
03 September 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

BROWNLEES, C., CAVALIERE, G., MONTI, A. (2018). EVALUATING THE ACCURACY OF TAIL RISK FORECASTS
FOR SYSTEMIC RISK MEASUREMENT. ANNALS OF FINANCIAL ECONOMICS, 13(02), 1-28
[10.1142/S2010495218500094].

Published Version:

EVALUATING THE ACCURACY OF TAIL RISK FORECASTS FOR SYSTEMIC RISK MEASUREMENT

Published:
DOI: http://doi.org/10.1142/S2010495218500094

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/672121 since: 2019-02-24

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1142/S2010495218500094
https://hdl.handle.net/11585/672121


This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

 

 

 

 

This is the final peer-reviewed accepted manuscript published in ANNALS OF FINANCIAL 

ECONOMICS (World Scientific), EVALUATING THE ACCURACY OF TAIL RISK FORECASTS FOR 

SYSTEMIC RISK MEASUREMENT, Christian Brownlees, Giuseppe Cavaliere and Alice Monti, 2018 

  

The final published version is available online at: https://10.1142/S2010495218500094 

 

 

 

Rights / License: 

The terms and conditions for the reuse of this version of the manuscript are specified in the 
publishing policy. For all terms of use and more information see the publisher's website.   

 

https://cris.unibo.it/
https://10.0.4.118/S2010495218500094


Evaluating the Accuracy of Tail Risk Forecasts
for Systemic Risk Measurement

Christian Brownlees, Giuseppe Cavaliere and Alice Monti

Abstract In this paper we address how to evaluate tail risk forecasts for systemic
risk measurement. We propose two loss functions, the Tail Tick Loss and the Tail
Mean Square Error, to evaluate, respectively, CoVaR and MES forecasts. We then
analyse CoVaR and MES forecasts for a panel of top US financial institutions be-
tween 2000 and 2012 constructed using a set of bivariate DCC-GARCH-type mod-
els. The empirical results highlight the importance of using an appropriate loss func-
tion for the evaluation of such forecasts. Among other findings, the analysis con-
firms that the DCC-GJR specification provides accurate predictions for both CoVaR
and MES, in particular for the riskiest group of institutions in the panel (Broker-
Dealers).

Keywords: Systemic risk, Conditional Value-at-Risk, Marginal Expected Shortfall,
DCC model, Forecasting, Forecast evaluation, Tick loss, Loss functions

1 Introduction

One of the lessons learnt from the 2007–2009 Global Financial Crisis (GFC) is the
need for appropriate measures of systemic risk for the financial system. In the after-
math of the crisis several systemic risk measures have been proposed in the literature
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by researchers, regulators and practitioners (e.g. Acharya et al., 2010; Adrian and
Brunnermeier, 2011; Brownlees and Engle, 2017; Huang et al., 2009). A compre-
hensive survey of systemic risk measures and conceptual frameworks is presented in
Bisias et al. (2012) and Benoit et al. (2016). The probability-distribution measures,
that is quantile-based risk measures that focus on extreme losses, are widespread in
the literature and largely applied by banks and financial institutions. They can be
constructed using public market data (i.e. stock returns) and are based on statisti-
cal methods that require fairly weak assumptions on the data to obtain an estimate
of a financial institution’s contribution to systemic risk. Among the probability-
distribution measures, the most widespread and well-known systemic risk measures
are the ∆CoVaR (Adrian and Brunnermeier, 2011) and the SRISK (Brownlees and
Engle, 2017) measures, which are constructed using, respectively, CoVaR and MES
forecasts. These, in turn, are often constructed on the basis of DCC-GARCH models
(Engle, 2002), in particular the DCC-GARCH model (e.g. Girardi and Ergun, 2013;
Cabrera et al., 2014) and the DCC-GJR model (e.g. Cao, 2013; Popescu and Turcu,
2014; Yun and Moon, 2014; Brownlees and Engle, 2017; Engle et al., 2015).

In this paper we address how to evaluate tail risk forecasts for systemic risk
measurement. In particular, we propose two loss functions, the Tail Tick Loss and
the Tail Mean Square Error, to evaluate, respectively, CoVaR and MES forecasts.
These loss functions are useful to compare the forecasting performance of different
competing models and allow to determine which models produce accurate systemic
risk measures.

We carry out a CoVaR and MES forecasting horse-race using a collection of
DCC-GARCH specifications in order to determine which models produce the most
accurate forecasts. We consider a panel comprising 91 top US financial institutions
from 2000 to 2012. The set of GARCH specifications we consider includes the
FIGARCH (Baillie et al., 1996), the Component-GARCH (Engle and Lee, 1999) as
well as an asymmetric version of this model that we call Asymmetric-Component-
GARCH that we introduce in this work. The empirical results show that the loss
functions give useful guidance to identify the most successfull specifications for
predicting CoVaR and MES. In particular, results show that models that capture
asymmetry and long-range dependence produce the best out-of-sample forecasts.

First this paper contributes to the literature on the econometric analysis of sys-
temic risk. It also builds up on the literature on the evaluation of VaR forecasts;
see, e.g., Christoffersen (1998), Engle and Manganelli (2004), Giacomini and Ko-
munjer (2005). Our results extend and complement the ones found in, among others,
Glosten et al. (1993), Engle and Lee (1999), Cheong et al. (2007), Engle and Rangel
(2008).

The remainder of the paper is organized as follows. Section 2 introduces the Co-
VaR and MES measures. Section 3 presents the loss functions designed to evaluate
CoVaR and MES forecasts. Section 4 contains the empirical application. Section 5
concludes.
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2 CoVaR and MES measures

Given the returns ri
t of an institution i and a confidence level α , the Value-at-Risk

(VaR) risk measure VaRi
α,t is defined as the α-quantile of the return distribution

Prt−1[ri
t ≤ VaRi

α,t ] = α . The Conditional-Value-at-Risk (CoVaR), firstly introduced
by Adrian and Brunnermeier (2011), measures direct and indirect spillover effects
in order to capture externalities that an individual institution imposes on the system.
The CoVaR is defined as the VaR of the system returns rs

t conditional on some
event C(ri

t) of institution i. More precisely, it is the α-quantile of the conditional
probability distribution:

Prt−1

[
rs

t ≤ CoVaRs|i
α,t

∣∣∣C(ri
t)
]
= α

Adrian and Brunnermeier (2011) define the conditioning set event as C(ri
t) = {ri

t =
VaRi

α,t}. However, the latter CoVaR conditioning set does not consider severe losses
which are further in the tail and does not allow CoVaR to be backtestable using stan-
dard procedures. As a consequence, Girardi and Ergun (2013) propose a condition-
ing financial distress event that refers to the institution i being at most at its VaR, i.e.
C(ri

t) = {ri
t ≤ VaRi

α,t}:

Prt−1

[
rs

t ≤ CoVaRs|i
α,t

∣∣∣ri
t ≤ VaRi

α,t

]
= α (1)

The CoVaR risk measure is the main component of the ∆ -Conditional Value-at-
Risk (∆CoVaR) systemic risk measure which evaluates the systemic spillover of
an individual institution to the system. Hence, the systemic risk contribution of an
institution to the system is the (percentage) relative distance between the VaR of the
financial system s conditional on the distressed state of institution i and the VaR of
the financial system s conditional on the benchmark state of institution i:

∆CoVaRs|i
α,t(%) = 100

[
CoVaR

s|ri
t≤VaRi

α,t
α,t −CoVaRs|bi

α,t

CoVaRs|bi

α,t

]

where bi indicates the benchmark state defined as a one-standard deviation about the
mean event µ i

t −σ i
t ≤ ri

t ≤ µ i
t +σ i

t where µ i
t and σ i

t are, respectively, the conditional
mean and the standard deviation of institution i. Due to time-varying correlations,
the CoVaR of an institution here has a time-varying exposure to its VaR and this fea-
ture enables us to detect and incorporate in the systemic risk measurement possible
changes over time in the linkage between the institution and the financial system.

The second systemic risk measure is the SRISK proposed by Brownlees and
Engle (2017), whose main component is the Marginal Expected Shortfall (MES).
MES, firstly introduced by Acharya et al. (2010), defines the systemic risk contri-
bution as the expected return of an individual institution conditional on the system
being distressed:
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MESi|s
α,t(C) = Et

[
ri

t
∣∣rs

t ≤C
]

(2)

The threshold value C, which represents the systemic event, may be set to C =
VaRs

α,t , i.e. the VaR of the financial system. This risk measure is based on the Ex-
pected Shortfall (ES) defined as the expected loss of the system conditional on the
loss being greater than the VaR calculated at a given level of confidence 1−α .
SRISK is an alternative dynamic reduced form estimate of capital shortages to mea-
sure the systemic risk contribution of a financial firm. Brownlees and Engle (2017)
define SRISK of institution i on day t as the prediction of the capital shortfall when
system declines below a threshold C over a time horizon h:

SRISKi
t = Et

[
CSi

t+h

∣∣rs
t+1:t+h <C

]
= Wi

t (kLVGi
t − (1− k)LRMESi

t −1)

where

• CSi
t+h is the capital shortfall of firm i over a time horizon h, defined as:

CSi
t = kAi

t −Wi
t = k(Di

t +Wi
t)−Wi

t

where Wi
t is the market value of equity, Di

t is the book value of debt, Ai
t is the

value of quasi assets and k is the prudential capital fraction;
• LVGi

t denotes the quasi-leverage ratio (Di
t +Wi

t)/Wi
t ;

• LRMESi
t is Long Run MES, defined as the expectation of the firm equity multi-

period return conditional on the systemic event:

LRMESi
t = Et

[
ri

t+1:t+h

∣∣rs
t+1:t+h <C

]
where rt+1:t+h is the multi-period equity return between period t +1 and t +h, of
firm and system, respectively.

3 Measuring forecast accuracy

3.1 Background

The accuracy and efficiency tests have been primarily developed in the literature to
evaluate VaR models. The assessment of the performance of the VaR forecasts is
usually carried out on the basis of a two-step procedure (see, Brownlees and Gallo,
2008). The first step assesses the adequacy of the VaR forecasting methods using
VaR specification tests (Kupiec, 1995; Christoffersen, 1998). The second step as-
sesses the accuracy of those forecasting methods not rejected by the backtests using
a VaR loss function that measures the VaR closeness to their nominal coverage.
Regarding the first step, the most common adequacy tests are the unconditional
coverage test of Kupiec (1995) and the conditional coverage test of Christoffersen
(1998), where the null hypothesis is rejected if the VaR model considered generates
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too many or too few or too clustered exceptions. CoVaR is a VaR-based measure,
hence it is possible to adapt these tests, used for VaR, to the CoVaR framework us-
ing appropriate modifications (see Girard and Ergun, 2013). Regarding the second
step, a widely used loss function in assessing VaR accuracy is the tick loss function
proposed by Komunjer (2005) (see Brownlees and Gallo, 2008).

Considering the VaR violation indicator Ii
t of an institution i at time t ∈ T =

{1, . . . ,T} (Ii
t = 1 when ri

t ≤VaRi
α,t and 0 otherwise), the CoVaR violation indicator

Is|i
t at time t ∈Ti is defined as:

Is|i
t =

{
1 if rs

t ≤ CoVaRs|i
α,t

0 otherwise
(3)

where Ti ⊂ T denotes the set of time periods when the VaR violations of institu-
tion i occur (i.e. when the institution i is in financial distress), in particular when the
VaR violations sequence Ii

t+1 gives 1 as result. According to Christoffersen (1998),
the problem of determining the adequacy of CoVaR can be reduced to the prob-
lem of determining whether the resulting CoVaR violation passes the unconditional
coverage (UC) test (Kupiec, 1995) and the independence test. The former exam-
ines whether the number of exceptions over a specific number of observations in
the backtesting window is consistent with the corresponding confidence level (the
percentage of violations should not significantly differ from α × 100%). The lat-
ter examines whether the probability of an exception on any day depends on the
outcome of the previous day. Only a CoVaR violations sequence that satisfies both
these properties can be described as evidence of an adequate CoVaR model. An-
other test to verify the validity of the forecasting model is the dynamic quantile test
proposed by Engle and Manganelli (2004) which examines whether the CoVaR vi-
olations sequence is an iid sequence of Bernoulli random variables with probability
α .

The information contained in the CoVaR violations sequence refers only to
whether or not an exceedance occurred, and does not provide the magnitude of
the exceedance. Statistical adequacy is, in fact, a necessary requirement that Co-
VaR forecasts must satisfy, but it does not provide information on the accuracy of
such predictions and does not always help to discriminate among different CoVaR
forecasting methods. Hence, the assessment of the CoVaR forecasting methods ad-
equacy is not sufficient to assess the CoVaR forecasts performance. Moreover, as
anticipated in the introduction section, these tests have low power, as pointed out by
Kupiec (1995), Berkowitz (2001), Escanciano and Pei (2012). As a consequence,
using a CoVaR loss function is necessary to assess the accuracy of the forecasting
methods (see for VaR framework Brownlees and Gallo, 2008; Escanciano and Pei,
2012). Loss functions, in fact, may be extremely useful for determining whether a
model provides a better risk assessment than another competing model, and more
suited to discriminate among different competing models and to judge the accu-
racy of a single model. Loss functions could be tailored to address specific con-
cerns about the evaluation of accuracy of systemic risk forecasts. Since CoVaR is a
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VaR-based measure, the VaR loss functions used in the literature can be adapted to
CoVaR framework, as for VaR backtests.

3.2 A loss functions for CoVaR

As pointed out, the adoption of a more fine-grained loss function is fundamental to
help in assessing the CoVaR accuracy and selecting the proper model, since back-
tests do not discriminate among different competing models. The CoVaR measure
is defined as a conditional quantile, hence a straightforward loss function suitable
to this framework is the tick loss function, introduced by Komunjer (2005). Ko-
munjer, in fact, develops an approach to conditional quantile estimation based on
quasi-maximum likelihood. Hence, we propose a modified version of the tick loss
function called the Tail Tick Loss (TTL) function defined as:

TTLs|i
α =

1
Ni

∑
t∈Ti

(
α− I(rs

t≤ηt )

)(
rs

t −ηt
)
, (4)

where

• ηt = CoVaRs|i
α,t is the optimal predictor of TTL function;

• Ti is the time set when the conditioning event of CoVaR occurs, in particular
when C(ri

t) =
{

ri
t ≤VaRi

α,t
}

holds (see eq. (1)). The letter i indicates the depen-
dence of the time set by the VaR of institution i;

• Ni = #
(
Ti
)

is the time set sample size, in particular the number of observations
when the financial institution is in financial distress;

• I(rs
t≤ηt ) ≡ Is|i

t is the CoVaR violations sequence (Is|i
t = 1 when rs

t ≤CoVaRs|i
α,t and

0 otherwise). It is important to underline that this sequence is constructed on the
VaR violations sequence, as highlighted by s|i. Consequently, it is defined only
on the time set Ti, in particular when the VaR violations of institution i occur.

Hence, in order to correctly evaluate CoVaR forecast accuracy, we apply to the tick
loss function the same conditioning set of the CoVaR measure. More precisely, we
condition the tick loss function on the Ti time periods set, where the conditioning
event occurs

{
ri

t ≤ VaRi
α,t
}

, instead of the overall time period T as in the standard
tick loss function.

The proposed Tail Tick Loss function is an appropriate loss function to evaluate
the CoVaR accuracy. The CoVaR measure, in fact, is the optimal predictor asso-
ciated to the TTL loss function since it minimizes the expected value of the loss
function:

CoVaRs|i
α,t = argmin

ηt∈Mt−1

Et−1

[(
α− I(rs

t≤ηt )

)(
rs

t −ηt
)∣∣∣C(ri

t),Ft−1

]
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where Mt−1 ⊂ R, C(ri
t) =

{
ri

t ≤ VaRi
α,t
}

and Ft−1 is the information set available
until time t−1. The focus is particularly on the extreme events, because the financial
institution failure can occur more probably on these days.

Comparing the values of the average sample TTL function for the same institu-
tion i among all competing models used to compute the CoVaR measure, the most
accurate model for CoVaR corresponds to the smallest average sample loss reached.
Thus, we are able to identify which is the model that predicts more accurately the
CoVaR.

3.3 A loss functions for MES

To the best of our knowledge, statistical tools with the purpose to test and compare
MES forecasts have not been properly developed in the literature and a deep analysis
on their accuracy is largely unexplored. The Mean Square Error loss function is
widely used in the literature to assess the forecasting accuracy. MES is a conditional
tail expectation, therefore in order to evaluate MES accuracy and its forecasting
ability, we propose the Tail Mean Square Error (TMSE) defined as:

TMSEi|s
α =

1
Ns

∑
t∈Ts

[
ri

t −ηt

σ s
t

]2

where

• ηt = MESi|s
α,t is the optimal predictor of TMSE function;

• Ts is the time set when the conditioning event of MES occurs, in particular when{
rs

t ≤ VaRs
α,t
}

holds (see eq. (2)). The letter s indicates the dependence of the
time set by the VaR of system s;

• Ns = #
(
Ts
)

is the time set sample size, in particular the number of observations
when the system is in financial distress;

• σ s
t is the standard deviation of the financial system estimated by the GARCH(1,1)

model for all competing models.

As done for CoVaR framework, we have to condition TMSE on the same condi-
tioning set of MES, i.e.

{
rs

t ≤ VaRs
α,t
}

. More precisely, in order to guarantee a
correct evaluation of MES accuracy, we condition TMSE on the Ns realizations of
the observed financial system VaR, instead of the overall time period T as in the
standard TMSE. Furthermore, we standardize TMSE values by σ s

t , with the purpose
of avoiding volatile periods influences on the entire value.

The proposed Tail Mean Square Error is an appropriate loss function to evaluate
the MES accuracy. The MES measure, in fact, is the optimal predictor of this TMSE
loss function since it minimizes the expected value of the loss function:

MESi|s
α,t = argmin

ηt∈Mt−1

Et−1

[(
ri

t −ηt

σ s
t

)2
∣∣∣∣∣C(rs

t ),Ft−1

]
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where Mt−1 ⊂ R, C(rs
t ) =

{
rs

t ≤ VaRs
α,t
}

and Ft−1 is the information set available
until time t−1. The focus is particularly on the extreme events, because the financial
institution failure can occur more probably on these days.

Comparing the TMSE values for the same institution i among all models, we are
able to detect the model that forecasts more precisely MES.

4 Empirical analysis of the 2007-2009 financial crisis

In this section we provide an empirical analysis of 2007−2009 financial crisis ac-
cording to the different systemic risk approaches presented in Appendix A. In par-
ticular we analyze the accuracy of the standard DCC-GARCH-type models that are
present in the literature in measuring systemic risk using the novel loss functions
proposed in Section 3. We also investigate how the results should be interpreted in
order to detect the best prediction models.

4.1 Data

The sample is composed by the daily returns of 91 US financial institutions, with a
market capitalization greater than 5 bln USD as of end of June 2007, the same panel
used by Brownlees and Engle (2017). We exclude 4 institutions from systemic risk
analysis due to the limited length of their in-sample return series used for the models
estimation: Mastercard (MA), NYMEX (NMX), NYSE Euronext (NYX), Western
Union (WU). At least 100 observations are, in fact, required to estimate a GARCH-
type model. The daily CRSP market value weighted index is used as a proxy for
the system. We obtained data from CRSP. The panel spans from January 3, 2000 to
December 31, 2012 for a total of T = 3269 observations. The sample is unbalanced
since not all companies have been trading continuously during the sample period.
The financial institutions are grouped by financial industry group based on their SIC
codes1. The 4 subindustry groups are: Depositories Institutions (Dep.), that contains
banks and counts 28 institutions; Insurance (Ins.), that contains insurance companies
and counts 34 institutions; Securities Dealers and Commodity Brokers (Bro.), that
contains, for example, Bear Stearns and Lehman Brothers, and counts 9 institutions;
Others (Oth.), that contains non-depository institutions and real estate, and counts
20 institutions.

The sample is divided into two different sub-samples in order to allow the out-
of-sample forecasting validation and to evaluate the risk measures performances
during the forecasting period. In particular, the in-sample period consists of 1611
daily observations from January 3, 2000 to May 31, 2006; while the out-of-sample
consists of 1658 daily observations from June 1, 2006 to December 31, 2012. The

1 The only exception is Goldman Sachs (GS) which is included in Broker-Dealers, instead of
Others.
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out-of-sample, which includes the 2007− 2009 financial crisis, is used to forecast
and validate systemic risk measures. It is interesting to analyze the results obtained
in different out-of-sample sub-periods comparing, for example, the period before
the financial crisis, the period during the crisis, and the period immediately after-
wards. During the forecasting period the models are separately re-estimated every
week (i.e. every 5 observations) using all data available until as of that date and the
forecasts are computed one-step-ahead. We exclude the year before the 2007−2009
financial crisis from the in-sample period to permit to the models to fit the data with-
out any preliminary information about the crisis. Moreover, the re-estimation done
every-week allows the models to fit the data considering the new information set,
and the parameters are not fixed to the last estimation at the end of in-sample.

4.2 In-sample estimation

We compute the daily CoVaR and MES measures at α = 5% confidence level as-
suming Gaussian distribution for all the financial institutions in the panel employ-
ing the GARCH-type models, illustrated in Appendix A, over the in-sample period
(from 03/01/2000 to 31/05/2006). In particular, we first estimate the volatilities
for each financial institution by using the univariate GARCH-type models, then we
estimate the correlations of each institution-system pair by using the bivariate DCC
model.

Table 2 gives a summary of the DCC-ACGARCH parameters for each sub-
industry group over the in-sample. In particular, the 10%, 50% and 90% quantiles
values of the obtained parameters estimates are reported to have an idea about the
distribution of the parameters across the financial groups under investigation. We
notice that the dynamics of the financial institutions in the panel do not have a strong
degree of heterogeneity and the parameters estimates are very similar across groups.
Columns 4, 5 and 8 in table 2 (i.e. α,β ,γ) are dedicated to the parameters estimates
of the short-run component of the ACGARCH model, while columns 3, 6 and 7 (i.e.
ω,ρ,ϕ) display the parameters estimates of the long-run component. On the con-
trary, the last three columns (i.e. const, a, b) show the parameters estimates of the
DCC model. The ACGARCH parameters estimates are in line with those that can
be found in the related literature. In particular, as expected, the transitory shocks are
much less persistent than the permanent shocks (1 > ρ > α +β ), and the impact of
transitory shocks is much greater than permanent shocks (α > ϕ). The β estimates
are on average higher for Broker-Dealers, showing higher persistence. Overall, the
parameters estimates do not fluctuate much. Focusing on DCC, parameters are in
line with the typical set of estimates (i.e. a is very smaller than b and their sum is
close to the unit value) and are similar across groups. Then, we evaluate the volatility
estimates obtained by different models using the robust loss functions proposed by
Patton (2011), and considering the financial institution squared returns as volatility
proxy.
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Once estimated volatilities, we compute the CoVaR measure and we backtest
CoVaR for verifying the unconditional coverage property employing the UC test by
Kupiec (1995) and Christoffersen (1998), according to Girardi and Ergun (2013).
We obtain that the UC null hypothesis is rejected at 5% significance level for 88
financial institutions by DCC-GARCH, 87 financial institutions by DCC-GJR, 90
financial institutions by the DCC-CGARCH, 90 financial institutions by the DCC-
FIGARCH, 81 financial institutions by the DCC-ACGARCH, over 91 financial in-
stitutions in total. In particular, the models satisfy the unconditional coverage prop-
erty providing adequate CoVaR measures. However, DCC-GARCH-type models
tend to capture the same number of VaR and CoVaR violations, hence the UC test
provides similar results from different models. We find, in fact, that 34 financial
institutions over 91 have the same test statistic value for both DCC-GARCH and
DCC-GJR model. This evidence confirms our idea that backtests do not help in
discriminating among different competing models, and it is necessary to employ
appropriate loss functions in addition to backtests in order to detect the best model.

In addition, we conduct the dynamic quantile (DQ) test by Engle and Manganelli
(2014) that aims at verifying whether the model is misspecified. Some financial in-
stitutions do not have enough past information to carry out the DQ test, therefore
13 institutions are excluded. The null hypothesis is rejected at 5% significance level
for 73 financial institutions by the DCC-GARCH, 70 financial institutions by the
DCC-GJR, 74 financial institutions by the DCC-CGARCH, 71 financial institutions
by the DCC-FIGARCH model, 64 financial institutions by the DCC-ACGARCH
model, over 78 financial institutions in total. Therefore, the DCC-GARCH-type
models are not misspecified. Unfortunately, we obtain similar test statistic values
for many firms, as well as for the UC test. In particular, 19 financial institutions
have the same number of VaR and CoVaR failures, and consequently the same DQ
test statistic values. Hence, it is not possible to determine the best model using the
DQ results and it is necessary to employ appropriate and more fine-grained loss
functions to achieve this goal.

4.3 Out-of-sample forecast accuracy

The out-of-sample period spans from June 2006 to December 2012, including the
2007− 2009 financial crisis, for a total of 1658 observations and is used to fore-
cast and validate the systemic risk measures. We carry out the comparisons among
the volatility predictions obtained by different forecasting methods. In particular,
we compare the performances of the DCC-GARCH-type models, outlined in Ap-
pendix A, and the benchmark models ones. For comparative purposes and based on
their widespread usage in the related literature, we use the rolling volatility (Rol-
lVol.) as benchmark for the volatility, the rolling quantile regression model (QR) as
benchmark for the CoVaR measure, and the rolling linear regression (LR) model as
benchmark for the MES measure. The rolling volatility is computed as the standard
deviation of its return time series moving a window of 500 observations forward
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one by one for each financial institution. The same rolling window of 500 obser-
vations is used for both the rolling quantile regression and the linear regression
models. Hence, we evaluate the volatility forecasts with the aim of identifying the
best prediction model for volatility, then we compute the models accuracy in fore-
casting the systemic risk measures, CoVaR and MES. In particular, the comparison
of models performances is carried out evaluating the accuracy of the volatility, Co-
VaR and MES measures using the robust loss functions indicated by Patton (2011)
for the volatility, the TTL for the CoVaR and the TMSE loss function for the MES
measure.

The accuracy of the CoVaR forecasts, evaluated using the TTL function, is
presented in table 1, which reports the TTL averages divided by financial indus-
try groups. The bold values indicate the best prediction models. The TTL results
summarize the models performances in forecasting CoVaR, identifying the DCC-
FIGARCH model as the model that predicts the most accurate CoVaR measure (see
table 1). In addition to the loss functions, it is important to introduce techniques that
are able to discriminate among different competing models in terms of significance.
We therefore consider the Diebold-Mariano test to check the statistical significance
between the best model and the benchmark one. This means that we compare each
DCC-GARCH-type model with the rolling quantile regression (QR) for each finan-
cial institution individually comparing the whole TTL series2. We observe that all
the DCC-GARCH-type models are statistically different at 1% significance level
from the quantile regression approach for the entire sample. Furthermore, we run
the Diebold-Mariano test between the new proposed model, DCC-ACGARCH, and
the best model for each financial institution individually, finding that the difference
between the TTL of DCC-ACGARCH and the TTL value of the best model is sta-
tistically significant at 10% level for 65 firms over 91.

Similarly, the MES predictions accuracy is evaluated using the TMSE loss func-
tion. Table 3 shows the related results grouped by financial sectors, where bold
values correspond to the lowest values indicating the best prediction models. From
table 3, the TMSE results do not indicate a unique best prediction model for all
the sub-industry groups. Overall, the DCC-GARCH-type models outperform the
rolling linear regression (LR) and the best prediction model for MES is, on average,
the DCC-GARCH. The Diebold-Mariano test between the TMSE values of the best
model and LR (see table 3) shows that the linear regression model is statistically
worse than the best one at 10% significance level for 40 financial institutions over
91. On the contrary, 29 firms show that the TMSE values are statistically significant
at the 10% level for the new proposed model, DCC-ACGARCH, over the best pre-
diction model. It is important to notice that the novel ACGARCH model, introduced
in Appendix A.1, is an extension of the GARCH, GJR and CGARCH models and all
these models are the best ones in some sub-industry sector (see table 3). Therefore, it
is necessary to estimate and forecast MES by the DCC-ACGARCH model and then

2 We run the Diebold-Mariano test only once for the entire sample (composed by 91 financial
institutions) to avoid multiple testing problems. The multiple testing problem results from the
increase in type I error that occurs when statistical tests are used repeatedly.
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to check the significance of the parameters in order to reach the most appropriate
nested model.

Since the TMSE does not identify a unique best prediction model for MES, we
investigate other versions of TMSE. The proposed TMSE is, in fact, divided by the
standard deviation of the financial system estimated by GARCH for all competing
models used in the empirical analysis in order to avoid the influences of volatile pe-
riods. Using the standard deviation estimated by the other GARCH-type models as
standardization, we obtain similar results to those reported in table 3. In particular,
the DCC-GARCH model provides overall the most accurate MES forecasts for all
the cases. However, if we standardize the TMSE by the standard deviation estimated
by each considered model3, we change the standardization according to the consid-
ered model and we obtain different results. In this way, we are able to avoid that
volatile periods captured by that particular model influence the related loss func-
tion, instead of avoiding that volatile periods captured by a particular model (in
our case GARCH) influence all the loss functions. These results identify the DCC-
FIGARCH as the best forecasting model for the MES measure for the entire sample
and each sub-industry group. This finding is in line with the TTL results, reported in
table 1, which indicate DCC-FIGARCH as the best prediction model for systemic
risk, confirming the importance of capturing the long-range dependence.

4.4 Out-of-sample systemic risk

In order to check more precisely the ranking of groups’ riskiness, after a graphical
analysis, we compute the average of each measure. Table 4 contains the ranking of
the CoVaR averages over the out-of-sample. From table 4, we notice that Broker-
Dealers is always the most risky group, followed by Others, Insurance and Depos-
itories groups, and this groups’ riskiness ranking is identified by all the considered
models. Moreover, the model that provides the overall lowest average of the CoVaR
measure is the DCC-FIGARCH that corresponds to the best prediction model for
this measure (see table 4).

Table 5 contains the ranking of the MES averages over the out-of-sample (2006−
2012). All the models identify the same ranking composed by Broker-Dealers, De-
positories, Others, and Insurance respectively. The ranking obtained for the MES
measure, reported in table 5, is different from that obtained for CoVaR, reported
in table 4. Finally, the model that provides the overall lowest average of the MES
measure in table 5 is the DCC-CGARCH.

3 Standardizing the TMSE loss function by the standard deviation estimated by the particular con-
sidered model means that the TMSE obtained by DCC-CGARCH is divided by the system standard
deviation estimated by the CGARCH, the TMSE obtained by DCC-FIGARCH is divided by the
system standard deviation estimated by the FIGARCH, and so on.
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4.5 Sub-samples comparison

The out-of-sample period is divided into three different sub-samples in order to
compare the systemic risk measures obtained in different historical periods: the pre-
crisis sample (251 daily observations, from June 2006 to May 2007), the crisis sam-
ple (462 daily observations, from June 2007 to March 2009), and the post-crisis
sample (945 daily observations, from April 2009 to December 2012).

We carry out the comparison among the forecasting performances of the DCC-
GARCH-type models in each sub-sample period and we obtain different best predic-
tion models for each measure. For the CoVaR measure, the TTL values suggest the
DCC-FIGARCH model as the best prediction model over the pre-crisis and the cri-
sis samples, while the DCC-GJR provides the most accurate CoVaR forecasts after
the crisis to the end of the sample among the considered competing models. Finally,
for the MES forecasts, the DCC-GARCH outperforms the other models during the
pre-crisis and crisis periods, while the DCC-FIGARCH is the best MES prediction
model over the post-crisis sample. It is interesting to observe that for the first two
sub-samples the best prediction model is the same, whereas after the crisis it is a dif-
ferent model. Note that since the suggested models are nested into the ACGARCH,
the latter is a useful starting point in order to find the best possible model specifi-
cation. This could be due to the fact that before and during the crisis the volatilities
and the systemic risk are much higher than during the post-crisis period, hence two
different model specifications are necessary.

Table 6 reports the averages of the CoVaR measure obtained by the different
models over three different sub-samples. From table 6 it is interesting to observe that
the most risky group over all periods is Broker-Dealers. During the pre-crisis sample
Broker-Dealers are followed by Depositories, Insurance and Others respectively (as
found in Girardi and Ergun, 2013), and this ranking is uniformly identified by all the
models (see table 6). As well as during the post-crisis period where Broker-Dealers
are followed by Others, Insurance and Depositories by all the models respectively.
On the contrary, during the crisis sample in table 6, each model determines a dif-
ferent ranking. This fact can be explained by the fact that during the financial crisis
the contagion among financial institutions is very high, hence it is not possible to
achieve a well-defined ranking, as all the CoVaR values are very close each other.

Table 7 presents the comparison of the MES averages over the different sub-
samples obtained by all the competing models. From table 7 the most risky group
is Broker-Dealers over all the considered periods, while Insurance is the group with
the lowest risk. During the pre-crisis sample Broker-Dealers are followed by Others,
and Depositories, while over the crisis and the post-crisis periods Depositories and
Others are reversed. All the models identify the same ranking based on the groups’
riskiness (see table 7).
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5 Conclusions

In the aftermath of the crisis, the measurement of systemic risk has become a topic of
active research. The availability of so many different systemic risk measures and ap-
proaches highlights the need to identify which measure and model predict systemic
risk more accurately. Statistical tools to test and compare systemic risk forecasts,
however, have not been properly developed and a deep analysis on their accuracy
is largely unexplored in the existing literature. In this work we have evaluated Co-
VaR adequacy by VaR-based backtests, and, as expected, we have pointed out that
CoVaR backtests do not discriminate among different competing models used to
compute CoVaR. These backtests, obtained by extending those used for backtest-
ing VaR, generally provide the same results across all models and have low power.
Therefore, employing appropriate loss functions specifically designed to assess the
accuracy of the systemic risk forecasts and the forecasting ability of the considered
models is necessary. The need of developing loss functions to assess the systemic
risk accuracy leads us to the proposal of two loss functions, the Tail Tick Loss (TTL)
and the Tail Mean Square Error (TMSE) loss functions, which are suitable for the
CoVaR and MES frameworks, respectively. These loss functions are helpful in dis-
criminating among different competing models in order to determine the models
that forecasts more precisely CoVaR and MES measures, respectively. In this way,
we are able to evaluate the forecasting performances of CoVaR and MES.

An empirical analysis of the 2007−2009 financial crisis, carried out on 91 US fi-
nancial institutions daily return series on the time interval which spans from January
2000 to December 2012, confirms the need of a more fine-grained loss function with
the aim of evaluating the forecasts accuracy. The objective of the comprehensive
and exhaustive comparison of different bivariate volatility models for forecasting
systemic risk is to evaluate the accuracy and performances of these models in fore-
casting CoVaR and MES in order to identify the best model which provides more
accurately systemic risk forecasts. All DCC-GARCH-type models fit the data satis-
factorily with a high statistical significance of the parameters and outperform signif-
icantly the benchmark models, highlighting the presence of long-range dependence.
We have applied, in fact, not only the econometric standard models, but also long-
range dependence models with the aim of taking into account other stylized facts, so
far not considered in systemic risk framework. In particular, we have introduced a
comprehensive model, called the Asymmetric-Component-GARCH (ACGARCH),
able to capture the leverage effect jointly with long-range dependence. The proposed
DCC-ACGARCH model provides good in- and out-of-sample forecasts of systemic
risk and outperforms significantly benchmarks (i.e. quantile regression and linear
regression models) according to the Diebold-Mariano statistical test in estimating
and forecasting the CoVaR and MES measures. In particular, ACGARCH improves
systemic risk forecasts and its results are comparable with those obtained by other
existing models. Moreover, there is empirical evidence that both leverage effect and
long-range dependence should be considered in measuring and forecasting systemic
risk. CoVaR backtests provide quite similar results across all the models, since the
CoVaR failures tend to occur on the same days. The CoVaR backtesting results are
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very similar among different competing models, confirming the need to employ ap-
propriate loss functions, in addition to the backtests, with the aim of discriminating
among the competing models for achieving more accurate forecasts. The TTL loss
function, which is employed to evaluate the models performances in forecasting Co-
VaR, indicates that the DCC-FIGARCH model predicts more accurately the CoVaR
and the long-memory models are preferable to the standard ones according to the
Diebold-Mariano statistical test. For the MES measure, we have applied the pro-
posed TMSE loss function to assess the models performances in forecasting MES
without finding a unique preferred best model. The DCC-GARCH is, in fact, the
overall best prediction model for MES, but not for all the sub-industry groups. It
is important to notice that all the models indicated for each group are special cases
of the proposed ACGARCH model. Therefore, estimating ACGARCH is useful to
identify the most appropriate forecasting model. Investigating other versions of the
TMSE, it is interesting to observe that dividing the TMSE by the standard deviation
estimated by each considered model, the DCC-FIGARCH is found as the best MES
predicting model as well as for the CoVaR. Moreover, our empirical analysis results
are consistent with those presented in the existing literature by some authors, for
example Adrian and Brunnermeier (2011), Girardi and Ergun (2013).
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A Appendix - Multivariate conditional volatility models

One of the most widely used models to obtain CoVaR and MES forecasts is the
DCC-GARCH model. The estimation of this model is carried out in two steps. First
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the conditional volatilities are estimated on the basis of a univariate GARCH-type
model, then the conditional correlations are estimated by the bivariate Dynamic
Conditional Correlation (DCC) model (Engle, 2002). DCC is a parsimonious model
used to forecast high dimensional covariance matrices with clear computational ad-
vantages4. Motivated by the aim of investigating the role of long-range dependence
in volatility, not yet been considered in systemic risk framework (to the best of our
knowledge), we consider two long-memory volatility models as FIGARCH(1,d,1)
and Component-GARCH(1,1), both implemented using the DCC framework. In
order to evaluate the relative benefits of allowing for long-memory when fore-
casting systemic risk, we compare the long-memory multivariate models with
two short-memory multivariate volatility models. These are the multivariate DCC-
GARCH(1,1) and DCC-GJR(1,1) models, the most widely used models in systemic
risk measurement. Finally, to jointly capture the long-range dependence and the
leverage effect we introduce the comprehensive Asymmetric-Component-GARCH
(ACGARCH) model combined with DCC. The details of these five models are pre-
sented.

A.1 The DCC-ACGARCH(1,1) model

Engle and Lee (1999) propose a version of the CGARCH model (see section
A.4) with asymmetric shocks structure to capture the asymmetric volatility pattern,
namely leverage effect. The authors use the GJR treatment to allow shocks affect
both the volatility components asymmetrically. However, they find that the lever-
age effect is mainly temporary since the leverage term is statistically significant
for the transitory component, but not in the trend component. Moreover, Gallant
et al. (1993) find that the leverage effect is heavily damped over time. Hence, we
introduce a comprehensive model called Asymmetric-Component-GARCH (AC-
GARCH) where shocks affect only the volatility transitory component asymmetri-
cally and this specification is the most appropriate to capture important stylized facts
of financial data, in particular the leverage effect and the long-range dependence. We
have combined the leverage effect, already considered in systemic risk framework
(e.g. Girardi and Ergun, 2013; Brownlees and Engle, 2017), and the long-range de-
pendence, not yet considered in systemic risk framework, but applied successfully to
other fields by many authors (e.g. Christoffersen et al., 2008; Guoa and Neely, 2008;
Li et al., 2012). The ACGARCH(1,1) specification for the conditional variance is:
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(A.1)

4 Alternative models to DCC are reported in the survey of the literature provided by Bauwens et
al. (2006).
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where γ captures the short-run leverage effect. Similarly to the CGARCH model, qt
is the long-run component and σ2

t − qt is the short-run component. The one-step-
ahead forecast of the conditional volatility is:
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(A.2)

To implement the ACGARCH(1,1) model in the multivariate context, we use the
DCC framework to model the dynamic processes of the correlations directly, where
the covariance matrix can be decomposed into time-varying conditional standard
deviations and a correlation matrix:

ΣΣΣ si,t =DDD1/2
si,t CCCsi,tDDD

1/2
si,t =

[
σs,t 0
0 σi,t

][
1 ρsi,t

ρsi,t 1

][
σs,t 0
0 σi,t

]
whereCCCsi,t is the conditional correlation matrix, whose elements are ρsi,t , and DDD1/2

si,t is
the diagonal matrix of conditional standard deviations estimated by ACGARCH(1,1).
Engle (2002) specifies the conditional correlation matrix as follows:

CCCsi,t = diag(QQQsi,t)
−1/2 QQQsi,t diag(QQQsi,t)

−1/2

QQQsi,t =
(
1−a−b

)
Q̄QQsi +a

(
zzzsi,t−1 zzz′si,t−1

)
+b QQQsi,t−1

where QQQsi,t is the pseudo correlation matrix and Q̄QQsi is the unconditional correlation
matrix of the standardized residuals zzzsi,t = DDD−1/2

si,t εεεsi,t . The k-step-ahead prediction
of the conditional covariance matrix:

ΣΣΣ si,t+k =DDD1/2
si,t+kCCCsi,t+kDDD

1/2
si,t+k

is solved by forecasting DDD1/2
si,t+k and CCCsi,t+k separately. The predictions of the uni-

variate variances, contained in DDD1/2
si,t+k, are obtained by the ACGARCH(1,1) fore-

cast. Since CCCt is a non-linear process, according to Engle and Sheppard (2001) we
assume for simplicity that Et

[
zzzsi,t+i ηηη ′si,t+i

]
≈QQQsi,t+i for i∈ {1, . . . ,k}. Hence, the k-

step-ahead forecasts of the pseudo correlation and conditional correlation matrices
are given by:
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∑
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)
Q̄QQsi(a+b)i +(a+b)k−1QQQt+1

CCCsi,t+k = diag(QQQsi,t+k)
−1/2 QQQsi,t+k diag(QQQsi,t+k)

−1/2
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A.2 The DCC-GARCH(1, 1) model

The short-memory GARCH models (Bollerslev, 1986) are very popular in the liter-
ature for the volatility analysis of the financial returns and their application to study
these financial phenomena is almost consolidate. They model in a parsimonious way
the conditional heteroskedasticity. The GARCH(1,1) specification for the univariate
conditional variance is:

σ
2
t = ω +αε

2
t−1 +βσ

2
t−1

The k-step-ahead forecast of the conditional volatility for the GARCH(1,1) model
is:
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where σ2 is the unconditional variance. The one-step-ahead forecast is: σ2

t+1 =

ω +αε2
t +βσ2

t . In order to implement the GARCH(1,1) model in the multivariate
context, we use the DCC approach described above, with the same forecast func-
tions for QQQsi,t+k and CCCsi,t+k.

A.3 The DCC-GJR(1,1) model

GJR-GARCH (GJR) (Glosten et al., 1993) is an alternative short-memory model
that captures the leverage effect present in the financial data, allowing the condi-
tional variance to respond differently to the past negative and positive innovations.
Stock market volatility responds to stock price movements asymmetrically: bad
news (negative shocks) tends to increase investors expectation about future mar-
ket volatility more than good news (positive shocks). The GJR(1,1) specification
for the conditional variance is:
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where γ captures the leverage effect, in particular the different impact of negative
shocks on volatility than positive shocks, and I(εt−1<0) denotes the indicator func-
tion (Iεt−1<0 = 1 when εt−1 < 0 and 0 otherwise). The k-step-ahead forecast of the
conditional volatility for the GJR(1,1) model, with k > 2, is:
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where the one-step-ahead forecast is σ2
t+1 = ω +αε2

t + γε2
t I(εt<0)+βσ2

t . As with
the GARCH(1,1) model, in order to implement the GJR (1,1) model in the multi-
variate context, we use the DCC approach described above, with the same forecast
functions QQQsi,t+k and CCCsi,t+k.
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A.4 The DCC-CGARCH(1,1) model

An alternative model that captures the long-range dependence in volatility is the
Component-GARCH (CGARCH) model (Engle and Lee, 1999), where the con-
ditional volatility is additively decomposed into two components, a long-run or
permanent component qt and a short-run or transitory component σ2

t − qt . The
CGARCH(1,1) specification for the conditional variance is:
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where qt determines the unconditional variance and is interpreted as volatility trend,
and σ2

t − qt is the distance between the conditional variance and its trend. The
long-run component captures the long-run impact of an innovation (movements)
and is more persistent than the short-run component accounts for the noisier short-
run movements or the transitory effect from a variance innovation. According to
Li et al. (2012), “separating permanent and transitory risk is important in assess-
ing whether this uncertainty is driven by macroeconomic fundamentals or by mar-
ket sentiments, which could affect the investment strategies”. In addition, the long-
run component is mainly driven by shocks to economic fundamentals, whereas the
short-run component is driven by transitory shifts in financial market sentiment or
short-term position-taking (Pramor and Tamirisa, 2006; Christoffersen et al., 2008;
Sosvilla-Rivero and Morales-Zumaquero, 2012; Li et al., 2012). The k-step-ahead
forecast of the conditional volatility for the CGARCH(1,1) model is:
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As for the GJR(1,1) model, to implement CGARCH(1,1) in the multivariate con-
text, we use the DCC approach described above, with the same forecast functions
for QQQsi,t+k and CCCsi,t+k.

A.5 The DCC-FIGARCH(1,d,1) model

Let rrrsi,t = (rs
t , ri

t)
′ be the vector denoting the system-institution return pair at time

t = 1, . . . ,T , whose joint dynamics are given by the following bivariate model:

rrrsi,t = εεεsi,t , εεεsi,t =ΣΣΣ
1/2
si,t zzzsi,t (A.4)

where εεεsi,t = (εs,t ,εi,t)
′ ∼ iid(000,ΣΣΣ si,t), zzzsi,t = (zs,t ,zi,t)

′ ∼ iid(000,III2), III2 is the two-by-
two identity matrix, zs,t and zi,t are assumed to be independent, and, for empirical
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simplicity, the time-varying covariance matrix ΣΣΣ si,t is obtained by the Cholesky de-
composition:

ΣΣΣ si,t =

[
σ2

s,t σs,tσi,tρsi,t
σs,tσi,tρsi,t σ2

i,t

]
=

[
σs,t 0

σi,tρsi,t σi,t

√
1−ρ2

si,t

]

The univariate variances σ2
s,t and σ2

i,t can be separately modeled by the Frac-
tionally Integrated GARCH (FIGARCH) model proposed by Baillie et al. (1996).
This model better captures the long-run dynamic dependencies in the conditional
variance than standard GARCH. The short-run dynamics, in fact, are modeled by
GARCH parameters, while shocks to the conditional variance will die out at a slow
hyperbolic rate of decay for the influence of lagged squared innovations determined
by a fractional differencing parameter d. The FIGARCH(p,d,q) specification for
the conditional variance is:

σ
2
t =

ω

1−β (L)
+

(
1− φ(L)(1−L)d

1−β (L)

)
ε

2
t ≡

ω

1−β (L)
+λ (L)ε2

t (A.5)

where L denotes the lag or backshift operator, λ (L) ≡ λ1L+λ2L2 + . . ., 0 < d < 1
and all the roots of φ(L) and [1− β (L)] lie outside the unit circle. For d = 0, the
FIGARCH(p,d,q) model reduces to a GARCH(p,q) model with an exponential
decay of the shocks, while for d = 1, it is a IGARCH(p,q) model with an infi-
nite persistence. By a direct extension of the corresponding proof for the IGARCH
case, Baillie et al. (1996) show that the FIGARCH class of processes is strictly
stationary and ergodic for 0 = d ≤ 1. The specification of FIGARCH(1,d,1) is ob-
tained by replacing β (L) = βL and φ(L) = 1−φL. The k-step-ahead forecast of the
FIGARCH(1,d,1) conditional volatility is:

σ
2
t+k+k−1 =

ω

1−β
+

(
1− (1−φL)(1−L)d

1−βL

)
ε

2
t+k−1

In order to implement the FIGARCH(1,d,1) model in the multivariate context, we
again use the DCC approach described above, with the same forecast functions for
QQQsi,t+k and CCCsi,t+k.
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Table 1 Out-of-sample performances of DCC-GARCH-type models in forecasting CoVaR mea-
sured by TTL loss function on 91 US financial institutions, 2006−2012.

QR DCC DCC DCC DCC DCC
GARCH GJR CGARCH FIGARCH ACGARCH

Overall 1.046 0.228 0.212 0.227 0.204 0.240
Dep. 0.912 0.214 0.203 0.213 0.194 0.223
Ins. 1.156 0.238 0.220 0.239 0.211 0.251
Bro. 1.205 0.244 0.228 0.242 0.223 0.269
Oth. 0.976 0.220 0.204 0.219 0.197 0.232
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Table 2 Selected quantiles (10%, 50% and 90%) of the parameter estimates of the DCC-
ACGARCH models on 91 US financial institutions, 2000−2006.

ACGARCH DCC

ω α β ρ ϕ γ const a b

q0.1 0.001 0.000 0.563 0.995 0.000 0.000 0.412 0.006 0.960
Dep. q0.5 0.004 0.052 0.830 0.999 0.024 0.055 0.611 0.014 0.982

q0.9 0.013 0.143 0.888 1.000 0.051 0.145 0.666 0.033 0.988

q0.1 0.000 0.002 0.261 0.996 0.000 0.000 0.306 0.005 0.601
Ins. q0.5 0.002 0.073 0.798 0.999 0.008 0.034 0.455 0.014 0.981

q0.9 0.017 0.169 0.907 1.000 0.041 0.153 0.587 0.083 0.993

q0.1 0.002 0.000 0.695 0.997 0.014 0.034 0.573 0.010 0.960
Bro. q0.5 0.006 0.000 0.903 0.997 0.017 0.058 0.681 0.014 0.982

q0.9 0.014 0.028 0.943 1.000 0.038 0.115 0.725 0.032 0.986

q0.1 0.000 0.000 0.046 0.996 0.000 0.000 0.289 0.000 0.471
Oth. q0.5 0.008 0.033 0.847 1.000 0.010 0.066 0.476 0.010 0.957

q0.9 0.040 0.233 0.932 1.000 0.035 0.123 0.665 0.040 0.989
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Table 3 Out-of-sample performances of DCC-GARCH-type models in forecasting MES measured
by TMSE loss function on 91 US financial institutions, 2006−2012.

LR DCC DCC DCC DCC DCC
GARCH GJR CGARCH FIGARCH ACGARCH

Overall 26.324 21.654 21.899 21.719 21.970 22.004
Dep. 15.732 12.744 13.026 12.778 12.996 12.843
Ins. 9.053 6.581 6.675 6.538 6.966 6.528
Bro. 157.39 134.02 133.40 134.30 134.61 136.62
Oth. 11.535 9.184 10.026 9.387 9.351 9.565
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Table 4 Ranking of the CoVaR averages over the out-of-sample 2006−2012.

DCC DCC DCC DCC DCC
GARCH GJR CGARCH FIGARCH ACGARCH

Overall -3.174 -3.203 -3.125 -3.393 -3.169
1st: Bro. -3.420 -3.449 -3.353 -3.600 -3.392
2nd: Oth. -3.193 -3.219 -3.139 -3.453 -3.204
3rd: Ins. -3.150 -3.184 -3.105 -3.461 -3.159
4th: Dep. -3.121 -3.145 -3.075 -3.343 -3.093
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Table 5 Ranking of the MES averages over the out-of-sample 2006−2012.

DCC DCC DCC DCC DCC
GARCH GJR CGARCH FIGARCH ACGARCH

Overall -3.091 -3.081 -3.155 -3.060 -3.131
1st: Bro. -4.104 -4.082 -4.221 -4.124 -4.166
2nd: Dep. -3.349 -3.349 -3.406 -3.200 -3.413
3rd: Oth. -3.173 -3.187 -3.251 -3.093 -3.209
4th: Ins. -2.645 -2.615 -2.696 -2.712 -2.663
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Table 6 Comparison of CoVaR averages over different sub-samples.

DCC DCC DCC DCC DCC
Pre-crisis GARCH GJR CGARCH FIGARCH ACGARCH

Dep. -2.175 -2.171 -2.109 -2.147 -2.095
Ins. -1.907 -1.930 -1.862 -1.872 -1.859
Bro. -2.224 -2.189 -2.136 -2.188 -2.128
Oth. -1.881 -1.878 -1.834 -1.896 -1.823

Crisis

Dep. -4.166 -4.157 -4.259 -4.250 -4.008
Ins. -4.163 -4.165 -4.262 -4.269 -4.070
Bro. -4.333 -4.345 -4.443 -4.408 -4.157
Oth. -4.156 -4.151 -4.243 -4.308 -4.054

Post-crisis

Dep. -2.861 -2.910 -2.753 -3.217 -2.910
Ins. -2.985 -3.037 -2.869 -3.488 -3.059
Bro. -3.291 -3.345 -3.143 -3.581 -3.353
Oth. -3.071 -3.119 -2.945 -3.448 -3.155
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Table 7 Comparison of MES averages over different sub-samples.

DCC DCC DCC DCC DCC
Pre-crisis GARCH GJR CGARCH FIGARCH ACGARCH

Dep. -2.209 -2.155 -2.251 -2.250 -2.249
Ins. -2.023 -1.942 -2.051 -2.227 -2.013
Bro. -4.048 -4.084 -4.157 -4.156 -4.132
Oth. -2.628 -2.599 -2.675 -2.698 -2.599

Crisis

Dep. -3.800 -3.740 -3.736 -3.665 -3.878
Ins. -2.586 -2.530 -2.586 -2.563 -2.619
Bro. -4.701 -4.655 -4.747 -4.586 -4.925
Oth. -3.423 -3.363 -3.404 -3.257 -3.533

Post-crisis

Dep. -3.432 -3.476 -3.505 -3.225 -3.495
Ins. -2.838 -2.836 -2.922 -2.914 -2.857
Bro. -3.827 -3.801 -3.981 -3.890 -3.803
Oth. -3.196 -3.257 -3.328 -3.117 -3.213


