Xi

c>i xi

⌘
, with bz a

Slater point, JMILP is the optimal cost of (1) and J LP,t
i is

the cost of (6) at time t. ⇤

V. NUMERICAL COMPUTATIONS

In this section, we corroborate the theoretical work with
numerical computations. First, we show that the distributed
algorithm achieves feasibility in finite time (cf. Theorem 4.4)
on a random MILP with duality gap. Second, we compare
our approach with methods based on dual decomposition by
generating (unstructured) random MILPs with duality gap.

The generation model for random problems consists of
two phases. First, N feasible LPs are generated with a model
inspired by [25] to get the local sets Xi ⇢ Z ⇥ R and the
cost vectors ci. We generate polyhedral constraints Dixi �
di with random entries uniformly in [0, 1] for Di 2 R6⇥2

and entries in [0, 40] for di 2 R6. To make sure that Xi is
compact, we add box constraints �60 · 1  xi  60 · 1.
The cost vector is then calculated as ci = D>

i ĉi, where ĉi
has entries in [0, 5]. Second, we add coupling constraints by
generating random Ai matrices with entries in [0, 1] and a
resource vector b with values in different intervals.

A. Finite-time feasibility

We generated a random MILP with N = 100 agents,
S = 10 coupling constraints and resource vector b with
entries in [�600,�500]. In order to apply Theorem 4.4,
we set the restriction to � = (�ASY + �)1, with � = 0.4
and �ASY computed with (11). Remarkably, the solution
computed by the algorithm is feasible for the original MILP
for all t. In Figure 2 (left), we evaluated the quantityPN

i=1 ⇢
t
i��ASY which in less than 50 communication rounds

went below 0, providing a sufficient condition for feasibility
The coupling constraint value is shown in Figure 2 (right),
where the horizontal dashed line represents ��ASY. The
figure highlights two important facts: (i) the algorithm seems
to evolve in an interior-point fashion, and (ii) the coupling
constraint value is always under ��ASY, which suggests that
there is still room for a tighter restriction.
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Fig. 2. Evolution of the sum of local MILP violations compared to the
restriction �ASY (left) and coupling constraint value for the computed MILP
solution (right).

B. Performance comparison

We compared the performance of our algorithm with
[15] whose restriction is defined in (12). We did not run
the distributed algorithm to compute an optimal allocation
(y1

1 , . . . ,y1
N ), but rather we explicitly solved problem (3)

and then computed (⇢1i ,x1
i ) with (8). We generated prob-

lems with N = 50 agents and S = 10 coupling constraints.



In the numerical computations, we observed that the
method in [15] was not applicable in several generated
instances since the restricted LPs were unfeasible. Therefore,
we first evaluated the fraction of generated problems for
which each methodology was applicable. It turned out that,
for resource vectors with components randomly chosen in
[�400,�300], our methodology could be applied in 99.33%
of cases, out of 300 instances, whereas the method [15]
never satisfied the needed assumptions (since the restriction
resulted in 0% of feasible restricted LPs).

Then, we generated problems with entries of b in
[300, 400] in order to make both methods applicable. This
made it difficult to find meaningful problems (i.e., with
duality gap), which were only 20.59% out of 2778 feasible
problems. For those meaningful problems, we solved the
centralized MILP and we compared the solution performance
of DiP-FEAS-MILP and [15]. This could be done for 17.66%
problems that were feasible for both methods. In particu-
lar, we evaluated the relative suboptimality |(

PN
i=1 c

>
i x

?
i �

JMILP)/JMILP|, where x?
i is the solution found by either

DiP-FEAS-MILP or [15]. We also evaluated the relative
restriction magnitude, i.e., k�k/kbk. In Figure 3, comparison
histograms of the relative suboptimality of both methods and
of the relative restriction magnitude are shown. A further
investigation to be carried out consists of comparing the
restriction magnitude of DiP-FEAS-MILP with the time-
varying restriction proposed in [16].
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Fig. 3. Relative restriction magnitude (left) and solution suboptimality
(right) comparison for 100 random MILPs having nonzero duality gap with
S = 10 coupling constraints and N = 50 agents.

VI. CONCLUSIONS

In this paper we proposed a distributed algorithm for
multi-agent MILPs by employing a primal decomposition
approach. Based on a proper tightening of the coupling con-
straints, agents update local allocation vectors that asymp-
totically converge to an optimal resource allocation of a
convexified version of the original MILP. Such vectors allow
agents to compute a mixed-integer solution satisfying both
the local constraints and the (original) coupling constraint.
Suboptimality bounds and feasibility guarantees for asymp-
totic and finite-time solutions are also established. Numerical
simulations corroborate our approach showing pros and cons
with respect to state-of-the-art methods.
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