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Stimuli-responsive hydrogel matrices are inspiring manifold applications in controlled

delivery of bioactive compounds. Elastin-derived polypeptides form hydrogel matrices

that may release bioactive moieties as a function of local increase of active elastases,

as it would occur in several processes like inflammation. In view of the development

of a patch for healing wounds, recombinant elastin-based polypeptides were combined

with a proteolysis-resistant scaffold, made of electrospun poly-L-lactic acid (PLLA) fibers.

The results of this study demonstrated the compatibility of these two components. An

efficient procedure to obtain a composite material retaining the main features of each

component was established. The release of the elastin moiety was monitored by means

of a simple protocol. Our data showed that electrospun PLLA can form a composite with

fusion proteins bound to elastin-derived polypeptides. Therefore, our approach allows

designing a therapeutic agent delivery platform to realize devices capable of responding

and interacting with biological systems at the molecular level.

Keywords: elastin, electrospun matrix, composite, smart release, drug delivery

INTRODUCTION

The biomaterial field has enormously evolved in the last decades. Many different materials have
been developed and are available to realize devices that can be used for a wide variety of
applications.With the advent of bioengineering and regenerative medicine, the field of biomaterials
entered the phase of developing devices capable of actively interacting with the biological system,
rather than passively integrating within it (Hench and Polak, 2002). However, despite the huge
work done in this field, there is a constant demand for innovative solutions in order to address
many still unmet biomedical needs (Holzapfel et al., 2013).
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Among the many composite biomaterials that have been
developed and tested for medical applications, the combination
of electrospun fibers and hydrogels recently attracted the
attention of researchers. Due to their individual features,
combining the advantages of both components results in a
product with superior properties, that has a high potential
for expanding the range of applications of the final construct
(reviewed in Bosworth et al., 2013; Xu et al., 2016).

The advantages achieved by the combination of electrospun
fibers and hydrogels have been demonstrated in the field of
controlled drug delivery, where controlled release could be
obtained by exploiting the release characteristics of the two
components (Han et al., 2013; Bruggeman et al., 2017). In the
field of tissue engineering, combining the biomimetic properties,
hydrophilicity, and softness of hydrogels with the mechanical
strength of electrospun sheets, allows to mimic the structure of
tissue extracellular matrix (Gualandi et al., 2016). Other fields of
application of electrospun fibers/hydrogels composites are those
of biotechnology and biosensors (Xu et al., 2016).

Electrospun fibrous mats, made of natural or synthetic
polymers, exhibit high porosity, high surface area to volume
ratio, and good mechanical properties. Moreover, these
properties can be easily tailored by changing the fiber diameter
through proper control of the electrospinning process. For
these reasons, electrospun mats represent a valuable platform
for drug delivery and tissue engineering and regeneration
(Chen et al., 2018).

Elastin-like polypeptides are an emerging class of
biotechnologically derived biopolymers that are inspired to the
tissue structural protein elastin (MacEwan and Chilkoti, 2010;
Girotti et al., 2011). In our lab, starting from design, cloning
and expression of synthetic genes, a family of recombinant
proteins named Human Elastin-like Polypeptides (HELPs)
was produced (Bandiera, 2010). This versatile platform can
be readily customized by the fusion of bioactive domains of
interest, thus embedding the new functionality in the final
construct. A method for the preparation of hydrogel matrix
based on these HELPs was set up (Bandiera, 2011) and the
specific stimuli-induced release was demonstrated (Bandiera
et al., 2014).

To the best of our knowledge, there are only few examples of
elastin-like based composites that have been developed till now
(reviewed in Kakinoki et al., 2014; Yeo et al., 2015). Here, we
describe an approach to obtain a new composite material based
on deposition of elastin-like based on electrospun poly-L-lactic
acid (PLLA-HELP).

MATERIALS AND METHODS

HELP Biopolymers
HELP and mHELP, the latter being a construct of HELP
obtained by fusing at the C-terminal region a functional
domain (unpublished data) were produced exploiting their
inverse phase transition properties as already detailed (Bandiera,
2010). The purified products were checked by SDS-PAGE and
lyophilized.

Electrospun PLLA Scaffold Fabrication
Poly(L-lactic acid) (PLLA) (Lacea H.100-E) (Mw = 8.4 104g
mol−1, PDI = 1.7) was supplied by Mitsui Fine Chemicals.
Dichloromethane (DCM) and dimethylformamide (DMF), were
purchased by Sigma–Aldrich and were used without any
further purification. PLLA was dissolved in a mixed solvent,
DCM:DMF = 65:35 v/v, at a concentration of 13% w/v.
The polymeric solution was electrospun by means of an
electrospinning apparatus (Spinbow srl, Italy) by applying the
following processing conditions: applied voltage = 18 kV, feed
rate= 0.015mlmin−1, needle-to-collector distance= 15 cm. The
electrospun mat was produced at RT and at relative humidity of
40–50% and was kept under vacuum over P2O5 at RT overnight
in order to remove residual solvents.

Water Contact Angle (WCA) Measurements
Static WCAmeasurements were performed at RT under ambient
conditions by using an optical contact angle and surface tension
meter KSV’s CAM 100 (KSV, Espoo, Finland). Milli-Q water
was used for measurements. The water drop profile images were
collected in a time range of 0–60 s, every 1 s. Sixty seconds was
selected as the upper time limit since it was verified that, after that
period, theWCAs reached a constant value. Optical contact angle
and pendant drop surface tension software was used for image
processing. Results (WCA at 60 s) were averaged on at least five
measurements obtained at different areas of the sample.

HELP Deposition and Cross-Linking on
PLLA
Five percent (w/v) of water solution of HELP and the other
proteins tested were prepared and 5 µl of each sample were
spotted on small sheets of PLLA mat. Water was evaporated at
RT and the dried samples were stored (controls) or washed with
excess water, respectively.Washed samples were dried as well. For
cross-linking, 2 µl of microbial transglutaminase (60 mg/ml, N-
Zyme Biotec GmbH, Darmstadt, Germany) were added to 30 µl
of 5% (w/v) HELP or its fusion in 10mM Tris/HCl pH 8 (Sigma-
Aldrich, #T1503). Spots of 5 µl were deposited on PLLA mat and
the reaction was carried on for 1 h at RT or at 5◦C overnight in
a wet chamber to avoid drying. After cross-linking the samples
were washed overnight as described above and stored dry.

Evaluation of Protein Retention on PLLA
Samples of PLLA with adsorbed or cross-linked HELP were
stained for 10min in 0.5 mg/mL Amidoblack (Serva, #12310),
50% Ethanol and then rinsed twice with water for 10min. Each
spot was cut off and soaked in 200 µl of 50mM Tris/HCl pH
7.5, 1mM CaCl2, in the absence or in presence of 0.5 µg elastase
(Sigma-Aldrich, #E7885). Samples were incubated overnight at
37◦C. Supernatants were read at 620 nm by a microplate reader
(Synergy H1, Bio Tek).

Scanning Electron Microscopy (SEM)
Analysis
After cross-linking samples were rinsed with excess water. They
were frozen at −20◦C and lyophilized. Slices were cut, mounted
onto stubs using a double-sided adhesive and sputter coated
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with gold. Analysis was performed using a Leica Stereoscan 430i
Scanning Electron Microscope.

RESULTS

Our strategy to prepare a PLLA-HELP composite is schematized
in Figure 1A.

The approach used in this study is the physical combination of

two materials, through deposition of HELP-based protein onto
the surface of PLLA mat. Blending of HELP protein and PLLA
solution before electrospinning was not possible since the organic
solvents required for electrospinning PLLA were not compatible
with the protein. Moreover, only a small amount of the protein
would have been available at the surface of the fibers. The first
step of composite fabrication consisted in the evaluation of the
compatibility of these two materials, since WCA measurement
demonstrated that electrospun PLLA is a hydrophobic material
(WCA = 120◦ ± 3◦), whereas the HELP protein is soluble in
aqueous solution. Both HELP and one of its fusion products
were dissolved in water and dropped on a PLLA sheet, avoiding
the physical contact with any surface beneath it. A solution
of Bovine Serum Albumin (BSA) at the same concentration
was tested as reference. Interestingly, as shown in Figure 1B,
PLLA samples in contact with HELP-based protein solutions

immediately became wet and the drop spread over the sheet,
whereas when a drop of BSA was deposited onto the PLLA
sheet, no wetting was observed. After water evaporation, the
sample deposited on PLLA was no longer observable. To assess
the presence of HELP protein on PLLA, we stained the samples
with Amidoblack. After de-staining, the protein became evident
(Figure 1C, top left).

In parallel, a replica sample was prepared and submitted to
an overnight wash before the staining procedure. As shown in
Figure 1C (top right), almost no stain was detectable after the
overnight wash. On the contrary, when the transglutaminase
enzyme was added to the HELP protein to determine its cross-
linking (Bandiera, 2011), no difference could be detected between
the unwashed (Figure 1C, bottom left) and the overnight
washed replica (Figure 1C, bottom right). This indicated that the
enzymatic cross-linking stabilized the HELP protein on the PLLA
sheet.

We set up a method to estimate the stability of HELP
deposited on PLLA, by exploiting the susceptibility of HELP to
protease-dependent elastolysis (Corich et al., 2017). Figure 1C
shows that after the wash, cross-linked HELP-PLLA samples
retained up to 96% of the HELP protein after the wash step,
whereas <20% of it remained in the non-cross-linked samples.
This suggested that cross-linking caused the formation of a stable
HELP-PLLA composite.

FIGURE 1 | HELP-PLLA composite design. (A) Schematic description of the experimental approach; (B) Representative images of different protein aqueous solutions

0.5min after deposition on PLLA matrix. Bar is 5mm; (C) Stabilization effect of the HELP cross-linking process (CRLK) compared to simple deposition of the protein

(free) on PLLA matrix: representative images of unwashed and washed samples, Amidoblack staining. Bar is 5mm. Evaluation of sample stability after washing is

reported in the histogram. Each value represented the mean ± SD, n = 3. Differences between free and cross-linked samples after extensive washing were assessed

by one-way ANOVA, ***p < 0.001 compared to unwashed samples.
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Since this work was undertaken with the aim of realizing smart
devices endowed with environmentally-controlled functionality,
it was of great interest to assess if fusion-modified HELP could
be stabilized in the PLLAmatrix as well. For this reason, mHELP,
a fusion-modified HELP that we recently obtained by cloning a
functional binding domain to the HELP backbone (unpublished
results), was employed. The same procedure used for HELP-
PLLA composite was applied to mHELP-PLLA samples and the
analyses were performed giving results similar to those shown in
Figure 1C (not shown).

To obtain further information on the morphology of the
stabilized mHELP-PLLA samples, SEM analysis was performed.
Figure 2A shows SEM analysis of PLLA electrospun fibers.
Cross-linking the composite, even after extensive overnight
washing, changed the morphology of PLLA, which appeared
as coated by a continuous, amorphous layer, filling the pores
among the fibers (Figure 2C). In the absence of cross-linking,
tiny deposits of protein were observed on PLLA only after a quick
wash (Figure 2B).

These results indicate that both HELP macromolecule and its
fusion modifications could be employed for preparation of new
composites endowed with functional activity. Analysis of activity
retention is currently ongoing.

DISCUSSION

HELP matrix has been shown to possess stimuli-responsive
properties, undergoing selective degradation in the presence of
elastolytic activity. Exploiting this feature represents an attractive
option to realize smart systems that can be employed for
therapeutic delivery, tissue engineering, and biosensing (Corich
et al., 2017).

In this view, we explored the possibility of integrating the
HELP hydrogel matrix with an electrospun PLLA support
and our approach is schematized in Figure 1A. Besides
being endowed with adequate mechanical tensile strength,
electrospun PLLA has a high degree of biocompatibility and has
been extensively employed in the fabrication of bioresorbable
scaffolds for tissue engineering applications (Chen et al., 2018).
Electrospun PLLA is known to be hydrophobic. To increase
its hydrophilicity and wettability, surface modifications with
functional groups are needed. These enable conjugation or
chemical interactions with hydrogels (Dolci et al., 2014; Gualandi
et al., 2016). In our approach, the first step of composite
fabrication consisted in the evaluation of the compatibility and
in the exploration of the conditions for a stable integration
of the HELP-based hydrogel in the PLLA electrospun mat.
Interestingly, we found that no treatment was needed to
enhance PLLA wettability for HELP deposition. The presence
of the protein in solution allowed the instantaneous PLLA
fiber permeation by the solution (Figure 1B). The finding
that physical adsorption of HELP-based proteins onto PLLA
mat increased the wetting properties of electrospun PLLA
surface is in agreement with previous studies on substrates
modified with other elastin-based molecules (Jordan et al.,
2007; Srokowski and Woodhouse, 2013) and it is likely related

to the relatively high hydropathy index of the HELP protein
(Bandiera et al., 2010). Notably, the cross-linking process was
the key step to stabilize the HELP moiety on the PLLA mat
(Figure 1C).

Keeping in mind that the HELP macromolecule can be
tailored by addition of a bioactive domain, in principle, these
conditions could be extended to any HELP derivative, obtained
by C-terminal domain fusion. Thus, the resulting composite will
be endowed with a new, specific functionality. Indeed, in this
work we demonstrated that similar result could be obtained

FIGURE 2 | Representative SEM images of PLLA mat (A), mHELP deposited

on the PLLA matrix in the absence of cross-linking (B) and mHELP undergone

cross-linking after deposition on PLLA matrix (C). Bar is 10µm.
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using both a HELP protein and mHELP, a fusion-modified
HELP, in which the fusion domain represents about one-fifth
of the whole macromolecule. SEM analysis was used to achieve
the structural evidence of the integration of both materials
in a new composite obtained after the cross-linking process
(Figure 2C).

This achievement represents the second step of our strategy,
i.e., the realization of a composite with a tailored HELP fusion,
endowed with a specific functionality (Figure 1A).

A third step can be foreseen, consisting in the stimuli-
induced release of the active domain. Future work will be
dedicated to fully characterize the new material that opens the
way for the realization of stimuli-responsive biomedical devices
for the delivery of therapeutic and bioactive substances and
for regenerative medicine, as well as for the development of
biosensors.

CONCLUSION

In this work we explored the opportunity to realize a composite
material made of HELP-based hydrogels and PLLA electrospun
fibers. The results clearly show that the fabrication of a composite
is feasible and that the features of the two materials can be
successfully integrated. This strategy is useful to combine the
individual performances of the two constituents and future
study will clarify the properties of the new hybrid material. The
stimuli-responsive nature of the HELP moiety has been already

proven and described (Bandiera et al., 2014; Corich et al., 2017)
and it represents an advantage that can be conferred to any
new material derived from it. Moreover, HELP-based proteins
represent a platform that is readily customizable by molecular
fusion of exogenous domains, to confer specific functionality to
the final product.

We believe that this strategy will contribute to bypass
shortcoming and to improve the performance of the single
components, opening the way to the realization of devices
potentially able to release bioactive compounds upon specific
stimuli.
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