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Abstract

Solid waste management poses a rich variety of interesting and challeng-
ing optimization problems. Waste managers are required to take short-,
medium-, and long-term planning decisions, while taking into account the
articulated multi-echelon supply chain of waste generation, treatment and
disposal. In all such situations, neglecting the uncertainty of the waste gen-
eration rates can lead to unreliable decision plans.
In this paper we address a tactical problem of waste flow allocation from
a waste operator point of view with the aim of minimizing the total man-
agement cost, net of possible profits obtained by special subproducts. We
propose a two-stage multi-period stochastic programming formulation. The
first-stage decisions take into account the facility activation and a pre-
allocation of waste flow, while the recourse action considers the excess waste.
We then benchmark the formulation by solving an instance derived from his-
torical data provided by a large Italian waste treatment company. Scenario
trees are generated from predictive models of unsorted waste. Finally, the
impact of the stochastic waste generation on the problem solution is ex-
amined, showing the benefit of the stochastic methodology when compared
with the deterministic formulation.
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1. Introduction

Nowadays, Solid Waste Management (SWM) is a major concern for ur-
ban communities. The problem involves a wide variety of factors, such as
environmental, technical, political, institutional, financial and economical is-
sues (see Tchobanoglous [52]). In addition, waste logistic networks evolved
from a straightforward source-to-landfill scheme to a multi-echelon network
in which waste generally goes through several operations before reaching
a destination site. SWM involves waste collection (see Rogge and Jaeger
[45], Huang and Lin [27], López-Sánchez et al. [32]), waste treatment (see
Münster et al. [40]), waste routing (see Sahoo et al. [47], Inghels et al. [28])
and waste disposal (see Pérez-López et al. [42]).

In such a complex context, Operations Research techniques can help the
waste operator to take cost-effective decision plans (see de Souza Melaré
et al. [17]). Strategical, tactical, or operational issues can be taken in a
SWM problem, depending on the length of the period affected by the de-
cision. Integrated approaches to tackle several levels of time planning are
receiving increasing attention (see Samanlioglu [48], Das and Bhattacharyya
[16], Bruecker et al. [7]). For an extended discussion on the optimization
problems arising in solid waste management, the reader is referred to Ghiani
et al. [23].

A large part of the SWM literature considers deterministic formulations
(see Bloemhof-Ruwaard et al. [6], Erkut et al. [19], Ghiani et al. [21], Inghels
et al. [28]), namely where all problem parameters are known at the moment
of planning. This assumption is not practical in all cases. Uncertainty can
affect parameters such as processing and transportation costs, waste trans-
formation coefficients in the treatment facilities and the amount of waste
generated in the sources of the network.
In this paper, we consider tactical waste flow allocation under uncertainty
during a yearly planning horizon. The waste operator is required to take
monthly decisions on which facilities are active, and on which is the amount
of waste shipped in each arc of the network, processed or disposed of in
facilities. Modifications of the waste network, such as increasing facilities
capacity, location and opening plants (see Eiselt and Marianov [18]), are
strategic prerogatives, hence are not considered here. The aim of the plan-
ning for the waste operator is to minimize the management costs, minus the
possible profits obtained by special subproducts, such as electric energy or
raw materials from recycling processes. The work is motivated by the avail-
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ability of: (i) historical data on waste generation rates, obtained from the
largest Italian waste treatment company, HERAmbiente SpA, (ii) features
of the waste network managed by HERAmbiente, provided by the consult-
ing company Optit Srl. The industrial partners highlighted the relevance
of the estimation of the waste generation amounts before making tactical
decisions. Indeed, inaccurate estimations or forecasts (see Jiang and Liu
[29], Ghiani et al. [22]) can force to make expensive adjustments after the
waste is allocated. Hence, we consider the uncertainty affecting the waste
generation rates by a using stochastic programming approach.

A two-stage multi-period stochastic mixed-integer formulation for the
waste flow allocation problem is introduced in this paper. The operational
schedule of the facilities and a pre-allocation of waste are planned for the
year ahead, then the waste in excess is treated via recourse actions (e.g.,
shipment outside the network). This is in line with the actual planning
operation of waste operators, in which the pre-allocation of waste can be
used to stipulate contracts with carriers or facility managers.

The proposed stochastic formulation is tested on a realistic instance
based on the data provided by our industrial partners in the Italian region of
Emilia-Romagna. In order to validate the stochastic optimization model,
we test it on scenario trees, describing the problem uncertainty, derived by
econometric models. In order to tune the right number of scenarios to
include in the scenario tree, we compute in-sample stability (see Kaut and
Wallace [30]). The stochastic formulation is further investigated in terms of
the impact of stochasticity in comparison with expected value solution by
means of some stochastic measures.

The contributions of the paper can be summarized as follows:

� Introduction of a two-stage multi-period stochastic formulation for a
tactical waste flow allocation problem.

� Scenario trees generation for unsorted waste evolution based on Auto-
regressive econometric models derived from real data of 124 Italian
towns.

� Validation of the stochastic formulation in terms of in-sample stability.

� Analysis of the impact of uncertainty through the computation of mea-
sures of the quality of the deterministic solution in a stochastic envi-
ronment.

The paper is organized as follows. Section 2 provides an overview of
the literature on SWM problems with uncertain parameters and related
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problems. In Section 3, the specific tactical planning problem is described,
while Section 4 presents the stochastic model we formulate. In Section 5, the
scenario generation method is described. In Section 6, numerical results on
a realistic instance are discussed. Finally, conclusions and future research
directions are drawn in Section 7.

2. Literature Review

A wide line of research in SWM under uncertainty adopts modelling
paradigms such as: interval-parameter programming, chance-constrained
programming, fuzzy programming, inexact programming and two-stage
stochastic programming, as documented by Sun et al. [51]. A common claim
is that the lack of accurate information on the uncertainties makes impossible
to compute statical properties, such as probability distributions. Especially
in large-scale problems, obtaining an accurate description of the planning
data is particularly laborious (see Maqsood and Huang [39]), and the un-
certainties vary between known bounds. As a results, such formulations
provide a range of solution alternatives to the waste managers, which are
required to evaluate the trade-offs among the different solutions. In this di-
rection, a weekly waste flow allocation problem is considered in Huang et al.
[26]. The authors develop a gray linear programming model for address-
ing the regional municipality of Hamilton-Wentworth in Ontario. Stable
interval solutions are provided for three scenarios of facility operativeness.
Yeomans et al. [54] and Yeomans [55] improve the results of [26] on the same
case study by proposing Evolutionary Simulation-Optimization (ESO) pro-
cedures. Cheng et al. [12] and Cheng et al. [11] discuss a hierarchical frame-
work to formulate the SWM supply chain. A solution approach integrating
fuzzy programming and mixed-integer programming provides several waste
treatment policies, even for strategical decisions. Sun et al. [50] formulate
a joint chance-constrained programming model to express the uncertainties
on the waste network parameters and waste generation rates.
As for inventory problems, Chen et al. [9] address multiple sources of un-
certainties in a modeling paradigm for long-term planning, which combines
inventory model, inexact chance-constrained programming, interval-valued
fuzzy programming, and mixed-integer linear programming. On the same
case study, Chen et al. [10] propose stochastic fractional inventory-theory-
based approach to consider various constraint-violation risks. Several mod-
eling paradigms have been proposed for related uncertain problems. Corato
and Montinari [13] use stochastic dynamic programming to decide on the
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design of landfills, while considering the uncertainty in the price of recy-
clables. Nematian [41] considers a interval-parameter two-stage stochastic
programming approach in water resources management. The uncertainty
affecting the seasonal water flow is expressed via fuzzy variables. Water
resources management is also addressed in Wang and Huang [53] by means
of multi-level Taguchi-factorial two-stage stochastic programming.
In this work, we validate a two-stage multi-period stochastic programming
formulation on a set of representative scenarios obtained from an econo-
metric model. The scenario generation approach is viable thanks to the
availability of an historical database of unsorted waste generation values.

3. Waste flow allocation at a tactical level

In this section we introduce the main characteristics of the waste flow al-
location problem. The waste management network is represented as a graph
G = (V,A), where V is the set of network nodes and A is the set of feasible
waste shipments between nodes. A small waste network is displayed in Fig-
ure 1. The network is composed of: waste generation sources VO, a set VS of
separation and transfer stations (i.e., plants in which waste is temporarily
stocked and then loaded into larger vehicles), a set VP of processing facilities
(e.g., incinerators, inerting systems), a set VR ⊂ VP where a revenue is ob-
tained from the waste treatment (e.g., waste-to-energy plants, composting
facilities), a set VL of destination sites for waste, such as landfills and dis-
posal facilities, and markets VM ⊂ VL for recycled products and energy. The
waste flow is divided in several commodities W and subproducts WR ⊂ W
give a revenue to the waste manager.

For each period t ∈ {1, . . . , T} of the planning horizon, the waste man-
ager needs to determine which facilities should be used, and how waste
should be routed, processed and disposed of in each period in order to min-
imize the total cost, net of any revenue for recycled material and generated
energy. The total planning cost is made up by unitary transportation costs
cwij associated with arc (i, j) and commodity w, fixed costs f tj for each oper-
ating facility j ∈ VS ∪ VP in period t, processing costs ptjw per unit of waste
w treated at facility j in period t, and a revenue rtjw obtained from waste
flow w ∈WR produced in facility j ∈ VR in period t = 1, . . . , T .
The planning needs to respect the facility limitations, such as the capac-
ity qtjw of facility j ∈ VS ∪ VP ∪ VL for commodity w ∈ W in period t,
and the minimum threshold mt

jw of incoming waste commodity w in period
t = 1, . . . , T in plant j ∈ VS ∪ VP . The treatment and separation operations
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Figure 1: The SWM network

are expressed by transformation coefficients bjww′ per unit weight (or vol-
ume) of the waste commodity w ∈W into the waste commodity w′ ∈W at
facility j ∈ VS ∪ VP . The structure of the network is fixed, i.e., we cannot
build new facilities and landfills or close them permanently. This assumption
is appropriate in the medium-short level of planning.

The waste flow allocation problem is modeled as a multicommodity flow
problem (see Shevchik [49]) with multiple sources and sinks. This is com-
mon also in other related service network problems, such as hub network
design problems (see Rothenbächer et al. [46], Alibeyg et al. [2]). The tac-
tical waste flow allocation problem requires also to select which facilities
(nodes) are operative in the waste network during each period of the plan-
ning horizon. We note that node selection is devised also in other routing
problems in supply chain management, such as supplier selection problems
(see Qin et al. [43]), orienteering problems (see Gunawan et al. [25]), trav-
eling purchaser problems (see Bianchessi et al. [4], Manerba et al. [38]) and
fixed charged transportation problems (see Bertazzi and Maggioni [3]).
The stochastic model of this paper can be considered as a stochastic refor-
mulation of the deterministic model presented in [23] for strategic waste flow
allocation. Given that strategic decisions are out of the scope of this paper,
in our model the decisions on the facilities regard their operational state,
rather than the possibility of opening/closing them.

As already mentioned, several SWM parameters are not known at the
moment in which the planning has to be made. In this study, we focus on
the stochasticity in waste generation quantities, given the practical interest
of their uncertainty for waste managers. In the next section we propose the
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stochastic programming model for the solid waste management planning
problem just described.

4. A Stochastic Programming Model for the Waste Flow Alloca-
tion Problem

To include the random nature of the waste production in the problem we
consider a two-stage stochastic programming with multi-period model (see,
e.g., Birge and Louveaux [5]) which reflects the way in which the uncertainty
in waste generation is expressed and revealed during the planning horizon.
In the two-stage stochastic multi-period paradigm, the actual realization of
the waste generation values in each period (i.e., a month) of the planning
horizon becomes known as soon as the facility activation decisions for the
first period take place.

We now describe in detail the two-stage stochastic programming with
multi-period model. As explained in the introduction, it is common for
waste managers to decide for a pre-allocation of the waste flow in each
period of the planning horizon. The model goes in this direction and intro-
duces first-stage decision variables to represent the facility activation and
pre-allocations of waste flow. The recourse action is the treatment of un-
expected waste produced in generation sources. In order to describe the
stochasticity of the problem, we approximate the distribution of the uncer-
tain parameters by a discrete distribution with a finite number of outcomes,
also called scenarios. We denote with S the set of scenarios, with |S| its
cardinality and with ρs, the probability of realization of scenario s ∈ S. Let
then gt,siw be the uncertain amount of waste commodity w ∈W generated in
source i ∈ VO in period t according to scenario s.
The decision variables are:

ytj binary variables assuming the value 1 if facility j ∈ VS ∪ VP
is operating in period t = 1, . . . , T and 0 otherwise;

xtijw planned waste flow of commodity w ∈ W shipped in arc
(i, j) ∈ A in period t = 1, . . . , T ;

ξt,siw excess waste of commodity w ∈ W present in source i ∈ VO
in period t = 2, . . . , T + 1 in scenario s ∈ S.

The stochastic recourse decision is given by the corrective waste flow
ξt,siw , which is non-negative if in period t− 1 and scenario s the waste gener-
ation of commodity w present in source i has turned out to be lower than
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expected. Such waste can be treated in several ways in practical applica-
tions. We assume that the unexpected waste is collected in waste generation
sources incurring in Ctiw costs, higher than network transportation costs, and
shipped outside the network. In this situation, the excess flow affects only
the waste collection constraints in sources sites. Another possibility of treat-
ment of the unforeseen waste could be that of routing it inside the network,
at the price of additional transportation costs, because of possible vehicle
overloading or usage of extra vehicles.

A mathematical formulation of the two-stage stochastic multi-period
mixed-integer problem with waste flow pre-allocation is given by ModelM:

M : min

T∑
t=1

∑
j∈VS∪VP

f tjy
t
j +

T∑
t=1

∑
w∈W

∑
(i,j)∈A

cijx
t
ijw+

+

T∑
t=1

∑
w∈W

∑
j∈VS

ptjw
∑
i∈VO

xtijw

+
T∑
t=1

∑
w∈W

∑
j∈VP

ptjw
∑

i∈VO∪VS∪VP

xtijw

+
T∑
t=1

∑
w∈W

∑
j∈VL

ptjw
∑

i∈VO∪VS∪VP

xtijw

−
T∑
t=1

∑
w∈WR

∑
i∈VR

rtiw
∑
j∈VM

xtijw

+

S∑
s=1

ρs

(T+1∑
t=2

∑
i∈VO

∑
w∈W

Ctiwξ
t,s
iw

)
(1)

s.t.
∑

j∈VS∪VP∪VL

xtijw + ξt+1,s
iw = gt,siw ∀ i ∈ VO, w ∈W,

t = 1, . . . , T, s ∈ S, (2)∑
w∈W

bjww′
∑

i∈V :(i,j)∈A

xtijw =
∑

i∈V :(j,i)∈A

xtjiw′ ∀ j ∈ VS ∪ VP , w′ ∈W,

t = 1, . . . , T, (3)∑
i∈V :(i,j)∈A

xtijw ≤ qtjwytj ∀ j ∈ VS ∪ VP , w ∈W,

t = 1, . . . , T, (4)
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∑
i∈V :(i,j)∈A

xtijw ≥ mt
jwy

t
j ∀ j ∈ VS ∪ VP , w ∈W,

t = 1, . . . , T, (5)

ytj ∈ {0, 1} ∀ j ∈ VS ∪ VP ,
t = 1, . . . T, (6)

xtijw ≥ 0 ∀ w ∈W, (i, j) ∈ A,
t = 1, . . . T, (7)

ξt,siw ≥ 0 ∀ w ∈W, i ∈ VO,
t = 2, . . . T + 1, s ∈ S. (8)

The objective function (1) is composed by the following terms: (i) the
operational costs for active facilities; (ii) the waste transportation costs in
every arc of the network; (iii) the processing costs in transfer stations due to
the waste collected in sources; (iv) the costs incurred to process the waste
coming either directly from generation sources, or re-organized in transfer
station, or preliminarily treated in other processing plants; (v) the process-
ing costs in destination facilities; (vi) profits associated with special waste
subproducts and (vii) recourse costs, given by the penalties for treating the
excess flow waste outside the network. Indeed, all the levels of the waste
management supply chain are taken into account.
Constraints (2) ensure that the stochastic waste generated in each source
is collected and shipped either inside the network or outside the network.
Equations (3) impose the reduced flow balance in each transfer or process-
ing facility. Constraints (4) represent capacity limitations for active plants,
while inequalities (5) model the requirement for operating facilities to receive
a minimum amount of incoming waste flow. Finally, constraints (6),(7), (8)
define the decision variables of the problem.
In Figure 2, the scenario tree which describes the situation represented by
the model (1)-(8) over 12 months with |S| = 3 is presented, for the sake of
visualization. The sequence of decisions over stages is reported to the right
of the scenario tree.

4.1. Possible model extensions

Further constraints can be added to the mathematical formulation so as
to express additional practical features of the waste network.
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Figure 2: Two-stage multi-period scenario tree structure related to formulation M. For
the sake of visualization, the tree has |S| = 3 and T = 12. Decision variables are indicated
to the right of the scenario tree.

Let aj be the capacity for landfill j ∈ VL valid on the whole planning horizon
(i.e., an overall capacity). Then model M can be added with:

T∑
t=1

∑
w∈W

∑
i∈V :(i,j)∈A

xtijw ≤ aj ∀ j ∈ VL. (9)

In case maintenance operations need to be taken for a subset VD of fa-
cilities, a deactivation term of duration Dt

j for facility j starting at period
t is required. The waste manager decision on the selection of the starting
period for the deactivation is expressed by binary variables ztj , ∀ j ∈ VD,
t = 1, . . . , T , which are active on the first deactivation period t. The ac-
tual number of periods τ tj of temporary deactivation of facility j within
the planning horizon is computed as τ tj = min{Dt

j − 1, T − t}. If the non-
operativeness term does not end within T , the remaining deactivation peri-
ods are imposed by setting the binary variables ytj accordingly in the first
periods of the next planning year. The temporary deactivation decisions
can then be formulated in M as:

τ tj∑
i=0

yt+ij ≤ (τ tj + 1)(1− ztj) ∀j ∈ VD, t = 1, . . . , T, (10)
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T∑
t=1

ztj ≥ 1 ∀ j ∈ VD, (11)

ztj ∈ {0, 1} ∀ j ∈ VD, t = 1, . . . , T. (12)

Based on the data received by the industrial partners, we observed that
overall capacity constraints for landfills are not particularly tight. This is
because we avail of the waste generation data for a subset of the waste
commodities dealt by the network. In addition, no compulsory deactivation
periods were imposed by the partners. In the present paper the modeling
extensions are not considered in the computational results, since the calibra-
tion of the related parameters requires further discussions with the industrial
partners.

5. Scenario Trees Generation for Waste Production

In this section we describe how to generate the scenario tree of unsorted
waste (UW) parameter. The process which discretizes the distributions of
the stochastic parameters with a limited number of outcomes is usually
called scenario tree generation.

We have analyzed the unsorted waste database composed of i = 1, . . . , 124
individual towns of Emilia-Romagna expressed in tons normalized by the
number of inhabitants observed for t = 1, . . . , 36 periods (months) provided
by our industrial partner HERAmbiente SpA. The considered towns are in
the region of Emilia-Romagna, which is located on the Adriatic coast, one
of the most touristic areas of northern Italy. Hence, the towns population
is subject to strong seasonal fluctuations. During the summer, in internal
towns people migrate, while, during the same period, coastal towns receive
tourists. The UW produced in towns is clearly dependent on the number
of actual inhabitants, therefore the historical data are characterized by sea-
sonality as well. For each town the level of demand for the waste disposal
in 36 consecutive months is revealed.

We considered available historical data gtiw for the single commodity
w corresponding to unsorted waste. For this reason from now on we will
denote gtiw with gti . In order to generate scenario trees which describe the
uncertainty of the problem, we investigate an econometric model (see [44])
which fits the time series with a good approximation. Since our goal is to
test the goodness of the forecast of the econometric model, in the remainder
of this section, we suppose to have been given only the data for t = 1, . . . , 24
and to use the data in t = 25, . . . , 36 only for evaluation purposes. For each
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town i = 1, . . . , 124, we select the best Autoregressive model (AR(p))

Yi,t = ci+βi,1Yi,t−1+. . .+βi,pYi,t−p+εi,t, i = 1, . . . , 124, t = 24, . . . , 36, (13)

where:

� ci is a constant of town i;

� p is the number of considered lags;

� Yi,t stands for the dependent variable representing the demand of town
i at month t;

� βi,j is the estimator for each town i with j = 1, . . . , p;

� Yi,t−j is the regressor, representing the level of demand of town i at
month t− j with j = 1, . . . , p;

� εi,t is the error term of town i at month t.

The best AR(p) model is obtained by choosing the number p = 1, . . . , 15
of lags which minimizes the Akaike Information Criterion (AIC) (see [1])
independently for each town i using maximum likelihood estimation. Results
are reported in Table 1. Notice that Model (13) is also evaluated including
a first order difference in Yi,t for potential unit roots. The symbol † on a
order indicates that Model (13) without unit roots has been selected for the
town considered. The AIC is one of the most common Information Criteria
(IC), which are of the following form:

IC = goodness of fit + penalty for model complexity,

where model complexity is typically the number of model parameters scaled
by some factor to make it comparable to the goodness of fit metric. In
particular AIC takes the form:

AIC = 2k + n ln(MSE),

where k is the number of model parameters, “ln” is the natural logarithm
and MSE is the Mean Squared Error. According to Akaike’s theory, the
most accurate model has the smallest AIC: a model that fits well will have
small MSE. In addition, in case the model needs a lot of parameters (i.e.,
has a greater complexity) then the term 2k will be large, thus making AIC
larger. The model with the smallest AIC will be the model that fits best
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town i p town i p town i p town i p town i p

1 15† 26 15 51 14 76 15 101 15
2 7† 27 15 52 15 77 15 102 15
3 15 28 2 53 12 78 15 103 15
4 15 29 15 54 15 79 7 104 12
5 14 30 2 55 15 80 14 105 15
6 7 31 4 56 15 81 15 106 15
7 15 32 15 57 15 82 11 107 15
8 15 33 13 58 15 83 15 108 14
9 15 34 15 59 14 84 14 109 15
10 15 35 14 60 15 85 15 110 14
11 1 36 15 61 14 86 15 111 15
12 14 37 15 62 15 87 11 112 14
13 15 38 15 63 12 88 15 113 15
14 14 39 13 64 15 89 15 114 14
15 13 40 15 65 14 90 11 115 14
16 15 41 15 66 15 91 15 116 13
17 15 42 3 67 15 92 15 117 15
18 14 43 14 68 15 93 15 118 15
19 14 44 15 69 11 94 15 119 15
20 15 45 15 70 15 95 15 120 15
21 14 46 15 71 15 96 13 121 14
22 15 47 15 72 15 97 14 122 15
23 15 48 15 73 15 98 15 123 15
24 15 49 15 74 15 99 11 124 14
25 13 50 15 75 14 100 13

Table 1: Number p = 1, . . . , 15 of lags which minimizes AIC [1] calculated independently
for each Town i = 1, . . . , 124.
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to the data, with the smallest complexity and therefore will have a smaller
chance of over-fitting.

Figure 3 reports a comparison between the actual 2013 data and the
forecasted models for 6 of the major towns of the region. Similar results
are obtained for all the 124 towns included in the dataset. Interestingly, the
seasonal component in coastal towns which receive tourists during summer
is well described by the econometric models obtained (see Towns 5 and 6 in
the figure).

Scenarios of forecasted waste are then generated by a Monte Carlo sim-
ulation on the error terms εi,t of the AR(p) models (see (13)) which are
uncorrelated normally distributed random variables; thus, they can be de-
scribed by the Brownian motion:

εi,t := Yi,t − Y ∗i,t = dYi,t = µidt+ σidWi,t , i = 1, . . . , 124 , (14)

where Y ∗i,t are the observed values, µi and σi are respectively the mean and
the variance of the errors series and Wi,t is the Wiener process (see Gong
et al. [24]). The process to generate scenario trees is outlined in Pseudo
Code 1.

Pseudo Code 1 Scenario trees generation for waste production

1: for i = 1, . . . , 124 do
2: for t = 1, . . . , 24 do
3: Yi,t := gti
4: end for
5: for t = 25, . . . , 36 do
6: Y ∗i,t := gti
7: Minimize Akaike Information Criterion (AIC)
8: Evaluate potential unit roots s.t.
9: Yi,t := ci+βi,1Yi,t−1+. . .+βi,pYi,t−p+εi,t

10: εi,t := Yi,t − Y ∗i,t
11: end for
12: for s ∈ S do
13: Obtain εsi,t from Monte Carlo simulation on εi,t
14: Y s

i,t = ci+βi,1Yi,t−1+. . .+βi,pYi,t−p+εsi,t,
15: return gtsi = Y s

i,t

16: end for
17: end for
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Figure 3: Fan charts of normalized unsorted waste including a simple line chart for ob-
served past data (dashed line connecting blue points in the years 2011-2012 and black line
in the year 2013). 60 possible scenarios of 2013 forecasts obtained using model (13) are
shown in orange.

6. Computational Results

In this section, we present and analyze the results of the computational
experiments. The goal is to evaluate the effectiveness of the methodology
proposed on a realistic instance based on an existing waste management net-
work provided by the consulting company Optit Srl, an accredited spinoff
company of the University of Bologna, which has a long-lasting collaboration
with HERAmbiente SpA on waste logistics. Privacy issues of the considered
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data do not allow us to explicitly give their values which were slightly al-
tered with respect to the original data.
Our industrial partners provided the actual values of UW generated in 124
towns of Emilia-Romagna and some relevant information of the waste man-
agement network associated with such waste generation sources. In the
real-world situation, the network is meant for treating every commodity of
municipal waste. Hence, by considering only the production of UW in urban
sites, an oversize of the set of facilities is implied, overestimating parame-
ters like capacity limitations. This motivated the extraction of a smaller
instance, which considers only a subset of plants with respect to those treat-
ing all types of waste in the existing network. The instance we considered
has the following features. The original set of 124 waste generation sources
is treated by 28 plants, divided in: 7 separation facilities, 6 Waste-to-Energy
(WtE) facilities, 6 other processing plants, 8 landfills and 1 market for the
Electric Energy (EE) produced by WtEs. Besides UW, the network nodes
can accept other 13 waste commodities, obtained as results of the various
operations taking place in facilities. As a consequence of the “shrinking” of
the real network, some of its original parameters were changed accordingly.
In order to limit an excessive impact of the revenue for EE in the objective
function, a capacity restriction for incoming UW in WtEs was set. Mini-
mum flow threshold were set for validation purposes. The transportation
costs cij are proportional to the distance between nodes i and j; because
unit transportation costs are set by medium-term contracts, for the sake of
simplicity, we neglected economies of scale in the transportation costs (see
Callan and Thomas [8]). In our tactical horizon of planning, there is no
possibility of closing permanently a facility or building a new one; hence, in
the objective function (1), we only required to make the facilities operate as
less as possible by setting all activation costs f tj to 1.

For the Recourse Problem M, we compute its total cost denoted with
RP , we analyze the loss in terms of quality of the solution due to the use
of the Expected Value approaches (EV ) by computing standard measures
in stochastic programming like the Value of Stochastic Solution at stage t
(V SSt) and the Expected Value of Perfect Information (EV PI) (see Birge
and Louveaux [5], Maggioni and Wallace [34], Maggioni et al. [35, 37, 36],
Maggioni and Pflug [33]).
The stochastic model M has been implemented in AMPL and solved with
CPLEX 12.7.0.0 on a Intel Core i5− 4440 machine with 3.10 Ghz CPU and
8 GB RAM (see Fourer et al. [20], CPLEX Manual [14]).

Subsection 6.1 discusses the size of the scenario tree through in-sample
stability, while a validation of modelM with standard measures is presented
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in Subsection 6.2. A deeper understanding of the quality of the expected
value solution is analyzed in Subsection 6.3 through the computation of the
Multistage Expected Skeleton Solution Value (see Maggioni et al. [36]) and
the extension of the Loss of Reduced Cost-based Variable Fixing defined in
Crainic et al. [15] in a multi-stage setting.

6.1. Determining the size of the scenario tree

In this section we perform an in-sample stability (see Kaut et al. [31]) of
model M which allow us to qualify its results. In sample-stability consists
in performing a sensitivity analysis of the objective function in terms of
the number of scenarios needed in the tree to obtain stable results. This is
obtained by comparing the optimal objective function values using scenario
trees of increasing size. Box-plots of in-sample values over 5 runs on scenario
trees with increasing sizes are shown in Figure 4. The results confirm the
robustness of the scenario generation method on model M and that the
in-sample stability is reached for the scenario tree of size 420.

Figure 4: Box-plot of objective function values (RP) of model M over scenario trees of
cardinality 60, 100, 200, 300, 400, 420 and 450 respectively.
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The computational time required for solving model M for increasing
number of scenarios is reported in Figure 5. The results indicate a linear
growth of the computational effort with the scenario tree size.

Figure 5: CPU time in seconds to obtain the RP value ofM for scenario trees of cardinality
60, 100, 200, 300, 400, 470. The dashed line represents the trend line of the data, having an
R-squared value of 0.9578.

In the remainder of the section, we report the results obtained on a
scenario tree of size 470, called S470.

6.2. Analyzing the impact of uncertainty via standard stochastic measures

This subsection is devoted to qualify the model M by showing:

� the benefits of using the stochastic formulation versus the Expected
Value one, (EV ), where the decision maker replaces all random vari-
ables by their expected values and solve a deterministic program;

� the importance of the stochasticity by comparing the stochastic for-
mulation with the perfect information case (the so-called Wait and see
approach, (WS)), where the realization of all random parameters are
known already at the first stage.

This is done by considering respectively the Value of Stochastic Solution
at stage t (V SSt) and the Expected Value of Perfect Information (EV PI)
measures. The Value of Stochastic Solution indicates the expected gain
from solving the stochastic model rather than its deterministic counterpart,
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in which the random parameters are replaced with their expected values and
is defined as follows:

V SSt := EEV t −RP, t = 1, . . . , T (15)

where EEV t denotes the solution value of the RP model, having the decision
variables up to stage t fixed at the optimal values obtained by using the
expected value solution. Note that model M is defined over T + 1 stages.
Furthermore, the Expected Value of Perfect Information is defined by the
difference between the objective values of the stochastic (RP ) and wait-and-
see (WS) solutions, given by:

EV PI := RP −WS. (16)

For the scenario tree S470, results are summarized in Table 2 showing
the percentage gap (in %) relative to the optimal value of the stochastic
formulation (the RP ) for different solution methods and standard measures.

We note that in the deterministic counterpart of Model M, the waste
manger will never require the treatment of excess waste flow, since the per-
fect knowledge of the future allows an exact determination of the waste-flow
variables x. This explains why the EV and WS are approximately 26% less
than RP and why the EVPI of M, obtained by solving a sequence of inde-
pendent deterministic problems, represents a high percentage (i.e., 25.51%)
of the stochastic solution RP. These results mean that the stochasticity of
the waste generation plays an important role in the decision making process.
Besides, the EEV t problems are infeasible already at the first stage t = 1.
The reason of the infeasibility can be explained as follows: being the correc-
tive flows ξt,siw non-negative, constraint (2) ofM cannot be satisfied whenever
the deterministic waste flow xtijw obtained by the EV collects more than the
actual waste generated in a source. The infeasibility of such deterministic
models justifies the adoption of the stochastic model M and shows the in-
appropriateness of a deterministic model for such a problem.

6.3. Measuring the quality of the expected value solution

In the previous sections, the infinite values of V SSt showed that the de-
terministic solutions obtained byM are highly inappropriate in a stochastic
framework. However the reason of the badness of such a deterministic solu-
tion is still not clear. In the next section we further investigate it by means
of measures of the quality of expected value solution in stochastic program-
ming like The Loss of Using the Skeleton Solution and The Loss of Reduced
Cost-based Variable Fixing.
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6.3.1. The Loss of Using the Skeleton Solution

In order to make progresses in this direction, Maggioni and Wallace
[34] introduced the Loss Using the Skeleton Solution (LUSS) for two-stage
formulations. The LUSS helps to determine if the stochastic solution can
partially inherit properties from the deterministic one. To this end, the
Expected Skeleton Solution Value (ESSV ) is computed by fixing to zero (or
to the lower bound) all first stage variables that are equal to zero (or to the
lower bound) in the expected value solution, and then solving the stochastic
program. The LUSS then compares ESSV and RP as follows:

LUSS = ESSV −RP.

The LUSS measure is extended to multistage formulations in Maggioni et al.
[36], with the name of Multistage Expected Skeleton Solution Value at stage
t (MESSV t), t = 1, . . . , T and Multistage Loss Using the Skeleton Solution
until stage t (MLUSSt), t = 1, . . . , T , respectively. Each MESSV t is the
optimal solution of the stochastic model in which all the variables that are
at zero (or at the lower bound) in the deterministic solution until stage t
are fixed at zero (or at the lower bound). The MLUSSt is then defined as

MLUSSt = MESSV t −RP, t = 1, . . . , T.

We analyzed MLUSSt onM and reported the results in Table 2. On S470,
MLUSS1 = 10 413.43 = 0.0174% RP suggests that the main reason of the
infeasibility obtained by EEV 1 described in Section 6.2, was due to the
wrong values of the non-zero variables. Furthermore, the relatively small
value of MLUSS1 indicates that the choice of out-of-basis first-stage vari-
ables of the expected value solution provides good information on the choice
of out-of-basis first-stage variables of the stochastic solution. The informa-
tion given by MLUSS1 can be better understood by comparing the RP and
MESSV 1 solutions. The MESSV 1 solution does not modify the schedule
ytj of activation of the plants and the excess flows ξtsiw of the RP solution.
Only 273 out of the 424 032 xtijw variables have an optimal value that differs
from that of the RP solution. This shows that, by choosing the out-of-basis
first-stage variables of the expected-value solution, the waste manager is not
required to treat any additional excess flow ξtsiw, which is paid at unfavorable
unitary cost Ctiw. In addition, it should be observed that MLUSS1 enables
to obtain information on the quality of some components of the deterministic
solution, while V SS = +∞ could not provide any indications of goodness
of the deterministic solution. Finally, MLUSSt = +∞, t > 1. This further
demonstrates the bad behavior of the deterministic solution for stages t > 1
in the stochastic framework.
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EV EV PI V SSt, 1 ≤ t ≤ T MLUSS1 MLUSSt, 1 < t ≤ T
−25.5134 25.5176 ∞ 0.0174 ∞

Table 2: Results of standard stochastic measures expressed in percentage gap (%) to the
RP problem, for model M based on scenario tree S470.

6.3.2. The Loss of Reduced Cost-based Variable Fixing

As additional effort in understanding of the structure of the determin-
istic solution, Crainic et al. [15] introduced a new measure of quality of
the deterministic solution in the Two-Stage Stochastic setting, namely the
Loss of Reduced Cost-based Variable Fixing (LRCVF). The LRCVF helps
to identify, even in case of large VSS and LUSS, if some components of
the deterministic solution can be inherited in the stochastic counterpart, by
considering the reduced costs of the out-of-basis variables in the first stage
expected value solution.
Due to the multi-period nature of the problem analyzed, we will apply
LRCV F measure by considering the reduced costs of only the first-stage de-
cision variables in direct analogy with two-stage case definition given in [15].
The aim of this measure is to identify the wrong variables from the expected
value solution that led to an extra-cost, when adopted in a stochastic envi-
ronment, quantified by the positive value of MLUSS1 (see Section 6.3.1).
After sorting and grouping the set of reduced costs into N homogeneous
classes, the Reduced Cost-based Variable Fixing, RCV F (p,N), is obtained
by fixing at their lower bound only the first-stage variables with reduced
cost in the expected value solution belonging to the last N − p + 1 classes
with higher reduced cost. The Loss of Reduced Cost-based Variable Fixing
is then defined as:

LRCV F (p,N) = RCV F (p,N)−RP, p = 1, . . . , N.

We next report the LRCV F for M obtained in our computational experi-
ence. We considered the scenario tree S470, in which there are 35 194 out-of-
basis first-stage variables. Given the large width of the reduced costs interval
[rmin = −110, rmax = 1 000 233], we divided it into N = 3, 10, 100, 1 000 and
10 000 classes of constant width respectively, in order to identify with high
precision the good and bad variables to use in the stochastic setting. Results
are reported in Table 3.
We observe that LRCV F (p,N) is able to find the optimal solution of M
when a subset of variables are fixed at zero. In the case of N = 3, the
values LRCV F (2, 3) = LRCV F (3, 3) = 0 indicate that the variables in the
deterministic solution included in the last two classes can be inherited in the
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stochastic solution with null error. Clearly, fixing at zero all the first-stage
out-of-basis variables yields LRCV F (1, 3) = MLUSS1 = 0.0174% RP .
Further information on the structure of the deterministic solution at the
first stage can be obtained by a finer partition of the set of reduced costs.
Setting N = 10, 100, 1 000, 10 000, one can obtain more detailed informa-
tion on the variables to inherit by examining the values of LRCV F (p,N),
p = 1, . . . , N . Results show that with N = 10 000, the variables in classes
p = 4, . . . , 10 000 are at zero also in the stochastic solution. Therefore, we
can conclude that a large portion of expected value solution, i.e., all the
variables belonging to the interval [rmin + 3(rmax−rmin)

10 000 , rmax], can be in-
herited in the stochastic solution. Finally, a nearly optimal solution with
LRCV F (3, 10 000) = 10.29 = 0.0000172% RP is obtained by fixing the
variables in class p = 3.

N LRCV F (p,N)

3 p = 1 : 0.00174 p ≥ 2 : 0
10 p = 1 : 0.00174 p ≥ 2 : 0
100 p = 1 : 0.00174 p ≥ 2 : 0
1 000 p = 1 : 0.00174 p ≥ 2 : 0
10 000 p ≤ 2 : 0.00174 p = 3 : 0.0000172 p ≥ 4 : 0

Table 3: Results of LRCV F (p,N) for increasing values of N on M as % from RP .
Scenario S470.

7. Conclusions and Future Works

In this paper a Two-Stage Multi-period Stochastic Programming formu-
lation for tactical problems arising in Solid Waste Management has been
proposed. The formulation considers a pre-allocation of waste flow at the
moment of planning and introduces corrective actions to treat excess waste
flows. The solution methods have been tested by solving model instances
derived from historical data provided by a large Italian waste treatment
company. Scenario trees of uncertain waste production have been generated
from predictive models of unsorted waste and validated in terms of in-sample
stability.
The impact of the stochastic waste generation on the problem solution has
been examined, showing the benefit of the stochastic methodology when
compared to solving the deterministic formulation which can lead to an un-
reliable decision plan. We computed stochastic measures that analyze the
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impact of the data randomness and the quality of the expected value solu-
tion. The inappropriateness of the deterministic solution in the stochastic
framework has been shown and additional information on the first-stage so-
lution has been derived by identifying the variables which can be inherited
from the expected value solution. Furthermore, numerical results show that
good estimation of the waste generation could yield important cost savings
for the waste manager. We note that, even in the cases of limited percent-
ages of expected savings, the waste manager would consider the stochastic
solution a favorable alternative to the deterministic one, given the large
monetary value of waste management processes.
Future works will consider a proper multistage stochastic formulation, with
uncertain parameters revealed at the end of every period of the planning
horizon. In addition, a different stochastic formulation could be obtained
without allocating the waste flow during the planning phase: all the waste
would then be treated via recourse actions. This massive introduction of
recourse variables would make the formulation very challenging computa-
tionally. Approximated solution approaches such as those based on Benders’
decomposition and progressive hedging would be very useful to validate the
model.
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