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Multiagent Newton-Raphson Optimization over lossy networks
Nicoletta Bof Ruggero Carli Giuseppe Notarstefano Luca Schenato Damiano Varagnolo

Abstract—In this work we study the problem of unconstrained convex-
optimization in a fully distributed multi-agent setting, which includes
asynchronous computation and lossy communication. In particular, we
extend a recently proposed algorithm named Newton-Raphson Consensus
by integrating it with a broadcast-based average consensus algorithm
which is robust to packet losses. We show via the separation of time
scales principle that under mild conditions (i.e., persistency of the agents
activation and bounded consecutive communication failures) the proposed
algorithm is provably locally exponentially stable with respect to the
optimal global solution. Finally, we complement the theoretical analysis
with numerical simulations and comparisons based on real datasets.

I. INTRODUCTION

Recently, we have been witnessing a surge of interest in multi-
agent distributed optimization in peer-to-peer networks. The main
reason is the advent of Internet-of-Things and Smart Cyber-physical
Systems, where a large multitude of electronic devices are capable of
sensing, communicating, and of autonomous decision making through
cooperation [1]. To cope with real-world requirements, distributed
convex algorithms need to be designed to work under asynchronous
and directed communication with possibly random delay. Moreover,
in peer-to-peer networks where communication is wireless, packet
loss often becomes one of the major bottlenecks.

A large body of literature has addressed the problem of distributed
optimization subject to asynchronous communication and updates. A
popular class of algorithms that are able to cope with asynchronous
updates and time-varying graphs is the one of Distributed Subgradient
Methods (DSMs). They are simple to implement, can cope with non-
differentiable convex cost functions, and require only the computation
of local (sub)-gradients. However, these algorithms exhibit sub-linear
converge rates even if the cost functions are smooth [2], [3], [4] and
do not take into account packet loss explicitly.

Another popular class of distributed optimization algorithms is
based on dual decomposition schemes. In this case the related
literature is very large and we refer to [5] for a comprehensive
tutorial. Among these algorithms, the Alternating Direction Method
of Multipliers (ADMM) has attracted the attention of the scientific
community for its simple distributed implementation and good con-
vergence speed (see for example the survey [6]). Most of the literature
on ADMM is based on synchronous implementation with reliable
communication, however some recent works consider asynchronous
(but reliable) communication [7], [8], [9], and asynchronous scenarios
with edge-based or node-based activation schemes [10]. Some recent
works have moreover addressed the problem of random delay in the
communication/updates rounds in ADMM schemes [11], [12], [9].
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However these strategies are restricted to networks with server-client
communication topologies and do not explicitly address packet losses.

A third class of optimization algorithms, usually referred to as
Newton-based methods (NBMs), consists of strategies that exploit
second-order derivatives, i.e., the Hessians of the cost functions for
computing descent directions. These methods are however limited to
synchronous reliable communication [13], [14] or reliable symmetric
gossip communication schemes [15]. The works [15] and [14] have
introduced for the first time the idea of tracking the gradient of the
whole cost function as a mean to replace the diminishing stepsize
with a constant one. This idea has been reconsidered with different
averaging schemes and formalized in [16] to handle nonconvex
optimization (combined with a successive convex approximation
approach) and in [17] and [18] to show linear convergence with
constant stepsize.

All the aforementioned literature has not directly addressed situa-
tions where the communications are unreliable and lossy. Differently
from what one might believe, packet loss is not equivalent to
asynchronous communication nor to random delay. In fact in the
literature considering asynchronous communication there is the tacit
assumption that the transmitter knows which neighbours successfully
received the transmitted packet. In the literature considering random
delay all variables are stored at a single location (server) and only
computation is distributed (clients), therefore memory consistency
is not a concern, and instead is the case in peer-to-peer networks.
The main contribution of this work is to propose a set of distributed
optimization algorithms that are robust to packet losses for general
asynchronous peer-to-peer networks and that are guaranteed to have
(local) exponential convergence.

More specifically, we robustify the Newton-Raphson approach
initially proposed in [14] by introducing a new consensus algorithm
that is an ad-hoc combination of two known consensus schemes:
i) the ratio or push-sum consensus, useful to compute averages
in networks with directed communication graphs (i.e., networks
using broadcast protocols [19]); ii) the robust consensus algorithm,
which allows for a robust computation of arithmetic averages over
networks with lossy communication [20]. The new scheme is the first
distributed optimization algorithm able to deal with simultaneously
asynchronous and lossy communication protocols. The proof of its
convergence is based on time-scale separation and Lyapunov theories,
and extends the results in [21], where the convergence was proved
only for quadratic cost functions. We complement the theoretical
results with numerical simulations based on real datasets under
lossy, broadcast communication. We also numerically compared our
algorithms against two algorithms recently proposed in [22], [17]
under the special case of asynchronous lossless communication,
showing the better performance of our proposed Newton-Raphson
approach.

The paper is organized as follows: Section II formulates our prob-
lem and working assumptions. Section III presents the building blocks
of the scheme proposed in this manuscript. Section IV then introduces
the main distributed optimization algorithm and gives some intuitions
on the convergence properties of the scheme, summarized then in
Section V. Finally, Section VI collects some numerical experiments
corroborating the theoretical results, while Section VII draws some
concluding remarks and future research directions.
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II. PROBLEM FORMULATION AND ASSUMPTIONS

We consider the separable optimization problem

x∗ := argmin
x

f(x) = argmin
x

N∑
i=1

fi(x), (1)

where x ∈ Rn and where the local costs fi : Rn 7→ R satisfy:

Assumption II.1 (Cost smoothness) Each fi is known only to node
i, is C3, and is strongly convex, i.e., its Hessian is bounded from
below, ∇2fi(x) > cIn for all x, with c > 0 some positive scalar1.

The communication among nodes is modeled via a communication
graph that satisfies the following:

Assumption II.2 (Network connectivity) The communication
graph among the nodes is fixed, directed and strongly connected,
i.e., for each pair of nodes there is at least one directed path
connecting them.

More formally, the communication graph is represented as G =
(V, E) with nodes V = {1, . . . , N} and edges E ⊆ V × V so
that (i, j) ∈ E iff node j can directly receive information from
node i. With N out

i we denote the set of out-neighbors of node
i, i.e., N out

i := {j ∈ V | (i, j) ∈ E , i 6= j} is the set of nodes
receiving messages from i. Similarly, with N in

i we denote the set
of in-neighbors of i, i.e., N in

i := {j ∈ V | (j, i) ∈ E i 6= j}. Their
cardinality is indicated by |N out

i | and |N in
i | respectively.

Notice that in some distributed systems, as in Wireless Sensor
Networks, the communication graph is often undirected, in the sense
that a node can transmit to any node from which it can receive.
However, communication is typically only half-duplex, i.e., two nodes
cannot communicate simultaneously, so that protocols with multiple
communication rounds and reliable acknowledge (ACK) mechanisms
are needed for bidirectional communication. This, in turn, requires
pairwise synchronization and results in substantial delays. As so,
algorithms that are suitable for broadcast-based (directed) commu-
nication without ACK, such as UDP, are extremely valuable also for
undirected graphs.

As for the concept of time, we assume that the local variables
at each node are updated at discrete time instants (e.g., based on
local and possibly non-synchronized clocks, or based on events like
receiving a packet). Thus, from a global perspective, we collect and
order all time instants when at least one variable in one node is
updated and refer to it as the sequence {tk}∞k=1. With a little abuse
of notation we will then write x(k) = x(tk) and we will study the
time evolution of the nodes variables as a discrete-time system.

Our objective is to design an algorithm solving (1) with the fol-
lowing features: F1): Asymptotic global estimation: each agent wants
to obtain an estimate of the global minimizer that asymptotically
converges to the optimal solution x∗; F2): Peer-to-peer (leaderless):
each node has limited computational and memory resources and is
allowed to communicate directly only with its neighbors; F3): Dis-
tributed: the update-rule of the local variables at each node depends
only on the variables stored by the local node and by its neighbors;
F4): Asynchronous: none, one or multiple nodes can communicate
or update their variables at any given time; F5): Lossy broadcast
communication without ACK: communication can be broadcast-based
with no ACK mechanism. To the best of authors’ knowledge, none
of the previously cited works possesses all the previous features
simultaneously.

1With a little abuse of notation we use the symbols ∇f(·) and ∇2f(·) to
indicate the gradient and Hessian of the cost function f(·), respectively. Also,
given two matrices A,B ∈ Rn×n, the notation A > B means that A − B
is a positive definite matrix.

III. BUILDING BLOCKS

The here proposed algorithm consists of three different building
blocks: i) Newton-Raphson Consensus, proposed in [14] to solve
problem (1); ii) the push-sum algorithm, initially proposed in [19]
as an asynchronous average consensus protocol; and iii) the robust
ratio consensus algorithm, initially proposed in [20] as a robust
average consensus protocol. While possessing the first three features
mentioned above (i.e., F1-F3), the Newton-Raphson Consensus is
nonetheless limited since it assumes synchronous and reliable com-
munications. The two adopted consensus schemes (ratio consensus
and its robust version) are nonetheless limited since assume respec-
tively reliable communications and synchronous updates. The major
contribution of this work is to suitably modify and integrate the three
schemes above to design a distributed optimization algorithm that
solves problem (1) and that exhibits all the features F1-F5 above.
The main challenge in doing this is that the interaction between these
algorithms might lead to instability unless some suitable assumptions
are considered and used to establish opportune convergence proper-
ties. The key mathematical machinery that will be used to this means
is Lyapunov theory and separation of time-scales.

Before providing the description of the proposed overall optimiza-
tion scheme, we offer a brief description of its three aforementioned
building blocks.

A. Newton-Raphson Consensus

Newton-Raphson Consensus [14] is based on the observation that
the standard Newton-Raphson update in the standard centralized
scenario with a single agent can be written as

x+ = x− ε(∇2f(x))−1∇f(x)
= (1− ε)x+ ε

(
∇2f(x)

)−1(∇2f(x)x−∇f(x)
)

= (1−ε)x+ε
(∑
i

∇2fi(x)︸ ︷︷ ︸
=:h(x)

)−1(∑
i

(∇2fi(x)x−∇fi(x))︸ ︷︷ ︸
=:g(x)

)
,

where we used the simplified notation x+ to indicate x(k + 1) and
x to indicate x(k). This system is exponentially stable as long as
the parameter ε > 0, which acts as a stepsize, is chosen in a proper
way [14]. If we now assume that all agents can have a different
value of xi and we mimic the previous algorithm, we get the N
local updates:

x+i =(1−ε)xi+ε
(∑
j

∇2fj(xj)︸ ︷︷ ︸
=:hj(xj)︸ ︷︷ ︸

=:h(x1,...,xN )

)−1(∑
j

(∇2fj(xj)xj−∇fj(xj))︸ ︷︷ ︸
=:gj(xj)︸ ︷︷ ︸

=:g(x1,...,xN )

)
.

(2)
The dynamics of the N local systems are identical and exponentially
stable; therefore, since they are all driven by the same forcing term
κ(x1, . . . , xn) = (h(x1, . . . , xN ))−1g(x1, . . . , xN ), intuitively we
expect that

xi − xj → 0, ∀i, j ,

which implies that all local variables will be identical. If this is the
case, then the dynamics of each local system will eventually become
the dynamics of a standard centralized Newton-Raphson algorithm.
This algorithm, however, requires each agent to be able to instanta-
neously compute the two sums h, g, which is obviously not possible
in a distributed computation set-up. The original paper [14] extends
the standard Newton-Raphson algorithm into a distributed scenario
via the use of synchronous lossless average consensus protocols that
compute these sums asymptotically, while [15] extends it to the case
of asynchronous gossip-based lossless average consensus strategies.
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B. Push-sum Consensus

The Newton-Raphson Consensus scheme described in Sec-
tion III-A requires each node to compute the two sums yi = g and
zi = h at least asymptotically in order to apply a Newton-Raphson
descent. In fact, since the ratio of the two quantities is needed, each
agent can asymptotically converge to a scaled version of the two.
That is, assuming each variable xi, i ∈ V , to be fixed, we require

yi → ηig(x1, . . . , xN ) = ηi
∑
j

gj(xj)

zi → ηih(x1, . . . , xN ) = ηi
∑
j

hj(xj),

where η1, . . . , ηN are possibly time-dependent non-zero scalars. Here
the right arrow means that the difference between left and right hand-
sides goes to zero as the iteration counter goes to infinity. Having
identified our aim, we first describe the push-sum algorithm, which is
able to solve the given problem in an asynchronous communication
scenario. Then, we describe the robust ratio consensus which is
able to solve the problem in a scenario where the communication
is unreliable but the protocol is synchronous. One of the aims of this
work will be the merging of these two schemes to obtain a robust
and asynchronous consensus algorithm.

Under synchronous communication, the local updates of the push-
sum or ratio consensus introduced in [19] are, for each i ∈ V ,

y+i =
1

|N out
i |+ 1

yi +
∑
j∈N in

i

1

|N out
j |+ 1

yj (3)

z+i =
1

|N out
i |+ 1

zi +
∑
j∈N in

i

1

|N out
j |+ 1

zj , (4)

paired with the initialization yi(0) = gi(xi), zi(0) = hi(xi).
Assuming for notation simplicity a scalar optimization problem, the
previous update can be written as

y+ = Py

z+ = Pz,

where y = [y1 · · · yN ]T , z = [y1 · · · zN ]T . In this way the matrix
P results to be column-stochastic and its induced graph GP (i.e.,
(i, j) ∈ GP if [P ]ji 6= 0) coincides with the original communication
graph (i.e., GP = G). Since we assume G to be strongly connected,
this guarantees that

yi → ηi
∑
i yi(0) = ηi

∑
i gi(xi) = ηig(x1, . . . , xN )

zi → ηi
∑
i zi(0) = ηi

∑
i hi(xi) = ηih(x1, . . . , xN ),

where η = [η1 · · · ηN ]T is the right eigenvector of P relative to the
unique unitary eigenvalue, i.e., Pη = η and ηi > 0, ∀i.

The ratio consensus described above can then be extended to
asynchronous implementations (as proposed in [19]). Let at any time
k only one node i activate, update its variables, and broadcast them
to its out-neighbors, and then, consistently, let the generic receiving
node j update its local variables. The update rules for yi and yj
therefore become

y+i =
1

|N out
i |+ 1

yi (5)

y+j = yj +
1

|N out
i |+ 1

yi = yj + y+i ∀j ∈ N out
i , (6)

(the rules for zi and zj being equal in structure). In this scenario,
the global dynamics can be described by a time-varying consensus
matrix that depends on the specific node that is activated, i.e., P (k) ∈
{P1, . . . , PN}, where the matrices Pi are still column-stochastic. As
shown via weak ergodic theory considerations in [19], if the activation

of the nodes is randomized and i.i.d. then the local variables converge
to

yi → ηi(k)
∑
i yi(0) = ηi(k)

∑
i gi(xi) = ηi(k)g(x1, . . . , xN )

zi → ηi(k)
∑
i zi(0) = ηi(k)

∑
i hi(xi) = ηi(k)h(x1, . . . , xN ),

(7)
where ηi(k) > 0 is time-varying and depends on the activation
sequence of the nodes.

C. Robust ratio consensus

The synchronous ratio-consensus strategy defined by iterations (3)
and (4) in Section (III-B) loses its convergence properties in case
of lossy communications. A naı̈ve attempt to solve this problem is
then to use a buffer such that when i does not receive a message
from j then i updates its local variables by using the latest values
that it has received from j. Focusing only on (3) to avoid repetitions,
mathematically this corresponds to add an additional local variable
y
(j)
i representing the latest yj received by i from j, and to transform

the update rule (3) into

y
(j)+
i =

{
yj if yj is received
y
(i)
j otherwise

∀i ∈ V, ∀j ∈ N in
i

y+i =
1

|N out
i |+ 1

yi +
∑
j∈N in

i

1

|N out
j |+ 1

y
(j)
i , ∀i ∈ V.

However this solution does not preserve the total mass of the variables
yi during the progress of the algorithm, i.e.,

∑
i yi(k) 6=

∑
i yi(0),

differently from the original lossless ratio consensus. This eventually
leads the average consensus algorithm not to converge to the desired
value.

To overcome this issue, it is possible to add some additional “mass
counter” variables σi,y, ρ

(j)
i,y that guarantee the preservation of the

masses even in the presence of packet losses [20]. More specifically,
in this way the synchronous update (3) transforms into

σ+
i,y = σi,y + yi, ∀i ∈ V (8)

ρ
(j)+
i,y =

{
σj,y If σj,y is received
ρ
(j)
i,y otherwise

∀j ∈ N in
i (9)

y+i =
1

|N out
i |+ 1

yi+
∑
j∈N in

i

1

|N out
j |+ 1

(ρ
(j)+
i,y −ρ

(j)
i,y), (10)

where the “mass counter” variables are initialized to zero, i.e.,
σi,y(0) = ρ

(j)
i,y(0) = 0 for every i and j.

Observe that each node i has two types of counters: σi,y(k) to
keep track of the total y-mass sent to its neighbors up to iteration k,
and a ρ(j)i,y(k) for each in-neighbor j ∈ N in

i to take into account the
total y-mass received from j up to iteration k. If during iteration k
node i receives information from node j, the information related to
node j used in the update of the variable yi is ν(j)i,y (k) = σj,y−ρ(j)i,y .
The fictitious variable ν(j)i,y (k) corresponds to a “virtual mass” stored
on edge (j, i) ∈ E . Under reliable transmission this virtual mass is
zero. If packet losses occur, instead, then this variable accumulates
the additional mass that node j wants to transfer to node i, so
that therefore this mass is not lost. As so, the total mass stored on
the nodes and the edges is preserved, regardless of the packet loss
sequence. Thus, for each time instant k,

∑
i

yi(k) + ∑
j∈N in

i

ν
(j)
i,y (k)

 =
∑
i

yi(0). (11)

Let y and νy then be the vectors collecting respectively the
variables yi, i ∈ V , and ν(j)i,y , i ∈ V and j ∈ N in

i . Accordingly, let
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ya be the augmented variable defined as ya =
[
yT νTy

]T
. Similarly,

let za =
[
zT νTz

]T
. It can be shown that

y+
a =M(k)ya, z+

a =M(k)za,

where M(k) is an augmented column-stochastic matrix, and that,
from weak ergodicity theory, the local variables yi and zi converge
asymptotically as in (7) [20]. As it will be clear in the next sections,
the matrix M(k) will be a building block for the design and analysis
of the here proposed distributed optimization algorithm.

IV. THE ROBUST ASYNCHRONOUS NEWTON-RAPHSON

CONSENSUS (RA-NRC)

This section merges the three building blocks Newton-Raphson
Consensus, push-sum consensus and robust ratio consensus into one
algorithm, called robust asynchronous Newton-Raphson Consensus
(ra-NRC), that solves problem (1) and exhibits all the features listed
in Section II. The algorithm can be organized in a block scheme as
in Figure 1.

Newton-Raphson
x1

Newton-Raphson
xN

Robust Asynchronous
Ratio Consensus

σi,y, ρ
(j)
i,y , σi,z, ρ

(j)
i,z

local computation

local cooperation

g1, h1

gN , hN

y1, z1

yN , zN

Fig. 1. Graphical representation of the robust asynchronous Newton-Raphson
Consensus (ra-NRC).

We propose a “meta distributed algorithm” which can result in
different distributed algorithms depending on the (possibly asyn-
chronous and packet-lossy) communication protocol that is desired to
be implemented in the network. The meta algorithm consists of four
main blocks of code implemented by each node i ∈ V in the network:
Initialization (at startup), Data Transmission, Data Reception and
Estimate Update.

Except for the first block, which is executed only once at
startup, the blocks can be executed asynchronously and with
possibly different execution rates. The scheduling of these three
blocks, for each agent i, is determined by three binary variables
flagtransmission,i, flagreception,i, flagupdate,i whose evolutions are
determined by the communication protocol. Each code block is
assumed to be executed sequentially and atomically, i.e., the local
variables and flags cannot be changed by any other process. For
example, if a node is executing Estimate Update and a new packet is
incoming, this packet is either dropped or placed in a buffer until
Estimate Update is not completed. Thus, a distributed algorithm
will be simply the combination of the given meta scheme with a
communication protocol defining how the flags are activated. For
example, in an event-triggered communication protocol the reception
of a packet may sequentially trigger (if no other block is being
executed) the Data Reception block, which then triggers the Estimate
Update block, and that finally triggers the Data Transmission block.

In the following we assume that when an agent is idle, it is always
ready to receive a new packet and when a packet is received by the
i-th node then flagreception,i is set to one.

One of the strengths of the proposed algorithm is that it is
independent of the specific communication protocol as long as it
satisfies some mild assumptions in terms of minimum scheduling rate
of each block and maximum consecutive packet losses, which will
be formally stated in the next section. We are, then, ready to provide
a pseudo-code description of ra-NRC as in Algorithm 1. Notice that
the local variables in the algorithm mimic the variable names and
purpose of the ones defined in the previous section.

Algorithm 1 robust asynchronous Newton-Raphson Consensus
(ra-NRC) for node i
Require: xo, ε, c

Initialization (atomic)
1: xi ← xo

2: yi ← 0, gi ← 0, goldi ← 0
3: zi ← In, hi ← In, holdi ← In
4: σi,y ← 0, σi,z ← 0

5: ρ(j)i,y ← 0, ρ
(j)
i,z ← 0, ∀j ∈ N in

i

6: flagreception,i ← 0, flagupdate,i ← 0
7: flagtransmission,i ← 1

Data Transmission (atomic)
8: if flagtransmission,i = 1 then
9: transmitter node ID← i

10: yi ← 1
|N out

i |+1
yi

11: zi ← 1
|N out

i |+1
zi

12: σi,y ← σi,y + yi
13: σi,z ← σi,z + zi
14: Broadcast: transmitter node ID, σi,y, σi,z
15: flagtransmission,i ← 0
16: end if

Data Reception (atomic)
17: if flagreception,i = 1 then
18: j ← transmitter node ID, (j ∈ N in

i )

19: yi ← yi + σj,y − ρ(j)i,y
20: zi ← zi + σj,z − ρ(j)i,z
21: ρ

(j)
i,y ← σj,y

22: ρ
(j)
i,z ← σj,z

23: flagreception,i ← 0
24: flagupdate,i ← 1 (optional)
25: end if

Estimate Update (atomic)
26: if flagupdate,i = 1 then
27: xi ← (1− ε)xi + εzi

−1yi
28: gold

i ← gi
29: hold

i ← hi
30: hi ← ∇2fi(xi)
31: gi ← hixi −∇fi(xi)
32: yi ← yi + gi − gold

i

33: zi ← zi + hi − hold
i

34: flagupdate,i ← 0
35: flagtransmission,i ← 1 (optional)
36: end if

We now provide a detailed explanation of the pseudo-code.
The first block Initialization (lines 1-7) is a one-time operation

preformed by each node at the beginning of the algorithm. The only
free parameter to be set is the initial estimate xo for the global
optimization, while all the other variables are set to zero or to identity
matrices with proper dimensions.
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The blocks Data Transmission (lines 8-16) and Data Recep-
tion (lines 17-25) implement a new Robust Asynchronous Ratio
Consensus (see the bottom block in Figure 1) that merges the
benefits of the push-sum algorithm (and its asynchronous nature)
with the robust ratio consensus (and its resilience to packet losses).
Moreover, our proposed Robust Asynchronous Ratio Consensus has
the advantage to be fully parallel, in the sense that multiple nodes can
transmit at the same time, since any potential collision will result in a
packet loss already handled by the algorithm. Specifically, the update
of variables yi, zi at the time of transmission (line 10-11) are the
same as in the push-sum consensus given by (5). The update for σi,y
in the algorithm (line 12) is identical to (8), however the variable σi,y
in our algorithm is based on the value of yi that has been updated
above (line 10). Therefore the various variables σi,y’s in Algorithm 1
are scaled by a factor 1

|N out
i |+1

as compared to those in (8). Since the

variables ρ(i)j,y will be just (possibly delayed) copies of the variable
σi,y (line 21), also these variables are scaled by a factor 1

|N out
i |+1

as
compared to those appearing in (9). Similar arguments apply for the
variables related to σi,z , ρ(i)j,z . Once the update of the variables has
been completed, the transmitting node broadcasts only the variables
σi,y and σi,z plus its ID to its neighbors. After transmitting the node
returns then to an idle-mode (line 15). If a neighboring node i is in
the receiving mode and actually receives a message (line 17), then
it extracts the transmitter node ID j and the corresponding variables
σj,y , σi,z (line 18). The variable yi is then updated similarly to (6),
where y+i is replaced by the term σj,y − ρ

(j)
i,y , which is the same

as the last term appearing in (10)2. The local variable ρ(j)i,y is then
updated (line 21) similarly to (9) in the robust ratio consensus.

The last block, i.e., Estimate Update, is responsible for implement-
ing a local Newton-Raphson step. The update of the local estimate
xi of the global optimizer, available at each node i, is performed via
the Newton-Raphson Consensus described in the previous section. In
practice, the roles of yi and zi are those of (scaled) local approx-
imations of the global functions g(x1, . . . , xN ) and h(x1, . . . , xN )
defined above. As so, mimicking (2), the proposed algorithm uses
these variables to implement an approximated Newton-Raphson (line
27), where the variable ε corresponds to the stepsize. Since the
local variables xi are continuously updated, also the global functions
g(x1, . . . , xN ) =

∑
i gi(xi) and h(x1, . . . , xN ) =

∑
i hi(xi) need

to be updated accordingly. This cannot be done instantaneously due
to the networked nature of the framework and has to be achieved
through the asynchronous robust ratio consensus (see Figure 1). In
order to be able to track the continuously changing signals gi and
hi, each node has to compute these signals before and after updating
the xi (gold

i and hold
i in lines (28-29), plus gi and hi lines (30-31),

respectively) and then update the “consensus” variables yi and zi
in order to track the current sums g(x1, . . . , xN ) and h(x1, . . . , xN )
(lines 32-33). In fact, this operation guarantees that, similarly to (11),
the following invariants are preserved:∑

i

(yi(k) +
∑
j∈N in

i

(σj,y(k)− ρ(j)i,y(k))) =
∑
i

gi(k), (12)

∑
i

(zi(k) +
∑
j∈N in

i

(σj,z(k)− ρ(j)i,z (k))) =
∑
i

hi(k), (13)

where, with a slight abuse of notation, with gi(k) and hi(k) we
denote gi(xi(k)) and hi(xi(k)) respectively. Intuitively he algorithm
will converge if the local estimates xi change more slowly than the
rate at which the asynchronous robust ratio consensus converges.

2Note that since the packet is received, ρ(j)+i,y = σj,y .

This separation of time scales can then be achieved by choosing
a sufficiently small stepsize ε, so that we can expect that

yi(k) → ηi(k)
∑
i

gi(k), (14)

zi(k) → ηi(k)
∑
i

hi(k). (15)

A formal characterization of the ra-NRC algorithm and the neces-
sary conditions in terms of node activation and packet loss frequen-
cies, when a particular communication protocol is adopted, are given
in the next section.

Remark IV.1 The robust asynchronous Newton-Raphson Consensus
has the demanding requirements that full matrices σi,z need to be
transmitted and inverted, which could be rather demanding if the
feature space dimension n is large. Similarly to what has been pro-
posed in [14], it is possible to modify the proposed algorithm to use
Jacobi or Gradient descents which have reduced communication and
computational requirements. More specifically, the only modification
needed is to substitute line (37) with the following ones:

hi ← diag(∇2fi(xi)), Jacobi Descent Consensus

hi ← In, Gradient Descent Consensus,

where the operator diag(A) returns a diagonal matrix whose diagonal
elements coincide with the diagonal elements of A. As so, for the
Jacobi Descent Consensus it is necessary to invert n scalars and
to transmit only the n diagonal elements, while for the Gradient
Descent consensus no transmission is required as long as the Hessian
is concerned. Of course, the price to pay with these choices is a likely
slower convergence rate. Note that in the Gradient Descent consensus
the cost functions are required to be only C2.

Remark IV.2 The results presented in this work are concerned with
the local stability and guarantee that zi(k) > cIn for all times k.
However, we have observed that, in order to increase the basin of
attraction and the robustness of the algorithm, it is suitable to force
zi(k) ≥ cIn. A simple solution is to replace line (27) with

xi ← (1− ε)xi + ε[zi]
−1
c yi,

where the operator [·]c is defined as

[z]c :=

{
z if z ≥ cIn
cIn otherwise,

where z ∈ Rn×n is a positive semidefinite matrix, and In is the
identity matrix of dimension n. This does not impair the local stability
analysis provided below since close to the equilibrium point we have
[zi(k)]

−1
c = zi(k)

−1.

V. THEORETICAL ANALYSIS OF THE RA-NRC

In this Section, in order to carry out the convergence analysis
of the algorithm itself, we introduce an asynchronous and lossy
communication protocol that defines the evolution of the variables
defined in Algorithm 1. In particular, we focus our analysis on
an asymmetric broadcast communication protocol subject to packet
losses, which represents a widely used communication protocol in
wireless sensor networks applications. Specifically, let t0, t1, t2, . . .
be an ordered sequence of time instants, i.e., t0 < t1 < t2 < . . ..
We assume that at each time instant one node, say i, is activated.
Then, node i performs in order the operations in the Estimate Update
block and in the Data Transmission block, broadcasting to all its
out-neighbors in G the updated variables σi,y, σi,z . The transmitted
packet might be received or not by j ∈ N out

i , depending whether
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the communication link (i, j) is reliable or not at the time of
transmission. If (i, j) is reliable, then node j performs, in order,
the operations in the Data Reception and Estimate Update blocks.
Since there is no risk of confusion, in the following we denote tk
only by the index k, referring to it as the k-th iteration of the ra-NRC
algorithm.

An algorithmic description of the asymmetric broadcast commu-
nication protocol with packet losses (for the ra-NRC Algorithm 1)
is provided in Algorithm 2. Moreover, in the following, without loss
of generality, we assume that the node performing the transmission
step during the k-th iteration is node i.

Algorithm 2 Asymmetric broadcast for ra-NRC algorithm

Node i is activated
1: flagupdate,i ← 1 (line 26) : Estimate Update
2: flagtransmission,i ← 1 (line 8) : Data transmission

For j ∈ N out
i , if (i, j) is reliable

3: flagreception,j ← 1 (line 17) : Data reception
4: flagupdate,j ← 1 (line 26) : Estimate Update

Next, for the sake of clarity, we provide a sequential description
of the ra-NRC algorithm when the communication protocol in Algo-
rithm 2 is adopted. In order to keep the notation lighter, from now
on, we restrict to the scalar case, i.e., xi ∈ R for all i. Consistently
we will denote with f ′i , f

′′
i and f ′′′i respectively the first, second and

third derivatives of the function fi.
Observe that, once activated, node i updates xi, gold

i , hold
i , gi, hi

according to lines 27, 28, 29, 30, 31, i.e.,

xi(k + 1) = (1− ε)xi(k) + εzi(k)
−1yi(k)

gold
i (k + 1) = gi(k)

hold
i (k + 1) = hi(k)

gi(k + 1) = f ′′i (xi(k + 1))xi(k + 1)− f ′i(xi(k + 1))

hi(k + 1) = f ′′i (xi(k + 1)).

Based on gi(k+1) and hi(k+1), the variables yi and zi are updated
performing in order the steps in lines 32, 10, and 33, 11, respectively,
which result in

yi(k + 1) =
1

|N out
i |+ 1

(
yi(k) + gi(k + 1)− gold

i (k + 1)
)

zi(k + 1) =
1

|N out
i |+ 1

(
zi(k) + hi(k + 1)− hold

i (k + 1)
)
,

and, in turn, from lines 12, 13, we have that

σi,y(k + 1) = σi,y(k) + yi(k + 1)

σi,z(k + 1) = σi,z(k) + zi(k + 1).

The quantities σi,y(k + 1) and σi,z(k + 1) are transmitted by node
i to its out-neighbors. If (i, j) is reliable then node j, based on the
Data Reception packet, updates the local variables yj , zj , ρ

(i)
j,y , ρ(i)j,z

as3

y′j = yj(k) + σi,y(k + 1)− ρ(i)j,y(k)

z′j = zj(k) + σi,z(k + 1)− ρ(i)j,z(k)

ρ
(i)
j,y(k + 1) = σi,y(k + 1)

ρ
(i)
j,z(k + 1) = σi,z(k + 1),

3As far as the variables yj and zj are concerned, to denote their updates in
the Data Reception packet we introduce the auxiliary variables y′j , z′j , since
the overall updates of the current values of yj and zj are performed in the
subsequent Data Update packet.

and, subsequently, based on the Data Update packet, updates the
local variables xj , gold

j , hold
j , gj , hj , yj , zj as

xj(k + 1) = (1− ε)xj(k) + ε
yj(k)

zj(k)

gold
j (k + 1) = gj(k)

hold
j (k + 1) = hj(k)

gj(k + 1) = f ′′j (xj(k + 1))xj(k + 1)− f ′j(xj(k + 1))

hj(k + 1) = f ′′j (xj(k + 1))

yj(k + 1) = y′j + gj(k + 1)− gold
j (k + 1)

zj(k + 1) = z′j + hj(k + 1)− hold
j (k + 1).

Next, we characterize a mass conservation property of Algorithm 2.
Similarly to what done in Section III-C, for each (i, j) ∈ E we
introduce the auxiliary variables ν(i)j,y(k), ν

(i)
j,z(k), defined as

ν
(i)
j,y(k) = σi,y(k)− ρ(i)j,y(k)

ν
(i)
j,z(k) = σi,z(k)− ρ(i)j,z(k).

Recall that the role of the above variables is to keep track of the
transmitted mass that has not been received due to packet losses. We
have the following result:

Lemma V.1 Consider Algorithm 2. Then, for all k ∈ N, the
following equalities hold true

N∑
`=1

y`(k) +
∑
j∈N out

`

ν
(`)
j,y(k)

 =

N∑
`=1

g`(k)

N∑
`=1

z`(k) +
∑
j∈N out

`

ν
(`)
j,z (k)

 =

N∑
`=1

h`(k).

The proof of the above Lemma can be found in [23]. To establish
the convergence of the Asymmetric broadcast ra-NRC algorithm
described in Algorithm 2 we introduce some sufficient conditions that
guarantee local exponential stability under the assumptions posed in
Section II. Informally, we assume that each node updates its local
variables and communicates with its neighbors infinitely often, and
that the number of consecutive packet losses is bounded. Formally,
we make the following assumptions:

Assumption V.2 (Communications are persistent) For any itera-
tion k ∈ N there exists a positive integer number τ such that each
node performs at least one broadcast transmission within the interval
[k, k + τ ], i.e., for each i ∈ {1, . . . , N} there exists h ∈ [k, k + τ ]
such that node i is activated at iteration h.

Assumption V.3 (Packet losses are bounded) There exists a posi-
tive integer L such that the number of consecutive communication
failures over every directed edge in the communication graph is
smaller than L.

From the above two assumptions, it follows that, given i ∈ V and
j ∈ N out

i , node j receives information from node i at least once
within the interval [k, k + Lτ ].

Remark V.4 The previous two assumptions are standard in the con-
text of consensus-based algorithms. They are necessary to guarantee
deterministic exponential convergence as shown in [24] in the sense
that if they do not hold, it is possible to construct communication and
packet loss sequences that do not guarantee exponential convergence.
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The following theorem characterizes the convergence properties of
the Asymmetric broadcast ra-NRC algorithm:

Theorem V.5 Under Assumptions V.2, V.3 and the assumptions
posed in Section II, there exist some positive scalars εc and δ such
that, if the initial conditions xo = [xo1, . . . , x

o
N ]T ∈ RN satisfy

‖xo − x∗1‖ < δ and if ε satisfies 0 < ε < εc, then the local
variables xi in Algorithm 1 are exponentially stable with respect to
the global minimizer x∗.

The proof of the above Theorem can be found in [23].

Remark V.6 In this Section, we have provided a theoretical analysis
of the ra-NRC algorithm, assuming that the asymmetric broadcast
communication protocol has been adopted. However, it is worth
stressing that similar results hold also for other communication
protocols like symmetric gossip, asymmetric gossip, and coordinated
broadcast4.

Remark V.7 It is possible to show that the selected protocol allows
us to rewrite the resulting ra-NRC as a dynamical system of the form{

x(k + 1) = x(k) + εφ(k,x(k), ξ(k))
ξ(k + 1) = ϕ(k,x(k), ξ(k)),

under proper definitions of variables x, ξ and maps φ and ϕ.
The major challenges in proving the main results are related to
proving that the ra-NRC algorithm satisfies a number of technical
conditions required by standard theory of separation of time-scales.
In particular, we are interested in proving exponential stability for
a non-autonomous discrete time dynamical system whose closest
counterpart in the continuous time is given by Theorem 11.4 in [26].
Besides some standard conditions on smoothness and uniformity of
the dynamical flows involved, there are three major requirements that
need to be satisfied: the first is that the fast dynamics converges
exponentially to an equilibrium manifold, the second is that the slow
dynamics restricted to this manifold is exponentially stable, and the
third is that a number of bounded interconnection conditions which
represent the perturbation of the slow dynamics into the fast dynamics
and vice-versa are satisfied. We refer the interested reader to [23].

Remark V.8 Although the previous theorem guarantees only local
exponential convergence, numerical simulations on real datasets seem
to indicate that the basin of attraction is rather large and stability is
mostly dictated by the choice of the parameter ε. However, for the
special but relevant case when the cost functions fi(x) are quadratic,
as in distributed least-squares problems, it has been proved that local
stability implies global stability [21].

VI. NUMERICAL EXPERIMENTS

We consider a random geometric network with 10 nodes in [0, 1]2

and with communication radius r = 0.5 as in Figure 2.
As cost function, we consider a regression problem

inspired by the UCI Housing dataset available at
http://archive.ics.uci.edu/ml/datasets/Housing.
In this task, an example χj ∈ Rn−1 is a vector representing some
features of a house (e.g., per-capita crime rate by town, index of
accessibility to radial highways, etc.), and yj ∈ R denotes the
corresponding median monetary value of the house. The objective
is to obtain a predictor of house value based on these data. If the
datasets come from different users that do not want to disclose their

4For a concise but effective description of the aforementioned protocols we
refer the interested reader to [25].

Fig. 2. The random geometric network considered in the simulations.

private information, then one may formulate the regression problem
as a distributed problem defined on the local costs

fi (x) :=
∑
j∈Ei

|yj − χTj x′ − x0|1,β + γ
∥∥x′∥∥2

2
. (16)

where |z|1,β =
√
z2 + β−

√
β, z ∈ R and x = (x′, x0) ∈ Rn−1×R

is the vector of coefficients for the linear predictor ŷ = χTx′ + x0
and γ is a common regularization parameter known to all agents.
The loss function | · |1,β corresponds to a smooth C∞ version of the
Huber loss, a loss function that is usually employed to minimize the
effects of outliers. In our case β dictates for which arguments the loss
is pseudo-linear or pseudo-quadratic and has been manually chosen
to minimize the effects of outliers. In our experiments we used 3
features, β =

√
25, γ = 1, and |E| = 506 total number of examples

in the dataset randomly assigned to the N = 10 users communicating
as in the graph of Figure 2. As a performance index, we consider the
Mean Squared Error (MSE)

1

N

N∑
i=1

‖xi(k)− x∗‖2 .

In the first experiment we assume lossless communications and
compare the convergence speed of five schemes: the ra-NRC Al-
gorithm 1 and its Jacobi and Gradient Descent versions defined in
Remark IV.1, the Push-DIGing [17], and the Push-sum distributed
dual averaging [22]. Notice that, as explained in the introduction,
these two last schemes are based on broadcast-like communications
but cannot cope with lossy communications. Figure 3 displays the
evolution of the MSEs for the different algorithms subject to the
same activation sequence (i.e., at the same time instant k the same
node i awakens) and with the stepsize (referred to as α in [17], [22])
individually tuned by choosing (a posteriori) that particular one giving
the fastest convergence speed among a grid of 20 logarithmically
spaced potential values between 10−4 and 1.

Figure 4 instead inspects the effect of varying the probability of
packets losses on the MSEs of single realizations for the ra-NRC
scheme. In this figure the algorithm is tuned with a slower ε = 0.01
so to highlight the intuition that increasing the chances of packet
losses leads to slower convergence properties. No comparison is
possible with alternative algorithms available in the literature as none
can cope with packet losses.

VII. CONCLUSIONS

In this work we addressed the problem of distributed unconstrained
convex optimization in the context of lossy communication, a sce-
nario that has not been considered before in the literature. More
specifically, we considered a robustified version of the Newton-
Raphson consensus algorithm proposed in [14], and we proved its
(local) convergence properties under some general mild assumptions
on the local costs and on the communication persistency. We also
showed how the strategy can be applied to real world scenarios and
datasets, and that it compares favorably against some alternative algo-
rithms available in the literature even under the special case of lossless



8

0 200 400 600 800 1,000
−2

0

2

4

iteration k

lo
g
( 1 N∑

i
‖x

i
(k
)
−
x
∗
‖2
)

ra-NRC (ε = 0.04)
ra-JC (ε = 0.04)
ra-GDC (ε = 0.0008)
push DIGing [17] (α = 0.0006)
dual averaging [22] (α = 0.002)

Fig. 3. Evolution of the MSE in time for different optimization algorithms.
The legend indicates the hyperparameter for which the algorithm achieves
fastest convergence speed in this specific experiment.
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Fig. 4. Effect of varying the probability of packets losses on the speed of
convergence of the ra-NRC scheme considered in Figure 3.

asynchronous scenario. Possible future research directions include
adaptive strategies to tune the step-size ε on-line, the inclusion of
local constraints, and the extension to partition-based approaches,
where each agent is interested in computing only some components
of the global minimizer vector.
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