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Distributed Partitioned Big-Data Optimization
via Asynchronous Dual Decomposition

Ivano Notarnicold, Student Member, IEEERuggero Carf, Member, IEEE and Giuseppe
Notarstefand, Member, IEEE

AbstractlIn this paper we consider a novel partitioned frame- in a pure peer-to-peer set-up. In [4] a tutorial on network
work for. distributed optimization in peer-to-peer networks. In optimization via dual decomposition can be found. In [5] a
several important applications the agents of a network have to synchronous distributed algorithm based on a dual decompo-

solve an optimization problem with two key features: (i) the 7. . L
dimension of the decision variable depends on the network size, sition approach is proposed for a convex optimization problem

and (i) cost function and constraints have a sparsity structure With @ common constraint for all the agents. In [6] equality
related to the communication graph. For this class of problems and inequality constraints are handled in a distributed set-up

a straightforward application of existing consensus methods pased on duality. In [7] a distributed algorithm based on an
would show two inefbciencies: poor scalability and redundancy averaging scheme on the dual variables is proposed, to solve

of shared information. We propose an asynchronous distributed timizati bl bxed undirected network
algorithm, based on dual decomposition and coordinate methods, convex optimization problems over bxed undirected networks.

to solve partitioned optimization problems. We show that, by A slightly different set-up is considered in [8], where a dual
exploiting the problem structure, the solution can be partitoned decomposition method over time-varying graphs is proposed.
among the nodes, so that each node just stores a local copy of an order to induce robustness in the computation and improve
portion of the decision variable (rather than a copy of the entire convergence in the case of non-strictly convex functions,
decision vector) and solves a small-scale local problem. Alternating Direction Methods of Multipliers (ADMM) have
been proposed in the network context [9]. A distributed
|. INTRODUCTION consensus optimization algorithm based on an inexact ADMM

Distributed optimization has received a widespread attentigh pr_oposed n [10]'. In [11] an asynchronous ADMM basgd
. . . . istributed method is proposed for a separable, constrained
in the last years due to its key role in multi-agent systems . ~~ " : ) .

optimization problem. A different class of algorithms, working
(also known as large-scale systems, sensor networks or peer-

. nder a general asynchronous and directed communication, is
to-peer networks). Several solutions have been proposed, %u? 9 Y

. . pased on the exchange of cutting planes among the network
many challenges are still open. In this paper we focus on a . S

. N .~ nodes [12] and can be applied also in its dual form to separable
main common limitation of the current approaches. That is, In

all the currently available algorithms the nodes in the networkVox Programs.

- . . A common drawback of the above algorithms is that they

reach consensus on the entire solution vector. This redundanc . . . . . .
. : . are well suited for a set-up in which either the dimension of the
of information may be not necessary or even realizable n

some problem set-ups. Thus. we exbloit a new distribute&CiSion variable or the number of constraints is constant with
P PS. ' P respect to the number of nodes in the network. In case both

optimization set-up in which the nodes compute only a porticme two features depend on the number of nodes each local

of the solution and the whole minimizer may be obtained be/ . . )
i . omputing agent needs to handle a problem whose dimension
stacking together the local portions.

- . . is not scalable with respect to the network dimension. To
We divide the relevant literature for our paper in two parts, . : R S
. . o L cope with big-data optimization problems, deterministic and
That is, we review works on distributed optimization more . : ;
. : : randomized coordinate methods for both unconstrained and

closely related to the techniques proposed in this paper, an . o
. . ; . ' “constrained optimization have been proposed, see e.g., [13]D

the centralized and parallel literature on big-data opt|m|zat|o]g

Early references on distributed optimization are [2], [3 5]. More general set-ups such as composite and/or separable

S : - pptimization in a parallel scenario have been addressed for
Convex optimization problems are solved by using a prima ;
L : : . convex problems in [16], [17], whereas nonconvex problems
distributed subgradient method combined with a consensus : . o
" re considered in [18]D[20]. In [21] an edge-based distributed
scheme. Dual decomposition methods have been proposed,in_ . . . S
. - . algorithm is proposed to solve linearly coupled optimization
early references in order to develop distributed algorithms . : o
problems via a coordinate descent method. A distributed

A preliminary short version of this paper has appeared as [1], where offiP0rdinate primal-dual asynchronous algorithm is proposed
a synchronous dual scheme for the partitioned set-up was considered. in [22] to deal with large-scale problems. A dual approach has

lvano  Notarnicola and ~ Giuseppe = Notarstefano ~ are with theen combined with a coordinate proximal gradient in [23] to
Department of Engineering, Univerdit del Salento, Lecce, Italy,

name.lastname@unisalento.it . This result is part of a project propose an asynChronous distributed algor'thm for composite

that has received funding from the European Research Council (ERC) ung@nvex Optimization.

the European UnionOs Horizon 2020 research and innovation programm i i i i

(grant agreement No 638992 - OPTASMART). . th this paper we |nvest|gaie a clasg of prpblems of |nieiest
2Ruggero Carli is with the Department of Information Engineering, unit several mUIt"agent appllcatlons in which the decision

versity of Padova, Italycarlirug@dei.unipd.it ) variable grows as the number of nodes in the network, but



the cost function and the constraints have a special partitionsatroborate the theoretical results.

structure. We show that such structure is not derived just as

a pure academic exercise, but vice-versa appears in severall. PROBLEM SET-UP AND MOTIVATING SCENARIOS

important application scenarios. In particular, we present tWo proplem Set-up

of them that have been widely investigated in the literature,

namely distributed quadratic estimation and network utilit

maximization (and its related resource allocation version).
The main contribution of this paper is as follows. Fo

this problem set-up we provide two distributed optimizatioﬂ

algorithms, based on dual decomposition, with two mal

appealing features. First, the algorithms are scalable, in

sense that each node only processes a portion of the decisi

variable vector. As a result, the information stored and the

computation performed by each node does not depend on

network size as long as the node degree is bounded. Secd

the asynchronous algorithm works under a communicati§

protocol in which a node wakes-up when triggered by ifre determined by the bPxed graphcommunication happens

local timer or by its neighbors, so that no global clock igsynchronou;ly. we will form.ally debne this ast communica-
needed. The distributed algorithms are derived by brst writiﬁ'gcvpmttocflk;n the 'ne>§t sections, t in distributed
a suitable equivalent formulation of the original primal opti- i c s?r ){_hretw_ewmg a cor_r(;mor:hse “up in t'ls " ufe

mization problem (which exploits the partitioned structurej).p 'm'zsl on. tfa 't.s’ we b(':ontstl elr Ie m|nt|m_|zta ion ot a
Then its dual problem is derived and solved with suitabfgEParanie cost function subject to local constraints,

We consider a network of agents aiming at solving a struc-
ured optimization problem in a distributed way. The nodes,
{17 ...,n}, interact according to a bPxaxwnnected, undirected
raphG = ({1,...,n},E). We denoteN; the set of neighbors
f node: in G, thatisN;, = {j ' {1,...,n} | (4,j) ' E}.
g we will see in the following, the grap@ is related to the
{[}cture of the optimization problem.
As for the communication, we will consider a synchronous
munication protocol in which nodes communicate over
q bxed graph according to a common clock, and an asyn-
nrbnous protocol in which, although the neighboring agents

algorithms. A scaled gradient applied to the dual problem S

turns out to be a partitioned version of the distributed dual T fi(x) (1)
decomposition (synchronous) algorithm. A randomized ascent o= _

method applied to the dual problem allows us to write an subj. tox ! X;, il {1,...,n},
asynchronous distributed algorithm that converges in objectiygere fi:RY" RandX, # RN foralli!{1,...,n}
value with high probability. In our set-up the local objective functiofi and the local

As opposed FQ [41D[7], even though we also consider @nstraint sefX; are known only by agent
dual decomposition approach, we tailored the methodology|p this paper we want to consider problems as in (1) with

for the partitioned set-up, thus explicitly taking into accoury specipc feature, that ispartitioned structurethat we next
the partitioned structure of the cost and the constraints. Thigscribe. Let the vectar be partitioned as

results in algorithmic formulations that reduce memory and . L
communication burden. The partitioned set-up considered in =z, 2]

this paper has been introduced in [24], where a distribut%ere' fori ' {1,....,n}, mi ! N, z; ! R™ and
ADMM algorithm is proposed. In [25] a nonconvex max- n

. I o . 1 =1 Mi = N. The sub-vectorz; represents the relevant
imum  likelihood localization partitioned problem is solveq,¢ormation at nodei, hereafter referred to as the state of

via a similar distributed ADMM scheme. In [26] a convex,oge ;- Additionally, let us assume that the local objective
composite optimization problem is considered where the Cqghctions and the constraints have the same sparsity as the
has a partitioned part and a fully separable remainder. & munication graph, namely, fot { 1, ..., n}, the function

parallel coordinate algorithm is proposed with its CONVergente ong the constraink; depend only on the state of node
analysis. In [27] a robust block-Jacobi algorithm for a partiy,q on its neighbors, that is, da;, j ! N ; $ {i}}. Then the
tioned quadratic programming under lossy communicationsd'ﬁ)mem we aim at solving distributedly is

proposed. A related formulation of the partitioned problem Is i
the one considered in [28], where the D-ADMM distributed min Fowo £ )
algorithm proposed in [29] has been applied. Differently N e A 2)
from the above references, in this paper we propose a dual . N .
decomposition algorithm for optimization problems in which subj. oz, {akym )8 Xio it {Lonk,
also the constraints exhibit a partitioned structure. Moreovevhere the notatiory;(z;, {z;};n ,) means thayf; : RV" R
we develop an asynchronous distributed algorithm, inspirélin fact a function ofx; andz;, j ! N ;, and the notation
to [23], by combining dual decomposition with coordinatéz;, {z;};n ;) ! X; means that the constraint s&t involves
methods. only the variablese; andz;, j ! N ;.

The paper is organized as follows. In Section Il we presentWe stress that the constraint sef§; can involve all
the partitioned optimization framework and describe two mdgneighboring) variable$z;, {z;};n ,) of agenti and not just
tivating applications. In Section Il we develop a partitioned;. This apparently minor feature in fact adds much more
distributed dual decomposition approach, then we propogenerality to the problem and introduces important signibcant
and analyze our synchronous and asynchronous distributdtllenges.
algorithms. Finally, in Section IV we run simulations to The following assumptions will be used in the paper.



Assumption 1.1, For all + ! { 1,...,n}, the functionf; : the whole network. Precisely let the matrigﬁs and X a@d

R exiu@¥™ " R js strongly convex with parametet > 0.0  the vectorz be partitioned asH;;|" _,,x= Ty,...,T

0/0" i & J1i,5=1 1> n
Assumption I11.2. The constraint sets(; # R>eviuar™  andz = 2 ...z, , where Hj; ! RPH#™, 2 | RP,
i'{1,...,n} are nonempty convex and compact. O w! R™and iy mi=N, ;. p;=P. Observethat, be-

cause of the interconnection structure of a power network, the
measurement matriX/ is usually sparse, i.e., manfy,;; = 0.
Assume monitor; knows z; and Hy;, j ! { 1,...,n} and it

is interested only in estimating the sub-state Moreover let
Under Assumptions 11.1 and I1.2 problem (2) is feasible ant¥i = {j ! { 1,...,n} | H;; = 0}. Observe that in general if

Assumption 1.3 (Constraint qualibcation)The intersection
of the relative interior of the setX,;, i ! { 1,...,n}, is non-
empty. O

admits a unique optimal solutiofi* attained at some* |  Hi; = 0 then alsoH;; = 0. Then by debning
RN, Assumption 1.3 is a standard requirement to guarantee $ ! (+ ! (
that a dual approach will enjoy the strong duality property. fi i, {z;j}in, = 2 & Hijz; 2 & Hijz;
JIN JN
B. Motivating Examples problem (4) can be equivalently rewritten as
Next we provide two application scenarios in which the par- R $
titioned structure of the optimization problem arises naturally. argmin fi mi{xi}in
oA

1) Distributed estimation in power network3o describe I
. . which is of the form (2).
this example we follow the treatment in [30]. . . _—
A It is worth remarking that there are other signibcant ex-
For a power network, the state at a certain instant of

time consists of the voltage angles and magnitudes at al ples that can be cast as distributed weighted least square

the system buses. The (static) state estimation problem rei%rrOblemS similarly to the static state estimation in power

AN n ?works we have described in this section; see, for instance,
to the procedure of estimating the state of a power networ,

. . d|ﬁtributed localization in sensor networks and map building
given a set of measurements of the network variables, suc :
. N robotic networks.

as, for instance, voltages, currents, and power [Rows along
the transmission lines. To be more precise,det RY and  2) Network utility maximization and resource allocation:
z | R be, respectively, the state and measurements vecie consider the Row optimization problem,etwork Utility
Then, the vectors and z are related by the relation Maximization (NUM)problem introduced in [32] and studied

= h(z) +1 3) iq [33] in a distributed c_ontgxt. A RBow netwqu (which is

’ different from a communication network) consists of a fet

whereh(+) is a nonlinear measurement function, and whereof unidirectional links with capacities;, £! L. The network
is the noise measurement, which is traditionally assumedisoshared by a set of sources. Each source has a strongly
be a zero mean random vector satisfyifyn | = £ % 0. concave utility function; (z;) The goal is.to calculate source
An optimal estimate of the network state coincides with thi@tes that maximize the sum of the utilities; U;(x;) over
most likely vectorz* that solves equation (3). This static state; Ssubject to capacity constraints. Formally, using a notation
estimation problem can be simpliped by adopting the approxiensistent with [33], let(i) # L be the set of links used by
mated estimation model presented in [31], which follows fromourcei and N(¢) = {i ! { 1,...,n} | £! L(i)} be the set
the linearization around the origin of equation (3). Specibcalgf sources that use link. Note that¢ ! L(i) if and only if
1! N(). Also, letI; = [r;, K;], with 0 ( k; < K;, be the
interval of transmission rates allowed to nadéhe network

where H | RP#* N and wherev, the noise measurement, is30W optimization problem is given by

z=Hzx+w,

such thatE[v] = 0 and E[vv’ | = X. In this context the In
static state estimation problem is formulated as the following Jmax Ui(z;)
weighted least-squares problem P s
. 1 subj. toz; ! I, it{1,...,n} (5)
argmin (z & Hz) ¥*7(z & Hzx). 4 f
x zj ( ce, er, ..., |LI}
Assumeker(H) = 0, then the optimal solution to the above 3 N0
problem is given by Notice that problem (5) is well posed and has compact domain.
_# " 81 $1 $1 In Figure 1 (left) we graphically represent an example
zws= H Y**H "H Y2 _
of 5 sources (Plled circles) that use (dotted arrowdjnks
For simplicity let us assume thaL = I. For a large (gray stripes). In [33] a distributed optimization algorithm

power network, the centralized computationagfis might be is proposed in which both the sources and the links are
too onerous. A possible solution to address this complexitpmputation units. Here we consider a set-up in which only the
problem is to distribute the computation of,s among ge- sources are computation units. In particular, the sources have
ographically deployed control centers (monitors), sajn a the computation and communication capabilities introduced
way that each monitor is responsible only for a subpart of the previous subsection. We assume that sources using



the same links can communicate and both know the capadigch agent has a local strongly concave utility function to
constraint on those links. Formally, we introduce a gr&h maximize. The resulting optimization problem turns out to be

having an edgdi, j) connecting source to j if and only if In
there exist? ! L suchthat ! L(¢)) L(j). In Figure 1 (right) max Ui(x;)
we show the induced communication graph (solid lines) for TLyeTn =
the considered example. subj. to 2 (i, it {1,...,n},
JIN %{1}
A wherez; is the resource produced by node; is the capacity
9 t=1 G Q/e of nodei and we are assuming that the set of neighbors with
¥ ¥ \\ whom nodei can share its resource coincides with the set of
g g 0 =9 neighbors in the communication graph. In other words agents
9 © 0-0 can share resources only if they can communicate.
“ / It is worth noting that dual decomposition is often used
in network utility maximization and resource allocation prob-
o o lems. See for example [34] for a tutorial on dual decomposition
=3 methods in network utility maximization. Usually, in this con-

text, the capacity constraints are dualized to obtain a master-

_ . o _ _ subproblem or a distributed algorithm. However, in these early
Fig. 1. Network Utility Maximization problem witts sources (Plled circles) f in 1331 the dual d it . ise t

using3 links (gray stripes). references, as e.g., in [ ]z e dual decomposition gives rise to
algorithms that are not suited for a pure peer-to-peer network
as the one we consider. In our partitioned approach the dual

Thus, optimization problem (5) can be rewritten as - = X
decomposition is used to enforce the coherence constraints,

In whereas the capacity constraints are taken into account in the
hax Ui(i) primal local minimization. These aspects will be more clear
=1 ) in the next section in which we derive the partitioned dual
subj. to (z;, {z;};n ;) ! L, it {1,...,n}, (6) decomposition approach.
| N %{i}
' ajox; (o, 0V LG, it {1,... n}, I1l. PARTITIONED DUAL DECOMPOSITION FOR
AN %(3} DISTRIBUTED OPTIMIZATION

In order to introduce our distributed algorithms, we derive a

whereN; is the neighbor set of in G, a;, is 1 if agentj haritioned dual decomposition scheme by introducing suitable
can use link¢ and 0 otherwise. Notice that in problem (6) if copies of the decision variables.

sources and;j share a link/, then they both have the capacity aq 5 preliminary step, we brieRy recall the standard dual

constraint of link¢. Moreover, in order to have compactnesgecomposition approach for distributed optimization. In order

of the local constraint seX;, transmission rate constraints of, ¢qve problem (1) in a distributed way, a common approach
neighboring nodes are also taken into account. Finally, in ordgy sists of writing it in the equivalent fo,rm

to fulbll the strong convexity assumption on the local costs,
two strategies can be used. First, one can assume that each

In

agent knows the utility functions of neighboring agents, so that wuf}ﬂm) - fi(x( ))

it sets f;(zi, {z;in ) = g Ui(z;). Alternatively, b ey X i @)
one can consider an additional separable (small) regularization subj. tox o it L.nh

term in the NUM problem formulation in (5), e.g., |-, 22 20 =2 (i) E

with ¢ > 0. In this case each agent sets its local cost functioq1 ) .
0 fi(@{z b ) = Ui@) + a2, wheree,; > 0 wWhere eachr'” can be seen as a copy of subject to the

ST LIS N i LA JIN ey TR additional constraint that all the copies must be equal. Clearly,
are suitable fractions af Except for the maximization versus .

S . : . . the connected nature of the network ensures equality between
minimization, this problem is partitioned, that is it has the 4 . .
same structure as (2) all 2V and, in turn, the equivalence between (7) and (1).

A orobl ith thi ' fruct be also found i When considering a partitioned problem as in (2), because

problem wi IS Slructure can be aiso Tound In reSourGs o girycture off; and X;, i ! { 1,...,n}, the formula-

allocation problems, which are of great importance in SEVei®n (1) is considerably redundant. The idea is to exploit the

research areas. In the contgxt Of. ne_twork syst(_ems SOI\." Srtitioned structure to modify (7) in order to limit the range
resource allocation problems in a distributed way is a prelimz

. oo f equivalences among the auxiliary variables, and, in turn,
inary task to solve several control and estimation problem[ﬁ.eir diffusion over the network
Indeed, it is often the case that the agents in the network have '
some local resource that have to share with their neighbors. N N
Consider a general set-up in which each agent produce4-aPartitioned Dual Decomposition Set-up
certain amount of resource, which it can share with its neigh-Once we create copies of the vector RY, we enforce

bors (i.e., neighboring nodes in the communication grapach state:; ! R™ to be identical only for the neighboring



nodes;j ! N ; $ {7} which use this information. Formally, we To tackle problem (8) in a distributed way, we start by

reformulate problem (2) as deriving its dual problem. Thpartial Lagrangian for problem
In _ ' $ (8) is given by
. ) %) (OR *
min fz Z; 7{37]‘ }]!N ; In # ‘ $
: #:}i) ) $ . L(x,A) = fi $§1)7{$§-2)}j!N i (10)
SUbj. to T, ,{.’L‘j }j!N i X, il { 1,... ,n}, (8) i=1 +

‘rEZ) = ‘,I"Ej)) .7 I'N i) 0! { 17 LR n}a + )\EZJ) (3351) & mij)) +A§‘l)]) (1‘21) & xgj)) s
o) =, JING, i {1,...,n} N

wherez) denotes the copv of state stored in memory of where x staqks all the (primal) optimization va'riables.in the
i Py & y network, whileA denotes the stack of dual variables, i.e.,

nodej. Notice that connected nature of the graprensures
equivalence between (2) and (8). A 0/?\.. A &
As an example, in Figure 2 we visualize the partitioned om0
set-up for a path graph of = 4 nodes. Alongi-th column, i plock A= [{)\Ei,j)}le i’{)\(@,j)}j”\‘ 1it{1,... .}
we ShO\.N the co_uplmg due to the local costand the local By exploiting the undirected n]ature and the connectivity of
constraintX;, which involves only the states handled by nOdSrath, the Lagrangian (10) can be rewritten as

i, i.e.,xgi) andq;g.i) with j I N ;. Along thei-th row, we show "
: el TN , _ In # . , $
the coupling due to copies;”’, j ! N ;, of the variablez;. L(x,A) = f; xy),{xg-z)}jm | (11)
=1
@ @ o @  nath graph o o NI
+ xEZ) ()\S/%]) &)\EJ#)) + xgl) )\217]) &)\gjvl)
. ( O @ j which is separable with respect 167, i ! { 1,..., n}.
1 1 1

Remark Ill.1. It is worth noting that we have not dualized
the local constraints(x(”),{xg”}j!N ) X, (thus the notion

%

- ( D el Q) ) of partial Le_lgrangian) since_ea_lch _of them will be handled by
the agents in their local optimization problem. |
The dual function of (8) is obtained by minimizing the
3 ( ) S S j Lagrangian with respect to the primal variables, which gives
A) = i L(x,A
a(8) x! ngléga#xn (x,4)
(3 (4) In !
€ L L : v\ (4, i i,j j, i)
4 ( 4 4 J _ g )\g aJ)’)\EJ’ )7)\5_ J),/\gﬂx) N
-, -, - -, -1 TR
X1 X2 Xa X4 with
Fig. 2. Partitioned optimization problem over a path grapmef 4 nodes. qi ! )\Ei,j)’ )\Ej,i)’)\gi,j%)\gj,i)- N, =
i i i i # . 4 $
_Before proceeding Wlth presentation of the algorithms, we min ¢ f, I(‘z)’{x(‘z) T (12)
discuss two key features in the structure of the above problem. e ey, 1 X, v J
First, it is worth noting that the problem formulations (7) b 2,)”'_ ' D)o ) I D ) o G (
and (8), although equivalent, are different. In fact, (8) will +x; A &N + :r;j (/\j” &Aj“) )
lead to our partitioned algorithm. Second, we point out that a JIN JIN

int- () _ .(9) ; ; :
constraintr, © = ;" for a pair of agents and;j appears two Notice that, since eachX; is compact and nonempty,

times. This redundant formulation is not accidental, but pla¥ﬁe minimum in (12) is (uniquely) attained, so that is
an important role in exploiting the partitioned structure of thgIWayS bnite. Thus, the dual problem of (8) ’is the following

proposed algonthm. . . unconstrained optimization problem
Next, we introduce an aggregate notation for the copies,

which allows us to be more compact in the derivation of the In s id) G (i) ()
algorithms and their analysis. We denote by max g AT AN AT Ly (13)
. # i $ ‘ i=1
gD =" P ©)

) Remark Il.2. Let ¢ : R* " R $ {+*} , its conjugate
the set of local variables of nodearranged as a column Vectory tion ©%:R" R is debned as

in RZiexiuti} ™ | n this way we can write equivalently # $
# i $ # .$ . &(,) . "
fi e L% = £y and g1 X, @(2) : sup 2 = & e(z) .

K2



Then, Remark 11l.4. Notice that, differently from existing dual

V) G () )" ( decomposition schemes, our algorithms do not enforce any
g NN NS ONTY = ; ; ; : 19) (1)
i i j JGING symmetry in the dual variables, i.e., in geneﬁeﬁl’ (t) =
&' L ) o Gt (id) o G ( &x\U(1). The symmetry, although not necessary, can be
& f; AT &NTT), (AT &AL imposed if the agents select a common step-size= a,
I for all 7 ! {1,...,n}, and properly initialize their dual
with f& being the conjugate function ¢f. O variables. As a consequence, the algorithm can be simplibped
. : to have only one communication round to perform both the
Remark 111.3. It is worth noting that eacly; does not depend local minimization and the ascent. 0

on the entire set of dual variables, but it exhibits a sparse
structure, i.e., it is a function of the dual variables of the The convergence properties of PDD (Distributed Algo-

neighborsN; only. O rithm 1) are established in the following theorem.
Theorem I1I.5. Let Assumptions Il.1, 1.2 and 11.3 hold true
B. (Synchronous) Partitioned Dual Decomposition (PDD) disand assume the step-sizeg i ! { 1,...,n}, to be constant
tributed algorithm and such thad < a; (-, with
With the dual problem in hand, a gradient algorithm on the D (
dual problem, [35, Chapter 6], can be applied. This results into Li= 2 ' 1.1 2’ +il{1,...,n} (16)

a minimization on the primal variables and a linear update on
the dual variables. As we will show in the analysis, this gives
rise to the PDD distributed algorithm, which is formally statedlhen, the sequenc€Ai(t),...,A,(t)} generated by PDD
from the perspective of nodg in the following table. (Distributed Algorithm 1) converges in objective value to
We point out that each node! { 1,...,n} stores and the" optimalu cost f* of problem (2). Moreover, letz* =
updates the primal variables” andz!”, j I N ;, and the (21 ,...,z}, ) be the unique optimal solution d®), then

dual variablesxgi’j) and )\gi,j)' JUN ;. ! each primal sequenc;egz) (t) generated by PDD is such that

N T i

LB . _
Distributed Algorithm 1 PDD Jm -, 27 (t) & 27, =0,

Processor states(z{”, {z!” };n ) and {0\ AV foral it {1,... 0} and k1 { i} $N,.

Evolution: Proof. We structure the proof of the pbrst statement in three
FOR t=1,2,... DO _ _ parts in which we show that: (i) the dual gradient has a
Compute and broadcast primal variables block structure and smoothness, (i) the distributed algorithm

#x(i)(tJrl) {x(li)(tJrl)},lN _$: implements a diagonally-scaled gradient method, and (iii)
’ T * ; ' $ strong duality holds. First, consider the dual problem (13) and

argmin fi wo{z b a block partitioning of dual variables = [Aq,...,A,], with

(zi {2} enm)! Xi' , ( ' (i) ) (
" " ] i . T= ,’LJ . .’Ll'j ) ;

+a )\Eivj)(t) & )\EJJ) (t) A; {)‘@ }j!N i7{>\J J'N z} (17)

j”\',‘ ' ¢ representing the local variables of node for all i !

+ ] /\gi,j) (t) & )\gﬁi) t) . {1,...,n}. Under Assumption 1.1, the dual functiop(A)

JIN is guaranteed to have block-coordinate Lipschitz continuous
(14) gradient- g(A) with block constantd.;, i ! { 1,...,n}, given
in (16). In fact, we can explicity compute the components
( of - ¢q(A) associated to each block;, denoted hereafter
)\Ei’j) (t+1) = ,\gi:j) (t) +oy x§i> (t+1) & ,IEJ’) (t+1) as- 1,q(A), by using the chain rule of derivation and the
. N v _ ( (15) conjugate function notation. We have that
AP (41) = XD () 40 2 (t+1) & 28 (41)

Update and broadcast dyal variables via

dq(A) _ & & .
forall jIN ;. () = fi)i& (- f7)is TN
N (g8 18,0 w
Before studying the convergence properties of the proposed B i/3 3> 0= N s
J

algorithm, let us comment on its scalability and how it com-
pares with standard dual gradients algorithms. First, obsewaere (- f&); denotes thei-th component of- f& and we
that each node has to keep_in memory the set of variablesit the argument of f& to take light the notation.

@, N AP A iw ,» namely a number of  Since for alli ! { 1,...,n}, eachf; is a strongly convex
variables equal tol + 3|N,|. Second, the step-sizes;, function, then the gradient of its conjugate functienf®
11 {1,...,n} are constant, local and can be initialized vigs Lipschitz continuous with constant/c;, [36, Chapter X,

local computations. More details are given in Theorem lll.5Theorem 4.2.2]. By considering the Euclideanorm, in light



of (18) and by simple algebraic manipulation, we can conclug®int of the primal sequence{s(i) (1), {mgi) }in  (2)} satisfy

i

that also- |, ¢(A) is Lipschitz continuous with constant the primal coherence constraints. Thus, in the limit the copies

1 1tz t 1 712 x% 9% of the variablex; are equal to the (unique)
L; = = + - + - + — optimal 7. Iterating oni ! { 1,...,n} the proof follows. O
N N Remark 1I.6. Alternative expressions fof; in (16) can
which matches (16). be used. Larger upper bounds on the step-sizesan be
Second, we show that our PDD distributed algorithm implesstablished by exploiting tailored descent conditions. See, e.g.,
ments a scaled gradient ascent method to solve problem (3drks [14], [17], [26]. |

Consider a diagonal positive debnite matrix debPned as

W = diag(as,...,an) . diag(5z;,- -, 7). Formally, ¢, Asynchronous Partitioned Dual Decomposition (AsynPDD)

the scaled gradient ascent method can be written as distributed algorithm

A(t+1) = A(t) + W- q(A(t)), (19) In this section we present an asynchronous partitioned

distributed algorithm, and prove its convergence with high

Wheret denqtes the iteration courl1ter. Since_ each entry of ttﬁ?obability. This algorithm can be interpreted as an extension
scaling matrix satisPes < o; ( 7~ foralli ' { 1,....n}, ¢t the PDD distributed algorithm,

then the following condition holds [17, Theorem 8] We consider an asynchronous protocol where each node

! L 1 has its own concept of time debned by a local timer, which
g(A() +8)1 q(A®)) +- g(A(t)) 6& 250 -, 25  randomly and independently of the other nodes triggers when
2 L, to awake itself. Each node is in adle mode, wherein it

continuously receives messages from neighboring nodes, until
it is triggered either by the local timer or by a message from
f%ighboring nodes. When a trigger occurs, it switches into
"4n awake mode in which it updates its local variables and
ossibly transmits the updated information to its neighbors.
he timer is modeled by means of a local clagk Ry o and

a randomly generated waiting tin¥. The timer triggers the
Ai(t+1) = Ay(t) + Wig- 1, q(A(t), i1 { 1,...,n}, (20) node whenr; = T}, so that the node switches to the awake
mode and, after running the local computation, resets 0

and extracts a new realization @f. We make the following
assumption on the local waiting timé&s.

- ¢%(2) = argimn pr) &z x, Assumption 1.7 (Exponential i.i.d. local timers)The wait-
ing times between consecutive triggering events are i.i.d.
random variables with same exponential distribution. [

for every perturbatiod. Thus, using the same line of proof of
the gradient algorithm [35, Chapter 2], we can conclude th
the sequenc§A(t)} generated by iteration (19) converges i
objective value to the optimal cosgt of (13).

SinceW is diagonal, then (19) splits in a component-wisg
fashion giving

whereW;; denotes théi,:)-th entry of V.
By using the following property of conjugate functions

we have that the primal minimization (14) compu{eﬁf‘ eval-

uated at the ppint | A (1) & AP (1), {0 (#) & o T

A (1)} , . Then Informally, the asynchronous distributed optimization algo-
J 7 rithm is as follows. When a nodgis in idle, it continuously

Oq(A(t)) () ) , receives messages from awake neighbors. If the local timer
— s =, 1 : 1 ! i . . i g i . .
PN zo(t+ D& (1), 5N 7; triggers or new dual vanablelsﬁj’ ), AU are received, it
\ 21) wakes up. When nodiewakes up, it updates and broadcasts its
Dq(A(t ; : , ( p. nodeyakes up, it updg
Q(#g,))) = xg.)(t +1)& a;g.” (t+1), 7N 4, primal variabley(® = m§1)7{x§z)}j!,\| ., computed through
OA; a local constrained minimization. Moreover, if the transition
so that update (15) is the scaled gradient ascent (20). was due to the local timer triggering, then it also updates and

Third and bnal, by Assumption 11.3 (Slaterds conditiorjroadcasts its local dual variable§™” and A", j 1 N ;.
strong duality between problems (8) and (13) holds. Moreové&ince there is no global iteration counter, we highlight the
since problems (8) and (2) are equivalent, then they both halifference between updated and not updated values during the
optimal costg* = f*. Thus, the sequencg\(t)} generated OawakeO phase, by means of @ Guperscript symbol, e.g.,
by PDD converges in objective value to the optimal cfst we denote the updated primal variableaég+ .
of (2). We want to stress some important aspects of the idle/awake

For the second part of the statement, we brst notice thtgtcle. First, these two phases are regulated by local timers and
in light of Assumptions II.1 and 1.2, problem (2) has docal information exchange, without the need of any central
unique optimal solution* = (2% ,...,z% )" . Further, since clock. Second, we assume that the computation in idle takes a
problem (8) is equivalent to problem (2), thehis the unique negligible time compared to the one performed in the awake
optimal solution also for problem (8). Finally, the brst ordgphase. Moreover, a constant, local step-sizeis used in
optimality condition for the (unconstrained) dual problem (13he ascent step, which can be initialized by means of local
is - ¢(A*) = 0, where A* is a limit point of the sequence exchange of information between neighboring nodes. Finally,
{A(t)} (which exists by the Lipschitz continuity of ¢(A)). we point out that each agent uses the most updated values that
This allows us to conclude, by equation (21), that the limare locally available to perform every computation.



The AsynPDD distributed algorithm is formally describedProof. Our proof strategy is based on showing that the it-

in the following table. erations of the asynchronous distributed algorithm can be
written as the iterations of an ad-hoc version of the coordinate
Distributed Algorithm 2 AsynPDD method [16], applied to the dual problem (13).
) 5 (9 (i.3) (i) Let the optimization variableé\ be partitioned inn blocks
Processor states(z; ', {z;” }iin ;) and{\;""" XN o . ; ]
(@i Loy dan ;) and{; T [A1,...,A,] as in (17), then a coordinate approach consists
Setr; = 0 and get a realizatioff; in an iterative scheme in which only a block-per-iteration, say
P A;, attimet, of the entire optimization variabl& is updated at
Evolution: L ; L
IDLE: timet, while all the other components; with j ! { 1,...,n}\

{i;} stay unchanged. Formally, a coordinate iteration can be

WHILE: 7; < T; DO: 4
summarized as

Receive)\gj’i), Agj’i) and/ora:ﬁj), xgj) fromj I N ;. A+ 1) =N () +- 1, q(A®D)
IF: dual variables are received go AWAKE. ' ' o L (24)
In the following, we show that the AsynPDD distributed
AWAKE : algorithm implements (24) with a uniform random selection of
C#ompute and broagcast the blocks. Since the timers trigger independently according
L {m(‘i)+ = to the same exponential distribution, then from an external,
’ o _ global perspective, the induced awaking process of the nodes
( {ar}gr?;n), Xfi(li’{xj}j”\‘ ) corresponds to the following: only one node per iteration,
Ti N Tj ij WA . . .
o (i) G i)$ H# ) G i)$ say i;, wakes up randomly, uniformly and independently
+x; AT &N + T A& A from previous iterations. Thus, each triggering, which induces
IN i IN i an iteration of the distributed optimization algorithm and is
IF: 7, = T; THEN: update and broadcast indexed witht, corresponds to the (uniform) selection of a
(i) (id) # »He | node in{1,...,n} that becomes awake.
AT = AT e T &, 7N, (22)  Next we show by induction that if each nodehas an
)\g”” — )\gw) T xg.”* & mgﬂ) . +5IN updated version of the neighboring variables before it gets

awake, then the same holds after the update. When node
i wakes up, it uses for its update its own primal variables
Go to IDLE. xﬁl) and xgl), j ' N ;, which are clearly updated since

is the one modifying them. Moreover, nodeuses aISOrEJ)

It is worth pointing out that being the algorithm asynand xgj), j ' N ;, which are received by neighboring nodes
chronous, for the analysis we need to carefully fOI’ma”Zﬁ! N ;. These variables are updated pyf itself or one of
the concept of algorithm iterations. We will use a nonnegas neighbors becomes awake. In both cases nosends the
tive integer variablet indexing a change in the whole state pdated variable to its neighbors (which include négeAn
A = [A1...A,] of the distributed algorithm. In particular, analogous argument holds for the dual variables.
each triggering will induce an iteration of the distributed Thanks to the argument just shown and by noticing that
optimization algorithm and will be indexed with We want to )\Eft ) and /\git DG TN ., are the components of; , we
stress that this (integer) variabledoes not need to be knownhave that step (22) corresponds to step (24) wiitrandomly
by the agents. That is, this timer is not a common clock anghiformly distributed ove{1, . .., n}. Finally, recalling that (i)
is only introduced for the sake of analysis. the cost functiong(A) of problem (13) has block-coordinate
Lipschitz continuous gradient with respect to the blogks
(see proof of Theorem III.5) and (ii) the step-sizes are
constant and such thét < «; ( 1/L; with L; in (23), we

can invoke [16, Theorem 5] to conclude that the coordinate

LI 1 (z ' method (24) (and equivalently the AsynPDD distributed al-

Li= 2 P + o +i!{1,...,n} (23) gorithm) converges with high probability to the optimal cost

NG ! g* of problem (13). Recalling that strong duality between

Then, the random sequen€d: (), ..., A, (t)} generated by Problems (2) and (13) holds (see proof of Theorem I11.5), then
the AsynPDD (Distributed Algorithm 2), converges with high™ = /> and the proof follows. D

probability in objective value to the optimal cot of problem  Remark 111.9. As highlighted in Theorem I11.8 in order to

(2), i.e., for anye ! (0,qo), with go := ¢(A(0)), and target set the local step-sizes;, each nodei should know the

conbdencd) < p < 1, there existsi(e, p) such that for all convexity parametes; of its neighbors but, differently from

t1 t(e, p) it holds the synchronous case (cf. conditi¢h6)), does not need to
' know the total number of agentsin the network. a

setr; = 0 and get a new realizatioh;.

Theorem 111.8. Let Assumptions 1.1, 1.2 and 1.3 hold true.
Let the timersr; satisfy Assumption 111.7 and step-sizesbe
constant and such thdt < «; ( 1/L;, with

3 3

Pr Y(A@)& f*3( e | 1&p.
To conclude this section, we notice that the asynchronous

model employed in our distributed algorithm can be general-



ized. In fact, in the considered model timers are drawn from
a common exponential distribution, while independent and 10
completely uncoordinated rules might be more desiderable.

TTTTT
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This generalization is currently under investigation. 10 g E
IV. NUMERICAL SIMULATIONS = 10°F E

In this section we provide a numerical example show< 10! | i
ing the effectiveness of the proposed techniques. We tes?f
the proposed distributed algorithms on a quadratic programy, 100 b i
enjoying the partitioned structure described in the previous™
sections. Specibcally, we consider a networknof= 100 101k i
agents communicating according to an undirected connected
Erdgs-Benyi random@rapr@ with parametep = 0.2. Thus, 10-2 L | | | |
letting x;, x; ,, = denote a column vector, we consider 0 1 2 3 4 5 Lo
the following partitioned optimization problem t '

. o v T $ # o, - Fig. 3. Evolution of the cost error for the synchronous distributed algorithm.
min Tiy Tj g, Qi T Ty
=1
JHO, - $ (25)

+r;, x, ; JIN

. # o, - $

subj. to A; x;, x; NG b;, i!'{1,...,n}
where eachz; ! R™ and m; is uniformly drawn from
{1,2,3,4}. This optimization problem has the same parti-
tioned structure discussed in Section IlI-A. In particular, we
have quadratic cost functionf$(z;, {z,},n_, ) and linear con-
straintsX; = {(xi,’ T JIN |) | Ai(l’i7, T JIN |) . bl} The
matrices@); are positive debnite with eigenvalues uniformly =<
generated i1, 20], while the vectors; have entries randomly  —
generated irf0, 100]. Moreover, each paid;, b; describes a <
linear constraint having a number of rows uniformly drawn =s- 194
from {1, 2}. EachA; has entries normally distributed with zero —
mean and unitary variance, whibte are suitably generated to 10-3
always obtain feasible linear constraints. 0 1 2 3 4 5

Foralli!{1,...,n}, we use constant step-sizas = L;
with L; computed as in (16) for the synchronous algorithm and _ _ I
as in (23) for the asynchronous case. All the dual variables & * Evolution of the error on primal variables'”, i 1 { 1,...,n}, for
initialized to zero. ynchronous distributed algorithm.

In Figure 3 we show the convergence rate of the syn-
chronous distributed algorithm by plotting the difference be-
tween the dual cost(A(t)) at each iteration and the optimal
value ¢* = f* of problem (25). =

In Figure 4 we show the evolution of the difference between 5
the generated primal sequen{:eél) (t),... ot (t)} and the B
(unique) optimal primal solution:*. w

In Figure 5 we show the disagreement on the primal variable
r2 between neighboring nodés, ${2}. In particular, we plot
the norm ofz2 (¢) & 25 (¢), for all j | N , ${2}. 2.

Finally, in Figure 6 we show the convergence rate for the &
AsynPDD distributed algorithm. Since we are dealing with an /L
asynchronous algorithm, we normalize the iteration counter %
with respect to the total number of agentslt is worth noting sl
the cost evolution is not monotone as expected for the class
of randomized algorithms.

IR

ol

(J

V. CONCLUSIONS

In this paper we have proposed a synchronous and an asg)gah%m
chronous distributed optimization algorithms, based on dual

Evolution of the disagreement oy between agent? and its
s I N 2 for the synchronous distributed algorithm.



la" —a(t( 1))

Fig. 6. Evolution of the cost error for the asynchronous distributed algorithm.

decomposition, for a novel partitioned distributed optimizatiop,; |
framework. In this framework each node in the network is
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