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Order-of-Arrival of Tagged Objects
Stefania Bartoletti, Member, IEEE, Nicolò Decarli, Member, IEEE, Davide Dardari, Senior Member, IEEE,

Marco Chiani, Fellow, IEEE, and Andrea Conti, Senior Member, IEEE

Abstract—The order-of-arrival (OOA) of a stream of objects

moving along a monitored direction is important for many

decision operations in logistic and industrial applications. As

an example, the dispatch of luggage in airports requires to

determine their OOA at checkpoints; as another example, the

automatic steering of items in supply chains requires to sort

and identify them while moving on a conveyor belt. This paper

establishes a general framework for determining the OOA of

objects that are moving along a monitored direction via radio-

frequency identification (RFID) systems. Three techniques for

OOA tracking are proposed and developed for objects equipped

with RFID tags possessing ranging capabilities. The benefits of

the proposed techniques are experimentally validated based on

measurements gathered with a RFID system operating in an

indoor environment.

Index Terms—Sorting, tracking, multi-hypothesis testing,

RFID, localization.

I. INTRODUCTION

Location awareness plays a key role for various applica-
tions in different sectors, including intelligent transportation,
and autonomous logistics (the so-called Industry 4.0). As an
example, network localization and navigation is employed for
handling goods in warehouses, in the automatic steering of
items in supply chains, and in the routing of luggage in
airports. The sorting and tracking of goods and things moving
along a known trajectory, is an essential process for all the
aforementioned applications and is referred to as order-of-
arrival (OOA) tracking [1]–[3].

To determine the OOA of a stream of objects, each object
is detected and identified within the stream and then they are
sorted in the direction of movement for successful dispatch
or delivery. To this aim, they are equipped with one or more
tag devices. The OOA for a stream of objects is a sequential
decision problem, where the decision is made with respect
to multiple hypotheses representing all the possible ordering,
while the sequentiality is given by the update of the decision
over time [4]. The filtering of multiple measurements gathered
at different time instants enables the refinement of the ordering
decision over time. In the following, we will refer to this
problem as OOA tracking.
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Fig. 1. Top view of a monitored area in a conveyor belt; tags are represented
by red rectangles on the objects, the readers are in position r1, r2, and r3.
Note that tags can be located on any face of the objects.

Current solutions employ barcode laser scanners, camera
barcode readers, vision systems, and RFID readers [5]–[7].
Localization with Gen-2 ultra-high frequency (UHF) RFIDs
is based on received signal strength indicator (RSSI), phase
(also at different operating frequencies), or angle-of-arrival
(AOA) measurements [8]–[14]. The ultra-wideband (UWB)
technology [15]–[20] has been recently proposed for new
generation RFID systems as it provides high ranging accuracy
even in harsh propagation environments [21]–[25]. UWB-
based RFID systems rely on the exploitation of the backscatter
modulation1 and the measurement of the time-of-arrival (TOA)
of the backscattered signals [26]–[28]. Fig. 1 illustrates an
example of ordering system for tagged objects moving on a
conveyor belt.

The capability of a system to succeed in determining the
OOA in a stream of objects depends on both the workload
conditions (i.e., number of objects in the monitored area,
stream velocity, sorting rate, and minimum distance between
consecutive objects) and the network intrinsic properties (net-
work topology, wireless medium, and communication and
localization signalling). As for the workload conditions, the
distance among objects, the speed, and the update rate for iden-
tification and sorting are key parameters for the OOA tracking

1The tag is powered by the interrogation signal transmitted by the infras-
tructure composed of interrogation devices (readers).
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and its efficiency. As for the network intrinsic properties, the
quality of communication between the tag and reader heavily
impacts the success probability of determining the OOA of the
stream. For example, in range-based OOA tracking, the quality
of the range estimates is affected by wireless propagation
conditions such as multipath and non-line-of-sight (NLOS)
conditions due to other objects obstructing the path between
the reader and the tag [29]–[37].

To the authors’ knowledge, there are only a few studies
related to the OOA via RFID systems, and they focus on
specific issues such as workload conditions [5]. However, a
mathematical framework to determine the sorting performance
accounting for all the aforementioned aspects is not available.
Such a framework would serve to design signal processing
techniques jointly considering workload conditions and net-
work intrinsic properties as well as to get insights on the main
parameters affecting the performance.

In this paper, a framework for design and analysis of
systems aiming to track the OOA of a stream of objects is
developed. The sorting decision problem is addressed and a
tractable model for devising low-complexity solution is de-
rived. The main contributions of the paper can be summarized
as follows:

• the introduction of a general framework for OOA tracking
via RFID systems;

• the proposal of an energy profile-based Bayesian filtering
for OOA tracking;

• the comparison of the proposed energy profile-based
method with range-based algorithms;

• the experimental validation of the proposed framework
and signal processing is provided for a case study with
UWB-UHF RFID.

The remainder of the paper is organized as follows. Sec. II
formulates the problem; Sec. III introduces the general frame-
work; Sec. V proposes three location-based algorithms for
processing for UWB-UHF RFID; Sec. VI presents the case
study; and, finally, Sec. VII gives our conclusion.

Notation: The kxk indicates the norm of the vector x and
|·| denotes the cardinality of a discrete set or the measure
of a continuous and measurable set. The P {A} indicates
the probability of the event A. The �(x,q) represents the
Hamming distance between the vectors x and q (i.e., the
number of elements for which they differ from each other).
The function f(x|y) represents the probability density function
(PDF) of the random variable (RV) X conditional on the RV
Y calculated at X = x and Y = y. Table I defines the main
symbols used throughout the paper.

II. PROBLEM FORMULATION

The problem of tracking the OOA of tagged objects is now
formulated: first, the network model is presented, then the
performance metrics are defined.

A. Network Model
To easily account for curvilinear streams, consider a con-

veyor belt carrying No objects laying on its surface Ac ⇢ R2.
The objects are indexed by the set O = {1, 2, . . . , No}.

The ith object is equipped with a tag located at x
(k)
i =⇥

x
(k)
i,1 , x

(k)
i,2 , x

(k)
i,3

⇤
2 V ⇢ R3 at time tk, where V = Ac ⇥

(0, hmax] depends on the conveyor surface and objects’ max-
imum height hmax. The conveyor is monitored by Nr readers
indexed by the set R. The rth reader is located at rl 2 R3.
The readers transmit interrogation signals to detect, identify,
and localize the tags in the monitored area.2 Fig. 1 illustrates
an example of conveyor with R = {1, 2, 3}.

The mobility of the conveyor is described by the trajectory

x
(2)
i = c(x(1)

i , t2 � t1) (1)

which represents the position at time t2 � t1 of the ith
tag moving from x

(1)
i 2 V at time t1. As an exempli-

fying case, consider the case of constant velocity vector
ẋ
(k)
i (t) = [v, 0, 0] 8k, and a rectilinear stream for which

x
(2)
i = c(x(1)

i , t2 � t1) = x
(1)
i + [v(t2 � t1), 0, 0].

Consider a coordinate chart that maps the Cartesian co-
ordinate x

(k)
i 2 R3 into the curvilinear coordinate ⇠(k)i =

⇠
(k)
i,1 ⇠1+⇠

(k)
i,2 ⇠2+⇠

(k)
i,3 ⇠3, where ⇠1, ⇠2 and ⇠3 are the local basis

vectors for the curvilinear coordinate system.3 The curvilinear
system is defined such that the first vector ⇠1 changes direction
point to point according to the conveyor direction. Based on
this definition, the first coordinate of the curvilinear system
determines the OOA of the No tagged objects. In particular,
the mapping between the Cartesian coordinate x

(k)
i and the

first curvilinear coordinate ⇠
(k)
i,1 is defined through the map

function m : R3 ! R as

⇠
(k)
i,1 = m

�
x
(k)
i

�
. (2)

In the exemplifying case with ẋ(t) = [v, 0, 0], the local basis
vectors are ⇠1 = b1, ⇠2 = b2, and ⇠3 = b3, where b1,
b2, and b3 are the basis vector for the Cartesian coordinate
system. The mapping is ⇠

(k)
i,1 = m

�
x
(k)
i

�
= x

(k)
i,1 and we are

interested in ordering the vector [x(k)
1,1, x

(k)
2,1, . . . , x

(k)
No,1

] at time
tk. By means of (2) one can model any stream shape as a
1-D rectilinear case and then remap the results into the initial
geometry.

In the general case, the OOA of the objects is represented
by the vector o = [o1, o2, . . . , o|O|!], whose hth element oh =
l indicates that the lth object is the hth along the conveyor
direction, i.e.,

oh = argmax
i/2{o1,...,oh�1}

n
⇠
(k)
i,1 : i 2 O

o
. (3)

Note that if the conveyor mobility described in (1) is deter-
ministic and known exactly, the tag position can be determined
at any time based on its initial position and the elapsed time.
Therefore, the vector o does not depend on the time index k.

The OOA tracking consists of (i) detecting the interrogated
tags and (ii) estimating their OOA. In general, a subset D ⇢ O
is detected among those interrogated, therefore we define

2In case of multiple tags per object, the extended model is straightforward,
by defining the object position as a function of the corresponding tags’
positions (e.g., spatial averaging).

3A basis whose vectors change their direction from point to point is called
a local basis. Basis vectors that are the same at all points are global bases,
and can be associated only with linear or affine coordinate systems. Lee:B13
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TABLE I
MAIN SYMBOLS USED THROUGHOUT THE PAPER

Symbol Description Symbol Description
No number of objects z vector of measurements from the network of readers
Ac surface area of the conveyor ⌦j set of possible ordering for |D| = j

O index set of the object f(z|o) PDF of the measurements given o

x
(k)
i position of the tag for the ith object at time k in the Cartesian

coordinate system
⇤(o|z) likelihood function for o given the measurement vector

⇠
(k)
i position of the tag of the tag for the ith object at time k in the

curvilinear coordinate system
Hx(g(x)) Hessian matrix of g(x) with respect to x

m(·) map function from the Cartesian to the curvilinear coordinate system �(p,q) Hamming distance between p and q

o vector representing the OOA of the objects ⌧ (k) vector of estimated TOAs at time index k

D index set of detected objects b
(k) vector of energy samples at time index k

od as the OOA vector related only to the detected objects.
For example if o = [5, 2, 1, 3, 4] and D = {1, 3, 5} then
od = [5, 1, 3]. Therefore, the estimated OOA vector bod is an
estimate of od. The detection and estimation phases rely on
a set z =

�
z
(k)
r
 

of measurements taken by the network of
readers, where z

(k)
r is the set of measurements taken by the rth

reader at time index k = 1, 2, . . . , Nm within an observation
interval Tobs = NmT ; Nm is the number of measurements; and
T is the time interval between two subsequent measurements
from the same reader. For example, the measurements can be
the samples of the signal communicated between the reader
and the interrogated tags in a RFID system. The number of
measurements Nm and therefore the observation time impact
the sorting time of the system (together with the number of
interrogated tags and the number of readers, especially if the
signal processing is centralized).

B. Detection and Ordering
If the detection and ordering problems are considered

jointly, the OOA can take value within a set ⌦̆ =
SNo

j=1 ⌦j [;
where ⌦j is the set of possible ordering for |D| = j. In
particular, there are

�No
j

�
possible grouping of elements in D

and j! possible permutations of the elements in o given D
when |D| = j. In total, the number of possible results of the
OOA tracking is

���⌦̆
��� =

NoX

j=0

No!

(No � j)!
(4)

which grows exponentially with No. For example, if
No = 3 then i 2 O = {1, 2, 3}; ⌦̆ =
; [ {[1], [2], [3], [1, 2], [2, 1], [1, 3], [3, 1], [3, 2], [2, 3], [1, 2, 3],
[1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]}, which corresponds
to

���⌦̆
��� = 16 as given by (4). Then, the detection and

estimation problem corresponds to an M -ary hypothesis test
with M =

���⌦̆
���, where

H0 : o = ;
Hi : o = !i 8!i 2 ⌦̆\; . (5)

In case of ordering after detection (i.e., the detection and
ordering problem are treated sequentially), the hypothesis test
can be substantially simplified given the set D of detected
objects and the number of hypotheses decreases significantly
with respect to the case where the detection and ordering are

treated jointly. Therefore, in the following the detection and
sorting problems are considered sequentially for computational
complexity reasons.

Given D, the estimated order vector od can take |D|!
possible values od 2 ⌦d =

�
!1,!2, . . . ,!|D|!

 
, with !i =

[!i1,!i2, . . . ,!i|D|].4 Therefore, the estimated OOA bod can
take |D|! possible outcomes bod 2 ⌦d =

�
!1,!2, . . . ,!|D|!

 
.

For example, if o = [5, 2, 1, 3, 4] and D = {1, 3, 5} then
⌦d = {[1, 3, 5], [1, 5, 3], [3, 1, 5], [3, 5, 1], [5, 1, 3], [5, 3, 1]}.

This corresponds to an M -ary hypothesis test with M =
|D|! where the jth hypothesis is

Hj : od = !i 8i 2 ⌦d . (6)

C. Performance Metrics

The system succeeds in ordering a stream of objects, when
the detected elements of the vector o are successfully ordered
in the vector bod. The success probability is

Ps(od) = 1�
|D|!X

i=1

�(od,!i)

|D| P {bod = !i|od} (7)

where �(p,q) denotes the Hamming distance (i.e., the number
of elements in which two vectors differs from each other)
between p and q.

To provide a performance benchmark for the success prob-
ability in (7), we approximate P {bo = !i} for large sample
size |z|. In particular, given o = !i

P {bo = !j} = P {decide Hj |Hi} ' P {x̂0,i 2 Pj |Hi} . (8)

It is known that, given the true value x, the maximum
likelihood estimator converges in distribution as

p
|z|(x̂0,i � x) ⇠ N (0, I�1) (9)

where I is the Fisher information matrix [4], [17]. Therefore

Ps(o) ' 1�
|D|!X

i=1

�(od,!i)

|D|
1

|Pi|

Z

Pi

Z

Pj

�

✓
x̃

���x,
I
�1

N

◆
dx̃dx

(10)

where �(x|µ,�2) is the probability density function of a
Gaussian RV with mean µ and variance �

2.
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Fig. 2. Example illustration for P1 and P2 defined by x1,1 and x2,1 when
No = 2 and xi = xi,1 2 R. If x = [⇠1, ⇠2] 2 P1, then o = !1 = [1, 2],
whereas if x 2 P2 then o = !2 = [2, 1].

III. OOA TRACKING

The decision process for the OOA tracking is now described.
Define x

(k) = [x(k)
1 ,x

(k)
2 , . . . ,x

(k)
|D|

] as the vector of the
detected but unknown tags’ positions at time k. All the pos-
sible values of x(k) are contained in a subspace P ⇢ R3|D|!.5
Specifically, the values of x

(k) for which oi = !i belong to
a subspace

Pi =
n
x
(k) s.t. m(x(k)

!i,1
)  m(x(k)

!i,2
)  . . .

m(x(k)
!i,(No�1)

)  m(x(k)
!i,No

)
o
. (11)

with Pi ⇢ P and Pi \ Pj = ;. Then, the hypothesis test is

Hi : x
(k) 2 Pi (12)

where the hypotheses are composite and non-nested with
respect to the parameter x

(k). For example, when No = 2
and m(x(k)

i ) = x
(k)
i,1 the binary hypothesis testing is

H1 : x(k) 2 P1

H2 : x(k) 2 P2 (13)

with P1 =
n
[x(k)

1 ,x
(k)
2 ] : x(k)

i,1  x
(k)
i,2

o
and P2 =

n
[x(k)

1 ,x
(k)
2 ] : x(k)

i,2 < x
(k)
i,1

o
. Fig. 2 illustrates the case with

x
(k)
i = x

(k)
i,1 2 R.

Following a likelihood-based approach, given a dataset z of
observations the estimation of the order vector is bo = !i

ı̂ = argmax
i

P {z|Hi} = argmax
i

⇤(!i|z) (14)

where ⇤(!i|z) is the likelihood function of the vector z for
the ith hypothesis.

Consider z =
⇥
z
(1)

, z
(2)

, . . . , z
(Nm)

⇤
, where z

(k) contains
the measurements z

(k)
l,j with l 2 R and j 2 D taken by

the lth receiver for the jth tag at time k. In particular, we
consider the measurements taken for each reader-tag link as

4For a description of the detection phase related to the case study the reader
can refer to [38].

5Note that the general definition is x 2 P ⇢ RK·|D|! if xi 2 RK .

independent.6 Based on the relation between o and x
(k), the

likelihood function becomes

⇤(!i|z) = f(z|!i) =

Z

P

f(z|x)f(x|!i)dx

=
1

|Pi|

Z

Pi

f(z|x)dx (15)

with equal probability for each !i and for each x 2 Pi given
o = !i. The likelihood function can be rewritten as an explicit
function of xi as

⇤(!i|z) =
NmY

k=1

Z

V

. . .

Z

V

Y

l2R

Y

j2D

f(z(k)l,!i,j
|x!i,j )

⇥ f(x!i,1 , . . . ,x!i,|D| |!i)dx!i,1 , . . . , dx!i,|D| .

(16)

For example, in the binary case described in (13) the likelihood
function becomes

⇤(!1|z) =
NmY

k=1

Z

V

Z

V

Y

l2R

f(z(k)j,1 |x1)f(z
(k)
j,2 |x2)

⇥ f(x1,x2|!1)dx1dx2

=

Z

V

Z

V+(x1)

Y

l2R

f(z(k)j,1 |x1)

|V||V+(x1)|
f(z(k)j,2 |x2)dx2dx1

(17)

where V+(x1) = {x2 s.t. x21 � x11} and we considered
uniform distribution over V .

Following a Bayesian approach, the OOA can be estimated
through (15) as

bo = argmax
!i2⌦̃d

Z

P

f(z|x)f(x|!i)dx . (18)

However, the integrand function is not in closed form as can
be seen in (17) for the simple case with No = 2. Furthermore,
the complexity of the integral computation grows with No and
limits the update rate of the OOA tracking. Therefore, this
solution is of little practical application, and thus a tractable
model is required for the system implementation.

IV. TRACTABLE MODEL FOR OOA TRACKING

We now present a Laplace’s approximation to derive a
tractable expression for (18). Consider the Taylor series ex-
pansion for the natural logarithm of the integrand function in
(15) around its maximum value x̂0,i for x

log(f(z|x)f(x|!i)) = log(f(z|x̂0,i)f(x̂0,i|!i))

� 1

2
(x� x̂0,i)

T
Qi(x� x̂0,i) +O(x3) (19)

where

Qi = �Hx log(f(z|x̂0,i)f(x̂0,i|!i)) (20)

and Hxg(x) denotes the Hessian matrix of g(x) with respect
to x, and the first order term is equal to zero since x̂0,i is the
maximum value for f(z|x).

6This requires perfect suppression of inter-tag interference; the effects of
interference among tags are investigated in [38], [39] for the UWB-UHF RFID
case.
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Note that the point of maximum is x̂0,i, which represents
the maximum likelihood estimation for a given hypothesis Hi.
In particular,

x̂0,i = argmax
x

f(z|x)f(x|!i)

= argmax
x2Pi

f(z|x) (21)

where the second equality holds because f(x|!i) = 0 for
x 62 Pi and assuming uniform distribution f(x|!i) =

1
|Pi|

for
x 2 Pi. Since f(x|!i) does not depend on the sample size
|z|, for large |z| we have 1

|z|Qi ⇡ O(1) and

Qi ' �Hx log(f(z|x̂0,i)) . (22)

where Hx is the Hessian operator with respect to x. In
addition, x̂0,i tends to the true value of x if !i is the true OOA
vector o = !i. In these conditions, by using the Laplace’s
approximation

P {z|Hi} '
f(z|x̂i)

|Pi|

q
|2⇡Q�1

i | . (23)

From (19) we have

logP {z|Hi} ⇡ log f(z|x̂0,i)�
log|Qi|

2
+O(1)

= log f(z|x̂i)�
log

⇣
|zQi|

|z|

⌘

2
+O(1)

= log f(z|x̂i)�
|z|
2

+O(1) (24)

where the last equation holds since Qi

|z| ' O(1) and O(1)
includes all the constant terms, which are independent of |z|.

From (19) and (24) it follows that the application of the
hypothesis test for the OOA tracking is equivalent to first
calculating the maximum likelihood estimation of the position
vector x and then sorting the position estimates along the
conveyor direction as

ı̂ = argmax
i

P {z|Hi} ' argmax
i

max
x2Pi

f(z;x) . (25)

Remark 1. The OOA estimation problem is formally recon-
ducted to a localization problem, where the relative position
of the objects with respect to the direction of the conveyor is
considered. In the general case, the conveyor direction changes
over time.

A. Location-based OOA Tracking

We now consider two approaches for the estimation of x̂

and therefore of ô. As first approach, we consider the OOA
decision as a static process where the estimation is performed
without exploiting any prior information on the measurement
z. In this case, a range-based least squares (LS) algorithm is
considered where z

(k)
l,i = ⌧̂

(k)
l,i is the estimated time-of-arrival

(TOA) between the rth reader and the jth object at time k,
and the estimated position vector is

x̂LS = argmin
i

min
x2Pi

X

l2R

X

i2O

(⌧̂ (k)l,i � kxi � rlk/c)2 . (26)

As second approach, we consider the OOA tracking as a
dynamic process and the stochastic filtering problem. In fact,
the processing of multiple measurements gathered at different
time instants enables the refinement of the decision over time.
The filtering problem is given by [40]

x
(k+1) = f(x(k)

,q
(k))

z
(k) = g(x(k)

, c
(k)) (27)

that are the state equation and measurement equation, respec-
tively. Note that q

(k) and c
(k) are noise random sequences

(dynamical noise and measurement noise, respectively) with
unknown statistics in a general case.

For example, in the example of constant velocity vector
ẋ(t) = [v, 0, 0], and rectilinear stream for which x(t2) =
c(x(t1), t2 � t1) = x(t1) + [v(t2 � t1), 0, 0]. we have the
state equation

x
(k+1) = x

(k) + vT + q
(k) (28)

where q(k) is the noise related to the dynamics of the conveyor.
Following a Bayesian approach, the state and measure-

ment equations are used to calculate the density function
f(z(1:k)|x(k)) through two phases (i.e., prediction and update)
at each time index k (e.g., via particle filtering or Kalman
filtering). In particular, the vector estimate bx(k) is determined
as the value that maximizes the position belief b(x(1:k)) =
f(x(1:k)|z(1:k)) / f(z(k)|x(k))f(x(k)|x(k�1)), which is the
posterior distribution of the state vector given the observation
vector. Note that such distributions are derived by relying on
the (27) and (28). Mobility and measurement models are used
to predict, update, and resample the position belief at each k.
In particular, a Gaussian mobility model is given by

f(x(k)|x(k�1)) =
1p

2⇡�m,k

Y

i2D

e
�

���x(k)
i �bµ(k)

i

���
2

2�2
m,k (29)

where �
2
m,k depends on the conveyor noise q

(k) in (28) and
bµ(k)
i = c(x(k�1)

, T ). The measurement model is f(z(k)|x(k))
and depends on the type of measurement z

(k). We will
consider two cases with different z

(k) for the UWB-UHF
RFID in Sec. V.

V. OOA TRACKING FOR UWB-UHF RFID
The type of measurement z that is used for OOA tracking

depends on the system employed, e.g. range-based estimation,
optical reading. In this paper, we focus on a UHF-UWB RFID
system, where z is collected via energy detection. The system
architecture and an energy profile-based Bayesian filter (BF)
are now presented.

A. System Architecture
The considered UHF-UWB RFID system is depicted in

Fig. 3 and was proposed in [38]. In this system, the reader is
the only device with capability of transmitting, receiving, and
processing signals, whereas tags are passive reflectors. Each
reader consists of a joint UHF-UWB transmitting/receiving
unit designed to enable network synchronization, tag detection
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Fig. 3. Example of UHF-UWB reader-tag communications.

Algorithm 1 Range-based Least Square
1: for k = 1, 2, . . . do

2: for l 2 R do

3: Energy Detection: b(k)
l  r

(k)
l (t)

4: Decision Algorithm: ⌧̂ (k)
l,i  b

(k)
l,i

5: LS: x(k)
LS  ⌧̂ (k) from (26)

6: Sorting: ô x
(k)
LS

and identification, and range-information extraction for OOA
tracking. The UHF link serves for both network synchroniza-
tion and reader-tag data communication (e.g., using a standard
Gen-2 protocol), while the UWB link serves for reader-tag
ranging and tag-to-reader data transmission [24]. The reader
is composed of the transmitter section, which emits periodic
interrogation signals, and the receiver section, which analyzes
the received UWB backscattered signals to detect tags located
in the monitored area.

Tags are equipped with a UHF and a UWB section. The
former allows the reader-tag communication through UHF
backscatter modulation as in standard Gen-2 tags, the power-
ing up, and the synchronization of the UWB backscatter mod-
ulator [21]. The latter is a backscatter modulator that switches
the UWB antenna between two load conditions for creating a
unique tag to reader channel for communication and ranging
[24]. Each receiver can accumulate several UWB pulses Npulse
to reach the SNR required for obtaining a reliable reader-tag
communication. The minimum value of Npulse depends on the
desired operating range, and the amount of time for detection
and demodulation of signals backscattered by tags increases
with Npulse (i.e., lower refresh rate) [24]. For example, the
accumulation of Npulse = 8192 pulses increases the SNR of
39 dB with respect to Npulse = 1, but it also increases the
amount of time for detection of 1ms.

The OOA tracking relies on the processing of the signals
received back at each reader. In particular, from the signal
received at the lth reader, a vector of observations z

(k)
l,i is

obtained by extracting the range information related to the
ith tag at time index k. The OOA is estimated by jointly
processing the observation vectors related to all the No objects.

Algorithm 2 Range-based Particle Filter
1: for k = 1, 2, . . . do

2: for l 2 R do

3: Energy Detection: b(k)
i  r

(k)
l (t)

4: Decision Algorithm: ⌧̂ (k)
l,i  b

(k)
l,i

5: procedure BAYESIAN FILTER
6: Update: f(x(k)|⌧ (1:k)) ⌧̂ (k)

7: x̂
(k)  argmaxx(k) f(x(k)|⌧ (1:k))

8: Prediction: f(x(k+1)|⌧ (1:k)) ⌧ (1:k�1)

9: Sorting: ô x̂
(k)

Algorithm 3 Energy profile-based Bayesian Filter
1: for k = 1, 2, . . . do

2: for r 2 R do

3: Energy Detection: b(k)
i  r

(k)
i

4: procedure BAYESIAN FILTER
5: Update: f(x(k)|b(1:k)) b

(1:k)

6: x̂
(k)  argmaxx(k) f(x(k)|b(1:k))

7: Prediction: f(x(k)|b(1:k)) ⌧ (1:k�1)

8: Sorting: ô x̂
(k)

B. Energy profile-based Bayesian filtering

The UWB signal r
(k)
l (t) is received by the lth reader

at time index k and processed as shown in Fig. 4. After
band-pass filtering and despreading for extracting the signal
component backscattered by the ith tag, the received signal is
processed by an energy detector, which squares and integrates
the received waveform over subsequent dwell time intervals
of duration Tdwell to obtain a vector of energy bins b

(k) [29].
The elements of the energy vector b

(k) at the output of the
energy detector e

(k)
i,j,m are instantiation of RVs b

(k)
i,j,m, which

are distributed as non-central chi-squared random variables
b
(k)
i,j,m ⇠ �

2
K(�(k)

i,j,m) when conditional on the channel im-
pulse response. K is the number of degrees of freedom and
�
(k)
i,j,m is the non-centrality parameter, which depends on the

channel impulse response at time index k and on SNR(k)
i,j . Let

F (e|�(k)
i,j,m) and f(e|�(k)

i,j,m) denote the cumulative distribution
function (CDF) and PDF of b

(k)
i,j,m. The derivation of such

probability functions and their parameters can be found in
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Fig. 4. Tag detection scheme with range-based least square, range-based BF, and energy profile-based BF.

[29], [38].
In the system under analysis, for the LS case we consider

z
(k)
l,i = b⌧ (k)

l,i is the vector of round-trip times (RTTs). In
particular, if the tag has been detected and identified by the
reader, the TOA is estimated by a decision algorithm (e.g.,
by comparing the energy vector with a threshold) [26]. The
algorithm for range-based LS is given in Alg. 1.

As for the BF, we consider two implementations depending
on whether we use the raw energy samples z

(k) = b
(k) or a

TOA estimation taken from each energy vector z
(k) = ⌧ (k).

The choice of z(k) is driven by the knowledge of its probability
distribution and the computational complexity, since it depends
on the size of the dataset to be communicated in the network
(e.g., in a centralized signal processing).

For range-based BF with z
(k) = ⌧ (k), the measurement

model is given by

f(b⌧ (k)|x(k)) =
Y

l2R

Y

i2D

1p
2⇡�p,k

e
�

h
⌧̂ (k)
l,i c/2�krl�x(k)

i k

i2

2�2
p,k

(30)

where rl is the lth receiver position and R is the index set
of receivers, �2

p,k depends on the ranging techniques and the
propagation conditions. The algorithm for range-based particle
filter (PF) is given in Alg. 2.

For energy profile-based BF with z
(k) = b

(k), the measure-
ment model is given by

f(b(k)|x(k)) =
Y

r2R

NbinY

m=1

f
b(k)

i,j,m

⇣
b
(k)
i,j,m

����(k)
i,j,m

⌘
(31)

where Nbin is the number of energy bins, �2
p,k depends on the

ranging techniques and the propagation conditions. Note that
the dependence on x

(k) is hidden in �
(k)
i,j,m, since this depends

on d
(k)
i,j . The algorithm for energy profile-based PF is given in

Alg. 3.

VI. CASE STUDY

The validation of the proposed framework and signal pro-
cessing techniques is made for a case study with an UWB
RFID system working in an indoor scenario. To this aim,
a measurement campaign has been carried out with one tag
and one reader to collect a dataset of received signal samples.
Based on such a dataset, the empirical measurement models

tag antenna under test

TX/RX antennas

AWG
Oscilloscope

Fig. 5. Measurement setup.

Fig. 6. Illustration of the system geometry used for collecting the measure-
ments. The single tag has been deployed each time at a different position,
from 0.6m to 3m distance from the reader with a step of 0.15m. The
measurements have been taken with and without an obstacle placed between
the tag and the reader at a distance of 0.3m from the tag.

TABLE II
INSTRUMENTATION USED FOR MEASUREMENTS.

Component Producer Model
Transmitter AWG Tektronix AWG7122C

Receiver Oscilloscope Tektronix DPO72304DX
Transmitter Amplifier Mini Circuits ZVA-183X-S

Receiver Amplifier (1) Mini Circuits ZVA-183X-S
Receiver Amplifier (2) Mini Circuits ZVE-8G+
Receiver Attenuator Mini Circuits RCDAT-6000-60
TX/RX Antennas Imego Vivaldi 004

Tag Switch Hittite 104122-5
Tag Control Logic Microchip PIC24FJ256DA210
Tag Open load Aeroflex 7006
Tag Short load Aeroflex 7008

have been extrapolated and used to simulate the OOA tracking
of a stream of objects. We now present the experimental setup,
the empirical measurement models, and the final results.

A. Experimental Setup
The measurement setup is shown in Fig. 5. The probe trans-

mitted signal is generated by an arbitrary waveform generator
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(a) line-of-sight (LOS) (b) NLOS

Fig. 7. Example of energy vectors obtained in LOS and NLOS conditions with d = 90 cm (red) and d = 180 cm (blue).

Fig. 8. Comparison of measurements and model for the average value of
the normalized energy bin bk+kt/bkt as a function of k. The power fitting
model is c0(k � kt)�✏ with c0 = 0.51 and ✏ = 1.98.

(AWG), amplified with a wideband amplifier and then fed to a
wideband transmitting antenna. The radiated signal propagates
in the environment and reaches the tag antenna under test.
According to [41], it is necessary to implement a strategy
to isolate the antenna mode component from the structural
mode component and from the clutter at the receiver side.
This is possible by changing the load connected to tag antenna
according to the code {cn}, which is accomplished by the
connection of the tag antenna with a wideband switch, which
is loaded with a short and an open circuit at its two ports.

The signal backscattered by the tag and by the surrounding
environment is then collected by a receiving antenna, ampli-
fied, and then acquired by an oscilloscope. A programmable
attenuator is inserted between the wideband amplifiers and
the oscilloscope front-end in order to adapt the instrument
dynamic to the amplitude of the incoming signal.

In the measurement setup (see Fig. 5) the receiving antenna
and the transmitting antenna are close, forming a quasi-
monostatic measurement configuration [24]. However, the
presented measurement scheme can be applied to different
transmitter/receiver antennas configurations, also separating
them in space to test the backscattering characteristics of
tags in bistatic configurations, which are very interesting for
RFID applications [42]. Details on the instruments, antennas,
amplifiers and tools adopted for the presented measurement
setup are reported in Tab. II.

B. Empirical Measurement Models
We consider the PF algorithm for BF, which can outperform

the extended Kalman filter (EKF) in non-Gaussian noisy ob-

Fig. 9. Comparison of measurements and model for the average value of
the energy bin bkt as a function of the distance between tag and reader. The
power fitting model is e0d�� with e0 = 2.76 · 106 and � = 2.16.

servations [43], [44].7 In particular, the position belief at time
k is represented by a set of Npar random samples (particles)
at {s(k)s }, with s = 1, 2, ..., Npar.

A dataset of measured energy bins has been collected for
different values of d

(k)
i,j,m between the tag and the reader as

illustrated in Fig. 6. The same dataset has also been collected
in NLOS conditions, by placing an obstacle between the tag
and the reader.8 The obstacle was at 0.3m from the tag for
each value of d

(k)
i,j,m to simulate the presence of an object

that precedes the one that is interrogated and moves with
the same velocity vector. The UWB module emits pulses
in the European lower band [3.1, 4.8]GHz with maximum
power spectral density �42 dBm/MHz, in agreement with the
IEEE 802.15.4 a standard [45].

Fig. 7(a) and 7(b) show examples of energy vector for
d
(k)
i,j,m = 0.9m and d

(k)
i,j,m = 1.80m in LOS and NLOS con-

ditions. It can be noticed the effect of distance and obstructed
propagation in terms of energy loss.

From the collected dataset of measurements, an empirical
model for the energy bins is extrapolated in the form of a
power delay profile. To this aim, the bins are modeled as

bk =

8
<

:

nn for 0  k < kt
e0d

�� + nt for k = kt
e0d

��
c0(k � kt)�✏ + nk for k > kt

(32)

where nn ⇠ N (µn,�
2
n ) is a Gaussian-distributed RV that

depends only on noise; � is the path-loss exponent; nt ⇠
7 Note that, in general, the set of observations have a non-Gaussian

distribution due to multipath and clutter residual.
8The obstacle was a box full of books.
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Fig. 10. The estimates ⇠̂
(k)
i,1 obtained with RLS, RPF, and EPF are compared

with the true values ⇠
(k)
i,1 (solid lines) for a stream of three objects and N =

12.

N (0,�2
t ) is a zero-mean Gaussian-distributed RV for the bin

containing the first path; ✏ is the inter-bin decay constant; and
nk ⇠ N (0,�2

k) is a zero-mean Gaussian-distributed RV for
the bin containing the undesired multipath.

The parameters e0,�, c0, ✏, µn,�n,�t, and �k have been
extrapolated from the dataset of measured bins. Fig. 9 shows
the curve fitting for the average value of the true bin of bkt

with the curve e0d
�� . Fig. 8 shows the curve fitting for the

average value of bk/bkt with the curve c0(k � kt)�✏.
From the same dataset of energy samples, the relative TOA

estimates ⌧̂ = [⌧̂i] have been obtained through a threshold
crossing search approach [29], [46], where the threshold is
chosen with a constant false alarm rate (CFAR) method by
setting the false-alarm probability to 10�2. The empirical
model has been assumed as Gaussian with mean and variance
equal to the sample values. The empirical models for the
energy samples and the TOA estimates will be used both for
simulating an ordering problem with three objects and for
determining the measurement models (30) and (31) for the
BF. Therefore, the model for the energy bin is known.

C. Results
Consider a stream of No objects equipped with a tag moving

on a conveyor belt with ẋ = [v, 0, 0]. The monitored area is a
rectangular area of the conveyor of length L = 5m and width
W = 1m. A single reader is placed at the end of the area in
position r and interrogates the three tags in order to estimate
their order. In particular, we are interested in estimating the
vector o by sorting the tag positions on the conveyor direction
x. To this aim, we first estimate the vector of positions x =
[⇠1, ⇠2, ⇠3] with different algorithms: (1) the range-based least
square (RLS); (2) the range-based particle filter (RPF); (3) the
energy profile-based Particle filter (EPF). The algorithms are
summarized in Alg. 1, Alg. 2, and Alg. 3, respectively. The
LS algorithm is based on a fixed grid G 2 R2 composed of

Fig. 11. The estimates ⇠̂
(k)
i,1 obtained with RLS, RPF, and EPF are compared

with the true values ⇠
(k)
i,1 (solid lines) for a stream of three objects and N =

120.

Fig. 12. Range error outage for ⇠(k)i,1 obtained with the RLS, RPF, and EPF;
the number of grid points and particles is N = 12 (dashed) and N = 120
(solid).

Ng points at position x̃i with i = 1, 2, . . . , Ng so that

x̂LS = argmin
[x̃1,x̃2,...,x̃No ]2GNo

NoX

i=1

(⌧̂i � kx̃i � rk/c)2 . (33)

Therefore, N = Npar = Ng is set for cases (2) and (3) to
guarantee fair comparison. The energy-detector is set with
Tdwell = 2 ns; the corresponding spatial resolution is 30 cm
(reader-tag-reader distance) in free space propagation.

Fig. 10 shows the estimated value for ⇠i,1 for case (1), (2),
and (3) with N = 12. The LS algorithm shows the worst
performance with the corresponding estimate ⇠i,1 presenting
jumps due to the loose grid. On the other hand, the PF
algorithm is not associated to a fixed grid thanks to the random
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Fig. 13. Root mean squared error for ⇠̂i,1 obtained by varying the distance between objects � and for N = 12 (dashed pattern) and N = 120 (solid pattern).

Fig. 14. Success rate obtained by varying the distance between objects � and for N = 12 (dashed pattern) and N = 120 (solid pattern).

resampling. Therefore, both the RPF and EPF outperform the
RLS. However, the RPF strongly depends on the dwell time of
the energy detector, which makes the TOA estimates belonging
to a finite set of discrete values. Therefore, jumps are still
present due to the time resolution of the TOA estimation.
Finally, the EPF shows the best performance, also because it
is not limited by any grid or resolution constraint in space or
time. Fig. 11 shows the results under the same configuration as
Fig. 10 for N = 120. In this case, the performance of the RLS
algorithm is improved and is similar to that of the RPF. This
results show that the prior knowledge of the mobility model
allows the system to save resources in terms of computational
complexity but most of all that the EPF case overcomes the
resolution problems that arise in grid-based algorithms.

Fig. 12 shows the range error outage (REO) which is the
probability for the range error of being above a certain value.
The figure has been obtained with N = 12 and N = 120 and
shows that the EPF outperforms the other algorithms for both
the values of N . For example, for N = 12 the range error is
above 0.20m in the 32% of cases with EPF and in the 68%
of cases for both RPF with the RLS. For N = 120 the range
error is above 0.20m in the 5% of cases with the EPF and in
the 45% of cases for the RPF and 65% for the RLS.

Fig. 13 shows the RMSE for the estimation of ⇠i,1 for
different values of � with N = 12 and N = 120. The
EPF shows the minimum RMSE in all the configurations.
The range-based RPF and RLS show similar values when
N = 120, while the first outperforms the latter when N = 12.
This is due to the fact that the LS accuracy is related to the grid
of N equispaced points, while the range-based PF is related
to the resolution of TOA estimation (i.e., the dwell time).
Therefore, for N = 12 the resolution of the TOA estimation
is finer than that of the least-square grid. For N = 120, the
two resolutions are similar when mapped into the monitored

area. This is also confirmed by Fig. 10 and Fig. 11.
Fig. 14 shows the relative success rate for the OOA tracking

according to the definition of Ps(o) in (10). The success rate
increases with � for all the three algorithms. In particular, all
the object streams have been correctly sorted even with � =
0.3m when the EPF is employed. Furthermore, the comparison
with Fig. 13 for the RLS case with N = 12 shows that even
if the RMSE is almost constant (about 0.36m) for all values
of �, the success rate varies significantly from 0.33 to 0.82,
showing that the success rate is more sensitive to variation of
� with respect to the pure range error.

VII. FINAL REMARK

A framework for design and analysis of RFID systems
tracking the order-of-arrival (OOA) of objects is developed
accounting for how network topology and wireless environ-
ment affects signals measurements and processing. A sorting
decision problem is formulated and a tractable model for
devising low-complexity method is derived. Based on a dataset
of measurements collected through an experimental campaign
with UWB-RFID, the performance of the proposed method
is quantified and compared with that of other OOA tracking
methods in an indoor environment. The proposed approach
shows very good performance in terms of sorting success rate
despite its low complexity. The outcomes of this work pave
the way to a new OOA tracking methods for Industry 4.0.
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