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Abstract  

Smartphone applications are considered as the prime candidate for the purposes of large scale, low cost and long 

term sleep monitoring. How reliable and scientifically grounded is smartphone based assessment of healthy and 

disturbed sleep remains a key issue in this direction. Here we offer a review of validation studies of sleep 

applications to the aim of providing some guidance in terms of their reliability to assess sleep in healthy and clinical 

populations, and stimulating further examination of their potential for clinical use and improved sleep hygiene. 

Electronic literature review was conducted on Pubmed. Eleven validation studies published since 2012 were 

identified, evaluating smartphone applications’ performance compared to standard methods of sleep assessment in 

healthy and clinical samples. Studies with healthy populations show that most sleep applications meet or exceed 

accuracy levels of wrist-based actigraphy in sleep-wake cycle discrimination, whereas performance levels drop in 

individuals with low sleep efficiency (SE) and in clinical populations, mirroring actigraphy results. Poor correlation 

with Polysomnography (PSG) sleep sub-stages is reported by most accelerometer-based apps. However, multiple 

parameter-based applications (i.e., EarlySense, SleepAp) showed good capability in detection of sleep–wake stages 

and sleep related breathing disorders (SRBD) like obstructive sleep apnea (OSA) respectively with values similar to 

PSG. While the reviewed evidence suggests a potential role of smartphone sleep applications in pre-screening of 

SRBD, more experimental studies are warranted to assess their reliability in sleep-wake detection particularly. 

Apps’ utility in post treatment follow-up at home or as an adjunct to the sleep diary in clinical setting is also 

stressed. 

 

 

Key Words: smartphone sleep applications, actigraphy, polysomnography, sleep diary, OSA, SRBD.
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Introduction 

Sleep is a critical aspect of our health and wellbeing. Good quality sleep is essential for optimal cognitive 

functioning, physiological processes, emotion regulation and quality of life [1-7]. Current modern lifestyles, longer 

working hours and commute are constantly eroding our capacity to obtain and maintain good sleep with serious 

implications for emerging sleep related problems [8-12]. Therefore, looking for feasible methods able to provide 

objective, long term and large scale sleep monitoring remains on the highlight of the healthcare community and 

general population [13].  

Unfortunately, objective measures of sleep, like the gold-standard polysomnography, are high resource consuming 

and therefore impractical for this purposes. As pointed out by Ko and colleagues [14], technological advancements 

allowing for a wide range of electronic devices to be used for health tracking functions, including sleep monitoring 

have brought the promise of a system able to provide low cost, large scale sleep assessment closer than ever. 

Amongst the most popular bearers of such promise are current generation smartphones, which through a series of 

inbuilt sensors (i.e., accelerometers, gyroscopes, microphones, cameras) and enhanced computational capacity are 

able to record and score sleep data in real time, providing immediate information on one’s sleep and wellbeing [15]. 

Given their accessibility, ubiquity and personal nature, smartphones, amongst other technological devices, are 

considered the prime candidate to be utilized for these purposes. However, the first step in this direction requires 

addressing the issue of how reliable and how well and scientifically grounded are sleep reports yielded by 

smartphones. Recent experimental works and reviews [16-20] have noted how hardware and software technology 

for smartphone sleep monitoring is abounding, whereas validation studies on the reliability of their performance are 

far from catching up. Sleep applications of all kinds are currently available in the market, offering diverse 

functionality features, from helping individuals to improve their sleeping habits, to objectively assessing sleep 

parameters [17], and even aiding healthcare professionals in screening patients for sleep disorders (see [15] for a list 

of most common applications). In a recent work, Fietze [18] highlighted the necessity of further experimental 

studies, noting that despite the massive use and heightened public interest around this issue, there is a significant gap 

in research on sleep applications’ functions and limitations. Given the fast growing developments in this field, and 

the need for validation studies with various populations and in practical contexts, in this review we offer a state of 

the art update of the experimental evidence gathered so far on smartphone based sleep monitoring. Studies 
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conducted with both healthy and clinical samples, that assess sleep analysis reports of smartphones compared to 

standard methods of sleep assessment are considered. Our aim is providing some guidance in terms of the reliability 

of sleep applications in assessing healthy and disturbed sleep and stimulating further examination of their potential 

for improving sleep hygiene.  

Methods  

We searched PubMed with key terms including “smartphone applications”, “sleep monitoring”, “sleep quality”, 

“sleep related breathing disorder”. We eliminated articles that were not relevant to smartphone based sleep 

monitoring (e.g., other consumer sleep technologies, health tracking apps). To be included, the studies had to be in 

English language and meet the following criteria: (1) the technology considered regarded only sleep monitoring 

applications developed for smartphone using built-in and/or external (wearable or contact free) sensors and 

integrating a wide range of sleep parameters, (2) studies tested the performance of sleep applications that can be 

used without the need of a clinician, (3) studies examined the performance of sleep apps against (one or more) 

standard methods of sleep assessment such as PSG, actigraphy, sleep scales and questionnaires or clinical-diagnostic 

criteria (4) studies examined the performance of sleep applications with either healthy users or clinical populations, 

or both. The search was performed at/or before January 2018. We identified and discussed eleven validation studies 

published between 2012 and 2018, five conducted with healthy samples, five with clinical populations and one study 

conducted with both clinical and healthy samples (see Table 1 and Table 2). 

 

Overview of literature 

Prior to a detailed analysis and discussion of experimental studies, in the next sections we offer an overview of 

traditional methods of sleep assessment, which are currently used as standard criterion for evaluating the outcome of 

smartphone based sleep monitoring. In so doing, we refer to extant literature examining this issue from various 

perspectives and further extend existing work by providing an up to date review of main findings. 

Standard measures of sleep assessment  

Polysomnography (PSG) is the golden standard of sleep assessment. As the best and most complex assessment of 

sleep it involves multiple parameter recording (i.e., the EEG, EOG, EMG, ECG, auditory recordings of snoring, and 
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video recording of movements in sleep) allowing for in depth analysis and reporting of sleep architecture, including 

sleep stages and main sleep parameters. The complexity and accuracy of PSG sleep evaluation has earned it the 

status of the ‘gold’ method, meaning also the most expensive in terms of related costs of medical equipment and 

expertise, which make it impractical for large-scale and long-term sleep monitoring [13].  

Alternative methods like actigraphy offer a simpler approach with just one parameter recording. Actigraphy is an 

accelometer based device that makes sleep-wake assessments based solely on movement detection and scoring of 

body activity. While it does not asses sleep stages actigraphy can reliably detect wakefulness from sleep [21-23] and 

is widely used as a second best alternative to PSG when sleep staging is not required [13]. However, because it 

relies only on movement detection, actigraphy has the tendency to underestimate sleep onset latency (SOL), which 

may be effectively masked by lack of body movement while awake in the bed. It also tends to overestimate total 

sleeping time (TST) for the same reasons. Indeed, research shows that it’s accuracy varies greatly with the amount 

of quiet wakefulness during the night and with specific clinical populations (e.g. elderly people or individuals with 

poor SE) [24,25]. Because people with sleep disorders tend to have a highly fragmented sleep architecture, this 

further deteriorates actigraphy performance in accurately detecting sleep–wake cycles in clinical samples compared 

to healthy subjects. Although widely used as a second best and low cost alternative to PSG, actigraphy remains 

heavily dependent on specialized expertise for data scoring and interpretation, and is thus not as feasible for long 

term and large scale sleep assessment. 

It is well established that a comprehensive sleep assessment should include a comparison of both subjective and 

objective sleep measures. Subjective methods for assessing sleep involve data describing a person’s sleep patterns, 

usually captured through self-reports, sleep diaries and surveys. Such measures provide useful information and 

contribute to a comprehensive assessment of sleep quality, especially when combined with physiological monitoring 

(i.e., PSG), and may serve as pre screening layer for sleep disorders. For instance, the sleep diary is regarded as the 

“gold standard” for subjective sleep assessment and is widely used despite the lack of agreement on a common 

standard format [26]. While inexpensive and easily used for long term and large scale sleep assessment their 

reliability rests entirely on accurate self reports by the subject [27]. Sleep diaries remain fundamentally a measure of 

subjective perception of sleep allowing for an estimate of the possible rift between subjective perception and 

objective measurement of sleep, otherwise known as sleep misperception, which is a common phenomenon of 
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numerous sleep disorders [28-30]. Other examples of self reports include standardized questionnaires [31-34] to 

assess not only sleep quality but also eventual sleep disturbances. The Pittsburgh Sleep Quality Index (PSQI) [31] 

for instance is a widely used scale to assess sleep quality and disturbances over a one-month period. PSQI integrates 

a wide variety of factors associated with sleep quality, including subjective quality ratings, sleep time, efficiency 

(time spent trying to fall asleep), frequency, and severity of sleep-related problems. Another commonly used scale is 

the Epworth Sleepiness Scale (ESS) [32], which measures daytime sleepiness but is also reliably used as for 

screening sleep disorders [33]. Finally, other questionnaires are aimed to detect specific sleep disorders as is the case 

of the STOP–BANG questionnaire, which is a standard measure for screening of obstructive sleep apnea (OSA) 

[34]. 

 

Smartphone-based modalities for sleep assessment 

Most common smartphone-based sleep applications rely on common principles of standard sleep assessment 

including movement detection, audio and video recording and questionnaires. Through the presence of inbuilt 

accelerometers the smartphone can act as a modern actigraph to discern wake and sleep from the movement detected 

by the phone’s embedded sensors. Some smartphone applications compute their sleep assessments based on analysis 

of sound and noise present in the room while sleeping. While the accelerometer–based modality of sleep assessment 

through the smartphone is the closest reproduction of a standard method of sleep assessment, differences between 

actigraphy recorded from the phone and actigraphy used in standard sleep monitoring should not be overlooked. 

Research shows that actigraphic analysis results may depend not only on the type of actimeter used, but also on the 

targeted location of the device on a human body (i.e., writs, waist etc.) [35-38]. Furthermore, sleep applications may 

consist in simple digital implementation of questionnaires such as sleep scales and be used for the purposes of 

assessing sleep quality as well as to distinguish those who actually poorly and only briefly sleep from those who 

suffer from sleep disorders. An advantage of questionnaire-based sleep applications compared to paper or web based 

sleep scales is the constant availability of the phone which highly increases adherence to self monitoring and self 

report rates of subjects [39-40].  

Other sleep applications rely on multiple modalities (sensors plus questionnaires) and signal processing from a 

combination of built-in and external sensors that provide a wide range of physiological signal recordings. As a 
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result, such applications may yield more complex sleep analysis, including sleep stages (see review of Ong and 

colleagues [17]). Data from multiple sources of information can be directly derived through the phone in an 

unobtrusive way where the user is putatively removed from the monitoring process and does not need to interact 

with the recording device beyond normal phone user behavior. In this sense, smartphones would (ideally) represent 

a radically innovative, largely accessible and low cost sleep monitoring device able to record and score the data 

online without the need for specialized medical or technical assistance and possible to use for long term and large 

scale sleep assessment [15]. 

However, the scientific validity of sleep analysis yielded by smartphone applications remains an elusive notion as  

most sleep applications do not offer information on the analysis algorithm used for scoring sleep parameters [15]. 

Most of the apps’ summary reports usually consist in visual graphs that give users a qualitative impression of how 

well they may have slept and give aggregate sleep scores labeled in lay language which is difficult to translate in 

terms of standard sleep parameters. According to these conclusions another recent work [17] examined features of 

51 sleep assessment apps targeted for consumer use (excluding apps targeting health professionals) based on the 

highest user ratings received in respective store websites. Most of sleep applications provided data on sleep 

parameters, including duration, time awake, and time in light, medium, deep sleep, while reporting of REM and 

extra features was fairly limited. As noted by Behar and colleagues [15], such parameters per se are meaningless and 

unsuitable for direct comparison with standard sleep parameters calculated by standard sleep assessment methods. 

To overcome this barrier would require breaking in the ‘black-box’ of sleep applications and gaining access to the 

raw data.  

Given the interest and potential clinical significance, Behar and colleagues [15] examined whether smartphone sleep 

applications available in the market can be effectively used for screening and diagnosis of obstructive sleep apnea 

(OSA). From the analysis of the apps’ features and outputs, carried out in 2013, authors concluded that only 

applications implementing questionnaires commonly used for OSA screening such as STOP and STOP BANG [34] 

resulted valid for screening purposes, whereas accelerometer or microphone–based apps did not prove reliable for 

OSA screening. Recently, other authors [41] have focused on developing specific algorithm for smartphone 

enhanced snore and noise discrimination achieving good performance, potentially overcoming limits found by Behar 

and colleagues [15]. In the next sections we examine empirical evidence gathered so far on sleep application 
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validation studies conducted on healthy and clinical populations to test the reliability of sleep applications compared 

to standard sleep assessment methods (or clinical criteria).  

 

Reliability of smartphone apps in assessing healthy sleep: experimental evidence 

Detection of sleep – wake cycle  

Two PSG studies have compared a smartphone assessment of healthy sleep with the gold standard PSG. Bhat and 

colleagues [16] evaluated the reliability of sleep analysis provided by Sleep Time app (Azumio Inc., Palo Alto, CA, 

USA) in detecting overall sleep-wake as well as individual sleep stages of twenty healthy adults undergoing an 

overnight in-laboratory PSG. For analysis purposes, authors divided both the PSG hypnogram and app graph into 

15-min epochs which were then reassigned corresponding PSG and app stage. Absolute sleep parameters (SOL, 

TST, wake after sleep WASO, sleep stages and SE) were then scored and compared between the two methods. 

Results showed no correlations between the app and the PSG for SE, SOL, or sleep stage percentages for light sleep 

and deep sleep. The application underestimated light sleep, overestimated deep sleep and sleep latency and achieved 

very low accuracy in epoch-wise comparison (45.9%). However, sleep-wake accuracy (85.9%), sensitivity in 

detecting sleep (89.9%) and specificity in detecting wakefulness (50%) were similar to that observed with wrist 

actigraphy [42-45].  

More recently, Tal and colleagues [46] tested the performance of EarlySense (by Ltd., Israel) an application for 

smartphone, which relies on an external sensor device (ES) validated for measuring movement, heart rate, and 

respiration in clinical settings [47-49] and adapted for personal home use. The study included a total of 63 subjects 

of which 43 were patients studied in the sleep laboratory and 20 were healthy subjects recorded at home for 1 to 3 

nights with a portable PSG system in two conditions (7 participants were recorded while sleeping alone, whereas 13 

while sleeping with partner). Heart rate (HR), respiratory rate (RR), body movement, and sleep-related parameters 

such as TST, sleep stages [Sleep Latency (SL), Wake After Sleep Onset (WASO), Rapid Eye Movement (REM) 

sleep and Slow Wave Sleep (SWS)] calculated from the app were compared to simultaneously generated PSG data. 

Combined results from the 20 healthy subjects (data from patients will be reviewed in the next section of present 

work) showed a 76.7% sensitivity to detect wakefulness, 95.2% sensitivity to detect sleep (REM + SL + SWS), and 
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a 92.5% overall accuracy of sleep–wake detection. Notably, separate analysis for both setups (single subjects in bed 

at home and subject recorded with partner in double bed) showed similar results with overall wake sensitivity of 

72.1% and 79.0%, sleep sensitivity of 95.4% and 95.1%, and overall agreement 92.1% and 92.5% respectively.  

In a study examining three validated algorithms [50-52] for actigraphy scoring, Natale and colleagues[53] directly 

compared raw data provided by an iPhone accelerometer with those provided by wrist actigraphy. Participants were 

13 healthy subjects that completed four consecutive overnight recordings at home by wearing the actigraph on the 

non dominant wrist. Standard sleep statistics (TST, WASO and SE) were computed per each algorithm and 

compared across devices. Results showed satisfactory epoch by epoch agreement between the actigraph and 

smartphone accelerometer for all sleep parameters (with the exclusion of TST) and all algorithms, with the one 

improving that of Cole and colleagues[51] yielding a better performance. Another interesting finding of this study 

was the evidence that the ability of sleep application to detect TST, WASO and SE deteriorated with shorter TST 

(<6 hours) and lower SE (< 85%) and longer WASO (> 20 min), suggesting that the poorer the sleep, the less 

reliable results from sleep apps. This is in line with literature on writs actigraphy showing relatively poor accuracy 

in detecting disturbed sleep or sleep-wake cycles in clinical populations [24, 25]. 

More recently, Scott at al [54] investigated the accuracy of Sleep On Cue (SOC, by MicroSleep, LLC), a novel 

iPhone application that uses behavioral responses to auditory stimuli to estimate sleep onset. SOC emits a low-

intensity tone stimulus every 30 s via headphones to which the user responds by gently moving the phone. When an 

individual fails to respond to two consecutive tones, the app deems that the user has fallen asleep. Twelve young 

adults underwent polysomnography recording while simultaneously using the app, and completed as many sleep-

onset trials as possible within a 2h period following their normal bedtime. Results showed a high correspondence 

between the app’s and polysomnography-determined sleep onset (r = 0.79, P < 0.001). While the app generally 

overestimated SOL by 3.17 min (SD = 3.04), the discrepancy was reduced considerably when polysomnography 

SOL was defined as the beginning of N2 sleep. Despite the pilot nature of the study, authors highlight the potential 

relevance of using SOC for facilitating power naps in the home environment.  

Overall, findings from PSG studies on healthy populations show that sleep-wake discrimination of sleep apps is 

similar and in fact quite better than that reported for wrist actigraphy [42- 44]: ~90% sensitive and ~50% specific for 

sleep. While Sleep Time by Azumio overestimated sleep comparably with actigraphy, it performed poorly with 
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respect to sleep stage analysis when compared to PSG. Early Sense on the other hand showed highly accurate sleep 

stage analysis compared to PSG. The app analyzed sleep using an algorithm based on HR, RR and motion detection, 

which probably gives it an advantage over actigraphy and enables analysis of sleep stages. Accurate sleep onset 

detection was offered by SOC suggesting that sleep apps utilizing behavioral input from the user may be a 

promising tool in this regard.   

 

Detection of snoring 

Self-monitoring of snoring is considered a useful tool for maintaining good health among the general population. 

Stippig and colleagues [55] tested the ability of three apps (SnoreMonitorSleepLab, Quit Snoring, and Snore 

Spectrum) to distinguish between snoring events and other noises present in the environment, such as cars driving 

past the window, conversations in the bedroom, or even just the rustling of sheets and blankets. They compared the 

three apps with the ApneaLink Plus (ResMed Germany Inc., Martinsried, Deutschland) screening device which was 

attached to a test subject spending one night with and one night without the Oral Appliance Narval (ResMed 

Germany Inc., Martinsried, Deutschland). Although these apps have features potentially advantageous for clinical 

purposes (like audio recording of snoring and counting of snore events), results did not correspond with the 

ApneaLink Plus screening device, which led authors to conclude that their reliability and accuracy is insufficient to 

replace common diagnostic standards.  

 

Electronic questionnaires to assess sleep quality  

Sleep applications that are based on implementation of electronic questionnaire to assess sleep quality represent 

another modality of sleep assessment via smart phone, which relies on user behavioral responses. To our knowledge, 

only one study [56] has compared the sleep application Toss N Turn with an electronic version of the Pittsburgh 

Sleep Quality Index (PSQI) [31] combined with a Sleep Diary. Sleep diary is a useful methodology for sleep 

assessment as it yields information about a number of relevant sleep parameters and has also been used to test sleep-

detecting technologies including actigraphy [27]. In their study Min and colleagues [56] collected one month of 

phone sensor and sleep diary entries from 27 subjects in various sleep contexts and used this data to construct 

models for detecting sleep-wake cycles, daily sleep quality, and global sleep quality. More than 30 min differences 
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were found in bedtime, sleep duration, and wake time for all 3 parameters, which are larger than those of 

commercial actigraphs that have error rates lower than 10 minutes. 

 

<<    Please insert table 1 near here    >> 

 

Reliability of smartphone-based assessment of disturbed sleep: experimental evidence  

Detection of sleep – wake cycle  

Three PSG studies have tested reliability of smartphone-based sleep monitoring with clinical subjects. Patel and 

colleagues [20] examined the accuracy of Sleep Cycle (an accelerometer based app developed by Maciek Drejak 

Labs, now Northcube AB) by comparing its sleep analysis with PSG in a clinical population of 25 children (age 2–

14) undergoing overnight PSG for clinical suspicion of OSA. Sleep parameters (TST, SL, and time spent in sleep 

stages) were obtained by converting graph segments into minutes through comparison with the entire length of the 

graph. App graphs were then compared with the PSG. No significant correlation was found between TST or SL 

between the app and PSG although visual inspection of the app graphs and the PSG showed some correspondence. 

Only sleep latency from the PSG and latency to deep sleep from the app had a significant relationship (p = 0.03). 

Authors concluded that Sleep Cycle App is not yet accurate enough to be used for clinical purposes. 

Toon and colleagues [19] compared performance of a smartphone sleep application (MotionX 24/7), against 

combined actigraphy (Actiwatch2) and polysomnography (PSG) in a clinical pediatric sample of children and 

adolescents suspected for OSA, with and without comorbidities. Sleep outcome variables provided by the app were 

SOL, TST, WASO, and SE. Results of the paired comparisons between PSG and MotionX 24/7 revealed that SOL 

and WASO were significantly underestimated by MotionX 24/7 (12 and 63 min, respectively), resulting in 

significantly longer TST and greater SE (106 min and 17%, respectively). Based on these results, authors concluded 

that the MotionX 24/7 did not accurately reflect sleep duration or sleep quality, and should therefore be considered 

carefully before use in a clinical setting. More recently Tal and colleagues [46] tested the performance of EarlySense 

(Ltd., Israel) to calculate sleep stages (wake, REM, LS (N1+N2), and SWS) with 43 adult patients with various 

sleep disorders undergoing one overnight in-laboratory PSG. Results for this group showed a wakefulness sensitivity 
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of 83.4%, sleep sensitivity of 89.7%, and overall sleep accuracy of 88.5%. Detailed sensitivities for each sleep state 

were 40.0% for REM, 63.3% for light sleep (LS), and 53.6% for SWS. 

In sum, both Sleep Cycle and MotionX sleep applications performed poorly in terms of sleep stage analysis when 

compared to PSG, which may be due to the fact that most movement-based algorithms used in actigraphy and 

accelereometer based sleep applications cannot distinguish sleep stages. On the other hand, EarlySense performance 

was quite good in discriminating sleep stages with satisfactory results compared to PSG. This may be due to the 

scoring algorithm that integrated data from multiple signals including HR, RR and motion detection.  

 

Detection of snoring and SRBD  

Given the importance of snoring in signaling potential sleep disorders (i.e., OSA) and considering limitations of 

apps reviewed in their previous work [15], Behar and colleagues [57] developed SleepAp to the purpose of 

screening and monitoring of OSA. SleepAp uses internal phone sensors and an external pulse oximeter to record 

audio, activity, body position, and oxygen saturation during sleep, and implements the clinically validated STOP–

BANG questionnaire. The app ultimately classifies the user as belonging to one of two clasess: nonOSA (healthy 

and snorers) and OSA (mild, moderate and severe). The algorithms implemented by the app is based on signal 

processing and machine learning algorithms validated on a clinical database of 856 patients and was tested on 121 

patients. Compared to the clinicians’ diagnoses, the app’s classification on the sample tested had an accuracy of up 

to 92.2% when classifying subjects as having moderate or severe OSA versus being healthy or a snorer. Classifying 

mild OSA resulted the hardest and was associated with the lowest accuracy (88.4 %). Authors concluded that 

SleepAp is a first step towards a clinically validated automated sleep screening system, which could provide a new, 

easy-to-use, low-cost, and widely available modality for OSA screening.  

Nakano and colleagues [58] used a smartphone to monitor and quantify snoring and OSA severity. They used data 

from 10 patients to develop the program and validated it with 40 patients with mild, moderate and severe OSA. The 

smartphone acquired ambient sounds from the built-in microphone and analyzed it on a real-time basis using signal 

processing procedure similar that developed for tracheal sound monitoring to detect OSA. Results showed a high 

correlation of snoring time (percentage of total time) measured by the smartphone with the snoring time determined 

by the PSG (r = 0.93). The respiratory disturbance index estimated by the smartphone (smart-RDI) highly correlated 

with the apnea-hypopnea index (AHI) obtained by PSG (r = 0.94). The diagnostic sensitivity and specificity of the 
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smart-RDI for diagnosing OSA (AHI ≥ 15) were 0.70 and 0.94, respectively. Results were not as good for subjects 

with a less than 30 in AHI score, which indicates that its diagnostic accuracy may be insufficient for screening 

milder forms of OSA. Finally, Camatcho and colleagues [59] conducted a pilot study testing the performance of 

Quit Snoring app with two patients undergoing polysomnography. The second-by-second evaluation of smartphone 

snoring results compared with the snores detected by PSG showed substantial agreement with snoring sensitivity 

ranges from 63.6 % to 95.5 % and positive predictive values from 93.3% to 96.0%.  

Overall, apps specifically designed for snoring and OSA detection performed quite well compared to PSG and/or 

clinical criteria. In particular, two studies [57,58] showed good results in classifying subjects with OSA compared to 

healthy snorers with a 92.2% accuracy and r = 0.94, respectively. Both performed lowest when detecting mild OSA, 

which indicates that the app’s diagnostic accuracy may be insufficient for screening milder forms of sleep apnea.  

 

<<    Please insert table 2 near here    >> 

 

Discussion  

Validation studies conducted so far with healthy populations show that sleep applications meet or exceed accuracy 

levels of wrist actigraphy in sleep-wake cycle discrimination, with most apps similarly tending to overestimate 

sleep. Accuracy of sleep–wake discrimination tends to drop the more SE levels go down, thus mirroring low 

actigraphy performance with clinical populations [24,25]. Most sleep applications reviewed here showed poor 

correlation with PSG sleep sub-stages, which is expected given that most accelerometer based sleep applications do 

not provide sleep stage analysis. A better performance was provided by Early Sense [46] which showed good sleep 

staging capability with similar values compared to PSG and a high correlation of estimated TST. It should be noted 

that this application uses a contact-free external sensor (ES) previously validated for clinical use and then adapted 

for personal home use through the support of a mobile phone. Specifically, ES has been validated for heart rate and 

respiratory rate measurement and analyzes sleep using an algorithm based on three parameter recordings (HR RR, 

and motion detection), which clearly gives this application an advantage over single parameter based sleep 

applications. As shown by Natale and colleagues [53], different algorithms can yield different results, hence, 

developing algorithms specifically for smartphone sleep assessment should be the focus of future efforts of both 
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sleep app developers and clinical research community. Notably, findings of Tal and colleagues [46] resulted from 

the analysis of combined data of 63 subjects including patients (N=43), with various sleep conditions tested in 

laboratory, and healthy subjects (N=20) recorded at home. However, separate group analyses showed similar results  

despite the different sleep conditions which further extend the validity of this application in accurately assessing 

healthy and disturbed sleep.  

Among apps designed for snoring and OSA detection, SleepApp showed a good performance, reaching a 92.2% 

accuracy level in classifying subjects with OSA moderate and severe compared to healthy snorers [57]. Similarly, 

high correlation between smartphone and PSG was found by Nakamo and colleagues [58] in terms of total snore 

time (r = 0.93) and AHI (r = 0.94). In both cases a good diagnostic sensitivity and specificity was found for 

diagnosing severe and moderate OSA, whereas a lower performance in detecting patients with mild OSA was 

reported. Other applications designed for snore detection resulted generally not accurate enough in distinguishing 

snore from non snore events, especially when used in real-life settings. Although Quit Snoring [59] showed a good 

performance (accuracy rage 63.6 - 95.5 % and positive predictive values range 93.3 - 96.0%), the pilot nature of the 

study makes it difficult to reach any conclusive results. As shown by Shin and Cho [41] developing snore detection 

algorithms for smartphone can increase apps performance in reliably distinguishing between snoring and non 

snoring noises. The algorithm they designed showed a 95.07% accuracy in detection of snoring and non-snoring 

sounds. Hence, more studies focusing on algorithms specifically developed for smartphone are needed in order to 

increase apps’ reliability in monitoring and detecting snoring and SRBD.  

A less taken validation path includes the use of sleep scales and self reports, considering that most of the sleep 

applications are designed to offer descriptive statistics of sleep quality and assist healthy users in improving sleep 

hygiene. More studies are needed in this direction. As put forth by Griesby–Toussaint and colleagues [60], sleep 

apps can serve as tools for behavior change through features specifically designed to encourage healthy sleeping 

habits. It is also possible that long term use of smartphone sleep monitoring can promote in the long run sustainable 

sleep hygiene among healthy users and also assist in the management of sleep related problems [59].  

While representing an important step towards validation of smartphone sleep assessment, studies reviewed here 

present a number of limitations. For one thing, reliance on ‘black box’ phone actigraphy and lack of raw data (with 

the exception of Natale and colleagues [52], Behar and colleagues [57] and Namako and colleagues [58]) may have 
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limited studies’ explanatory power. Raw data access is also crucial because new algorithms are continually being 

developed that can enhance information extraction from single parameter recording [38,53,41]. Lack of access to 

raw data and proprietary rights on algorithms used by sleep apps has lead authors to manually extract the app staging 

data in epochs of much larger duration than those used clinically [16]. In most studies reviewed here (except for 

Toon and colleagues [19]and Tal and colleagues [46],) data from the app were acquired by physically measuring the 

length of the graphs in an analog fashion. This process is not bias free since individual judgment may heavily 

influence the process of sleep stage reassignment. Furthermore, almost all studies have very small samples of 

variable age range, and may thus suffer from high internal variability in terms of sleep architecture, known to vary 

considerably with age [61]. In two studies the variability is further increased by presence of diverse sleep disorders 

in samples of 25 [20] and 43 patients [46]. In the end, most studies focused on single app testing by comparing it 

with one standard sleep assessment method (except for Toon and colleagues [19] that used PSG and actigraphy, 

Behar and colleagues [57] who used clinical criteria and standard questionnaire, and Stippig and colleagues [55] 

who tested 3 apps). Combining more methods including objective and subjective sleep assessment with healthy and 

clinical samples might be a useful approach in future validation studies of smartphone sleep monitoring.  

 

Conclusion 

Altogether, results from validation studies support the conclusion that when it comes to reliable use of smartphones 

for monitoring healthy and disturbed sleep it may be useful to reframe the question as rightly pointed out by Bianchi 

[62] and ask which app, what for, and in what condition. For most of sleep applications reviewed here the space for 

reliable use may be that of traditional wrist actigraphy, which despite limitations has been widely accepted as 

appropriate for detecting sleep-wake cycles. In terms of sleep staging capacity, evidence shows that relying on 

external sensor devices (as in the case of EarlySense [46]) validated and adapted for personal home use may be 

advantageous and increase smartphone applications’ accuracy in sleep-stage detection. Also, developing scoring 

algorithms specifically for smartphone sleep monitoring may enhance apps’ capacity to yield accurate sleep-wake 

and SRBD detection from one or more parameter recordings (as in the case of SleepApp [57]). While the accuracy 

of most sleep applications in detecting sleep–wake cycles tends to drop in individuals with low SE and is generally 

scarce in clinical populations, studies reviewed here suggest a promising role of apps in detection of snoring and 
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sleep related breathing disorders (i.e., OSA). Using a smartphone to measure snoring may be useful not only for 

OSA screening but also for evaluating the status of snoring as a detrimental symptom for sleep and other health 

related problems in the general population. More validation studies are certainly needed for sleep apps to carve out a 

proper space large scale and low cost pre screening of poor sleep patterns and SRBD. 

Nonetheless, smartphone sleep monitoring can be reliably used in adjunct to or as a substitute of sleep diaries in 

clinical setting or in home for post diagnoses long-term monitoring, which is especially relevant for sleep disordered 

individuals who wont or cannot adhere to self-reporting [40]. It can complement sleep diary when used as outcome 

for intervention studies, and can serve as a form of biofeedback, as reported previously for patients with 

misperception insomnia [28] or be used for administering specific sleep retraining therapies for persons suffering 

from chronic insomnia [59]. The potential of long term use of smartphone sleep monitoring to promote sustainable 

sleep hygiene among healthy users in real life contexts remain important avenues for future research.  
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Table 1       

Characteristics and results of experimental studies on reliability of smartphone based monitoring of healthy sleep   

  Bhat et al. (2015)  Tal et al. (2017)  Natale et al.(2013) Scott et al. (2018)  Stippig et al. (2015)  Min et al. (2014) 

Sample  
20 healthy subjects 
(age 22 to 57 years)  

 23 healthy subjects  
(age 24 to 65)  

13 healthy 
subjects (Mean 
age=23 years) 

12 healthy adults 
(mean age = 21.67 
years old) 

1 healthy subject  
27 healthy subjects (age 
20 to 59 years) 

Sleep 
Application/ 
Device 
features 

Sleep Time App 
(accelerometer based 
) by Azumio Inc., 
Palo Alto, CA, USA.  

Smartphone 
Application + 
EarlySense (Ltd., 
Israel)  contact free 
sensor  

Tri-axial 
accelerometer 
(LIS302DL) 
supported by 
IPhone (Apple)  

Sleep On Cue (SOC, 
by MicroSleep, LLC) 
application emiting 
low intensity sounds 
through earbud head 
phones 

SnoreMonitorSleepLab 
(Adactive AB, ©Leif 
Soderberg,Sweden);Quit 
Snoring (by Pointer 
Software Systems, Israel); 
Snore Spectrum (ZURLIN 
Technologies), all microphone 
based 

 Toss  ‘N’ Turn  (TNT), 
app for  Android (7 
sensor inputs:  
accelerometer, 
microphone, ambient 
light etc ). 

Hardware 
features  

Personal Iphones 
(models 4S and 5) 
running iOS5.0 or 
newer 

One smartphone and 
one contact free, under-
the-mattress 
piezoelectric sensor 

IPhone (Apple). 
Placement near 
the pillow  

iPhone 5s (iOS 8.0 
operating system) 
with ear bud 
headphones 
(Skullcandy, model: 
S2DUHZ-335) 

iPhone 4, iPhone 5, iPadmini, 
iPad 2ndGeneration 

Android  phone  
(version  4.0+)  

Sleep 
Parameters 
yielded by 
Device/App  

Graphic 
representation of 
Sleep Stages: Wake, 
Light Sleep, Deep 
Sleep.  

HR; RR; TST; Sleep 
Stages: Wake, REM, 
nREM. 

SOL; TST; 
WASO; SE 

SOL  
Snoring events (audio 
recording and count) 

Bed time; Sleep 
duration; Wake time  

Sleep 
Assessment  

 PSG   PSG  
Wrist actigraphy: 
Actiwatch AW64  

 PSG  
ApneaLink Plus (ResMed 
Germany Inc.,Martinsried, 
Deutschland) screening device 

Subjective measures: 
Sleep Diary; PSQI 
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Study Design  

One  full night in-
laboratory 
PSG study. Prior 
familiarization with 
app for 5 nights at 
home. 

One full night in-
laboratory PSG 
recording + PSG 
recording in home 
setting  

Four consecutive 
overnight 
recordings at  
home 

One over night in-
laboratory PSG 
recording   

One night with and one night 
without the OA Narval 
(ResMed Germany Inc., 
Martinsried, Deutschland) 

One month study of 
sleep app sensor data 
collection in a variety of 
naturalistic sleep 
contexts + PSQI 
questionnaire  

Sleep 
Parameters 
considered 

Sleep Stages; TST; 
WASO; SE; 
Sensitivity and 
Specificity for sleep-
wake detection.  

TST; Sleep Stages: 
Wake, REM, nREM; 
Sensitivity; Specificity; 
Accuracy 

SOL; TST; 
WASO; SE 

SOL  
Snoring events (audio 
recording and count) 

Sleep  quality  features  
based  on  four  factors  
of PSQI: Sleep duration, 
latency, efficiency, and 
disturbances  + global  
sleep  quality  

Correlation 
between 
sleep 
parameters  

Relatively high 
sensitivity (89.9%) 
for sleep-wake 
detection but  poor 
specificity (50%). 
No significant 
correlation between 
PSG and sleep app 
absolute  parameters. 

High correlation 
between TST estimated 
with SE and PSG. 
Good sensitivity 
(92.5%), specificity 
(80.4%)  and accuracy 
(90.5%) in sleep 
detection of SE 
compared to PSG. 
Good sleep staging 
capability. 

Satisfactory epoch 
by epoch 
agreement for 
SOL, WASO, SE 
but not for TST 
between  
actigraph and 
smartphone 
acceleromenter. 

High degree of 
correspondence 
between PSG-
determined sleep 
onset and Sleep On 
Cue sleep onset                     
(r = 0.79, p < 0.001).         

The results of the apps did not 
correspond with the ApneaLink 
Plus screening device. 

Differences of more 
than 30 min were found 
for all 3 parameters: in 
bedtime, sleep duration, 
and wake time. 

Limitations 

Small sample; 
Variability of setting; 
Variability of 
hardware; Raw data 

High variability of 
sample; High 
variability of setting; 
Raw data  

Small sample 
Small sample; Raw 
data 

Small sample; Raw data; 
Variability of hardware 

Small sample; 
Variability of setting; 
Variability of hardware; 
Raw data  

Abbreviations: PSG = Polysomnography; TST = total sleep time; SOL = sleep onset latency;  WASO = wake after sleep onset; SE = sleep efficiency; HR = heart rate;  
RR = respiratory rate; REM = rapid eye movement;  nREM = non rapid eye movement; LS= lights sleep; SWS= slow wave sleep; PSQI = Pittsburgh Sleep Quality Index; 
OA= Oral Appliance. 
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Table 2       
Characteristics and results of experimental studies on reliability of smartphone based monitoring of disturbed sleep  

  Patel et al. (2017)  Toon et al. (2016) Tal et al. (2017)  Behar et al. (2015)  Nakano et al. (2014) Camatcho et al. (2015)  

Sample  
25 children suspected 
for OSA (age 2-14 
years) 

78 children and 
adolescents (aged 3 to 
18 years) suspected 
for OSA  

43 patients with sleep 
disorders (age 17 to 
72 )  

121 patients  

40 patients (mean age 
47.9 years) with mild, 
moderate, and severe 
OSA   

2 patients  

Sleep 
Application/ 
Device 
features 

Sleep Cycle App 
(accelerometer based) 
by Maciek Drejak 
Labs, now Northcube 
AB. 

 MotionX 24/7 App 
(accelerometer based) 
+ Wrist worn 
actigraph UP by 
Jawbone 

Smartphone 
Application + 
EarlySense (Ltd., 
Israel)  contact free 
sensor  

SleepApp Android 
phone application 
(accelerometer and 
microphone based) + an 
external pulse oximeter, 
WristOx2 3150 (Nonin 
Medical Inc., MN, USA) 
+ STOP Bang 
questionnaire  

Smartphone program 
(microphone based)  

Quit Snoring’ by Pointer 
Software Systems  
(microphone based) by 
Ramat Yishai, Israel 

Hardware 
features  

One IPhone 4S 
running SCA. 
Placement on the bed  

IPhone 4 (Apple Inc., 
Cupertino, CA) 

One smartphone and 
one contact free, 
under-the-mattress 
piezoelectric sensor 

Android (versions 2.3.3 
to 4.2.2) 

SH-12C, Sharp 
Corp.Japan, Android 
system (version 2.33)  

Adapted for for iOS 9.0 
or later (compatible with 
iPhone, iPad, and iPod 
touch) 

Sleep 
Parameters 
yielded by 
Device/App  

Graphic 
representation of 
Sleep Stages: Wake,  
Sleep, Deep Sleep.  

Time awake; Light 
Sleep; Deep sleep; 
Sleep Eficiency 

HR; RR; TST; Sleep 
Stages: Wake, REM, 
nREM. 

Classification in non 
OSA (healthy and 
snoring)  and OSA 
(mild, moderate, severe)  

Snore time (% total time); 
RDI  

Snoring events 
(recording and 
playback); Recording 
Sensitivity 

Sleep 
Assessment  

 PSG  
PSG + Actigraphy: 
Actiwatch2  

PSG  PG  PSG  PSG  
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Study Design  
One full night in-
laboratory PSG 
recording  

One full night in-
laboratory PSG 
recording + 
simultaneous 
actigraphy  

One full night in-
laboratory PSG 
recording + PSG 
recording in home 
setting  

Clinician's diagnosis of 
home-based PG 
overnight recording 

One over night in-
laboratory PSG 
recording   

One over night in-
laboratory PSG 
recording   

Sleep 
Parameters 
considered 

Sleep Stages; TST, 
SOL; Time spent in 
each stage  

SOL; TST; WASO; 
SE ; Sensitivity; 
Specificity; Accuracy 

TST; Sleep Stages: 
Wake, REM, nREM; 
Sensitivity; 
Specificity; Accuracy 

ODI; AC; AU; DE 
Snoring time (% TST); 
AHI 

Snoring events; 
Recording Sensitivity 

Correlation 
between 
sleep 
parameters  

Correlation of SL 
from the PSG and 
latency to deep sleep 
from the app was 
significant (p=.03). 
No significant 
correlation between 
TST or SL between 
the app and PSG.   

SOL and WASO were 
significantly 
underestimated (12 
and 63 min) resulting 
in significantly longer 
TST and greater SE 
(106 min and 17%) 
when assessed by the 
MotionX 24/7 
compared to PSG. 

High correlation 
between TST 
estimated with SE and 
PSG. Good sensitivity 
(92.5%), specificity 
(80.4%)  and accuracy 
(90.5%) in sleep 
detection of SE 
compared to PSG. 
Good sleep staging 
capability. 

Compared to the 
clinician's diagnosis the 
app showed an accuracy 
of 92.2% when 
classifying subjects as 
having moderate or 
severe OSA versus 
being healthy or snorer.  

High correlation of 
snoring time measured 
by the smartphone with 
the PSG snoring time (% 
TST, r = 0.93, n = 40). 
High correlation of 
smart-RDI with the AHI 
obtained by PSG (r = 
0.94). Diagnostic 
sensitivity of 0.70 and 
specificity 0.94 of smart-
RDI for  OSA (AHI ≥ 
15). 

Compared to PSG 
snoring sensitivities 
ranged from 64 to 96 %, 
and snoring positive 
predictive values ranged 
from 93 to 96 %. 

Limitations 
Small sample; Raw 
data 

High variability of 
sample; Raw data  

High variability of 
sample; High 
variability of setting; 
Raw data  

Small sample size 
Small sample size; 
Sound proof 
environment 

Small sample; Raw data 
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Abbreviations: PSG = Polysomnography; PG = Polygraphy; TST = total sleep time; SOL = sleep onset latency;  WASO = wake after sleep onset; SE = sleep efficiency; 
HR = heart rate;  RR = respiratory rate; REM = rapid eye movement;  nREM = non rapid eye movement; LS= lights sleep; SWS= slow wave sleep; PSQI = Pittsburgh 
Sleep Quality Index; OA= Oral Appliance; OSA= obstructive sleep apnea; RDI= respiratory disturbance index; AHI=apnea - hypo apnea Index; ODI= oxygen 
desaturation index; AC= accelerometer; AU= audio; 
DE= demographics. 

 

 

 


