
17 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Published Version:

Lead-acid battery modeling over full state of charge and discharge range

Published:
DOI: http://doi.org/10.1109/TPWRS.2018.2850049

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/670073 since: 2019-02-21

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/TPWRS.2018.2850049
https://hdl.handle.net/11585/670073


This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

 

 

 

 

 

This is the final peer-reviewed accepted manuscript of:  

 

A. Azzollini et al. 

Lead-Acid Battery Modeling Over Full State of Charge and 
Discharge Range 

 

In: 

 IEEE Transactions on Power Systems, vol. 33, no. 6, pp. 6422-6429, Nov. 
2018 

 

 

The final published version is available online at: 

https://doi.org/10.1109/TPWRS.2018.2850049 

 

 

 

Rights / License:  

The terms and conditions for the reuse of this version of the manuscript are specified in the 
publishing policy. For all terms of use and more information see the publisher's website.   



1

Lead-Acid Battery Modeling over Full State of
Charge and Discharge Range

Ilario Antonio Azzollini, Valerio Di Felice, Francesco Fraboni, Lorenzo Cavallucci, Marco Breschi, Senior
Member, IEEE, Alberto Dalla Rosa, and Gabriele Zini

Abstract—The discharge behavior of electrochemical solid state
batteries can be conveniently studied by means of electrical
analogical models. This paper builds on one of the best known
models proposed in literature for lead-acid electrochemistry
(the Ceraolo’s model) by formulating an alternative third-order
model and implementing a methodology to compute all model
parameters (using particle swarm and non-linear programming
optimization) with increased precision and full usability over the
whole range of possible states of charge and discharge currents.
The developed methodology is used efficiently to model all
commercial lead-acid batteries and enable their integration into
simulation software for the optimized design of energy systems
using energy storage.

Index Terms—Battery modeling, energy storage, lead-acid
battery, non-linear programming, optimization, particle swarm
optimization.

I. INTRODUCTION

LEAD-ACID batteries are the most widespread recharge-
able electrochemical devices, used in many different

applications to guarantee quality of service even in absence
of a power source for reasonably long periods of time. To
better design and evaluate complex systems resorting to lead-
acid energy storage for correct functioning, reliable and precise
battery models are needed.

A number of different modeling strategies can be adopted
for energy storage characterization [1]. Natural models aim
at devising an accurate, usable, and reproducible physical-
chemical framework that explains the natural phenomena
occurring during the functioning of the batteries; such models
are translated into sets of equations that are used to evaluate
the variation of the battery parameters during functioning.
Empirical modeling is based on descriptions of the observed
data, frequently employing regression analysis or artificial
intelligence techniques to model the response of the battery
from a set of input variables. Abstract models use analogies
(normally with electrical circuits or stochastic process models)
that simplify the real behavior of the system but improve
the capability to interpret and understand the way the battery
works. Mixed models combine the advantages of the previous
strategies to obtain more refined results while retaining a
reasonably simplified model.

Natural models are normally developed by experts in elec-
trochemistry [2]–[9]; the complexity that is inherent in this
modeling technique is hampering its efficient use for commer-
cial purposes. This gives way to abstract or mixed models [10],
[11] which have proved to be more readily usable, although
less stringent from a scientific point of view. In particular,

mixed models based on electrical circuit parametrization can
be more easily implemented in electrical simulation codes
that are already designed to deal with the input and output
variables typical of battery technology (namely, voltage and
current). As a matter of fact, the third-order dynamical model
developed in [11] for lead-acid batteries has been implemented
in a package of a well-known commercial mathematical soft-
ware [12]. Electrochemical batteries are indeed conveniently
modeled by means of electrical analogy, i.e. using networks of
well-known electrical components (resistors, capacitors, elec-
tromotive forces, etc.); in literature, two different approaches
can be found: modeling every single part of the battery with
a corresponding electrical element [13], [14], or modeling the
battery behavior by using a black box approach interpreting
what is the output at the terminals of the battery [15]–[17].

An example of abstract battery modeling by means of
artificial intelligence techniques can be found in [18], where
fuzzy logic is employed to characterize the discharge of lead-
acid batteries by modeling the relationship between the battery
open-circuit voltage, the state of charge, and the discharge
currents.

A general model structure for lead-acid batteries was de-
fined by Ceraolo in [11], from which specific models can be
inferred, and in particular, the implementation of the third-
order model was developed in detail. In the context of the
general framework proposed by Ceraolo, an alternative third-
order model formulation is presented in this paper, showing
an extended validity and usability over all the State Of Charge
(SOC) and discharge current ranges. Compared to Ceraolo’s
third-order model formulation, a resistance is added to the
main branch, whose characteristic equation is designed for
fitting as close as possible the lead-acid battery behavior at
the beginning of the discharge process. Then, as the model
is characterized by a significant number of parameters to be
identified, an optimization methodology is proposed and tested
on a battery commercial data-sheet. The overall result is a
complete, fully functional, and easily usable methodology that
can be implemented as a library for further integration into
other advanced energy systems’ simulation software.

The paper is organized as follows. Section II describes
the model modification and the parameter evaluation for
the correct characterization of the battery at all current rate
discharging over the full SOC range with comparison between
modeled and real curves. Section III discusses the main results
and draws the main conclusions. The Appendix describes the
original third-order model adopted for this study.
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II. MODEL MODIFICATION AND METHODOLOGY FOR
PARAMETER ESTIMATION
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Fig. 1: Lead-acid battery third-order model equivalent circuit from [11].

The starting point of this work is the lead-acid battery third-
order dynamical model developed in [11], which is an abstract
model for the characterization of the battery operation. The
equivalent electric network representing this model is shown
in Fig. 1, where:

• Em is the open-circuit voltage of the battery;
• R0 accounts for the internal resistance of the battery;
• the R1-C1 parallel network models the transient behavior

of the battery;
• I is the discharge current of the battery (in Fig. 1 the

charge current directions are indicated by the arrows);
• V is the output voltage of the battery;
• the parasitic reaction branch models non-reversible reac-

tions occurring from water electrolysis at end of charge.
The behavior of the parasitic branch is highly non-linear

and is modeled as a voltage controlled current source. The
parasitic branch is introduced together with R2 only to model
the charging process 1. The network in Fig. 1 is included in
the general model structure for lead-acid batteries presented in
[11], in which, any number of R-C blocks can be included in
the main branch to achieve the desired accuracy. In the third-
order formulation from [11], two R-C blocks are used (with
C2 = 0).

The equations governing the circuit model shown in Fig.
1 are described in Appendix A. Apart from the many merits
of this model, the main drawback is the fact that it does not
allow a precise reproduction of the initial voltage evolution
at discharge, showing a rather large difference with respect
to the measured discharge curves, as shown in Fig. 2 (for a
0.1 C discharge rate2). To solve this discrepancy, a resistance
can be added in series with the main branch. The value of
this new resistance must depend on SOC, as it needs to grow

1For the sake of simplicity, the work outlined in this paper focuses only on
the characterization of battery discharge, where the parasitic branch and the
resistance R2, used in [11] for charging modeling, are not discussed although
are maintained in our modified model.

2It is common norm to express the discharge current as a function of the
nominal battery capacity C, expressed in Ah. As an example, the discharge
current 1C is the current (in Amps) for which the battery is completely
discharged in one hour.
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Fig. 2: 0.1C curve using the model from [11]: (a) linear scale and (b) log
scale.
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Fig. 3: Modified lead-acid battery equivalent network.

exponentially only at the beginning of the discharge process
and then settle to a constant value. The formulation of this
additional network component was designed to be as follows

R3 = R30 {1− exp [A31 (1− SOC)]} (1)

where R30 and A31 are constants that depend on the battery
technology and therefore must be evaluated from the data-
sheet of the specific battery to be modeled. The modified
third-order model lead-acid battery equivalent network, able
to precisely follow the profile of the initial voltage, is shown
in Fig. 3. The proposed network is still included in the general
model structure presented in [11], as the addition of R3 in the
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main branch can be seen as the addition of an R-C block with
C3 = 0. It should be also noted that the resulting model is still
a third-order one, as no dynamic circuit elements are added
to the original third-order model formulation.

All model parameters need to be estimated to correctly sim-
ulate the behavior of the battery over the full range of different
discharge current rates. This is achieved by employing fitting
algorithms that find the best parameter values to minimize the
difference between the modeled and the real discharge curves.

Since the model is characterized by a large number of
parameters that have to be evaluated during the modeling
process, a sensitivity analysis was performed in order to single
out which parameters have the largest effect on the model
output. Some parameters hence can be considered as constants,
either because they have a definite electrochemical meaning, or
because their influence on the output voltage is negligible with
respect to other parameters. Therefore, the identification of the
parameters with the largest effect on the output is intended as
a strategy to reduce the total number of parameters to be fed
into the fitting algorithm.

First of all, as the aforementioned resistance R3 (in (1))
is the only component able to properly model the beginning
of the discharge, no sensitivity analysis will be performed on
the parameters R30 and A31. Then, referring to the model
equations presented in Appendix A, the parameters that can
be approximated with constant values are the following:

• the reference current I∗ and the nominal capacity C∗
0 that

can be fixed to the values found in the data-sheet;
• the ambient temperature θa, that can be fixed to the

corresponding real value;
• the freezing electrolyte temperature θf , that can be fixed

to −40◦C for lead-acid battery type;
• the battery open-circuit voltage at full charge Em0, that

can be fixed to the corresponding real value;
• the battery internal resistance at full charge R00 was

found to be dependent on the discharge current but it
can be easily calculated using the following:

R00 =
(Em0 − V )

I
(2)

where I is the discharge current and V is the battery
voltage at the beginning of the discharge process when
the battery is fully charged. As soon as the discharge
current starts flowing, the battery voltage drops from Em0

to V almost instantaneously. This means that V can be
chosen as the first voltage measurement available on the
data-sheet. In the data-sheet used in this work, the first
voltage measurement was taken after 1 second from the
beginning of the discharge.

The sensitivity analysis was performed on the remaining
parameters using the output voltage profile from [11] as a
reference; when one parameter is changed, the difference
between the new output voltage values and the reference is
computed, as per:

∆ =

√∑N
i=0(V refi − V newi )2

N
(3)

This ∆ is nothing but a Root Mean Square Error (RMSE),
where:

• V refi is the reference voltage value at the point i;
• V newi is the new output voltage value at the point i;
• N is the total number of points considered, equal to the

discharge time in seconds.

For the sake of example, the sensitivity analysis for R10 is
shown in Fig. 4, where R10 varies in the range from −90% to
+90% of its reference value, with a resulting error map shown
in Table I. The results of the sensitivity analysis show that:

• the battery thermal capacitance Cθ and thermal resistance
Rθ can be excluded from the fitting process because they
have a small impact on voltage;

• ε and KE can be fixed since they have only an impact
on the temperature-based behavior that is not significant
in the data-sheet curves;

• the time constant τ1 can be fixed since it is a key factor
in the charging curve which is not the objective of the
optimization;

• since both δ and KC have an impact on the available
capacity of the battery, it is possible to fix one and fit
only the other;

• A0, R10, KC have a remarkable impact on the voltage
behavior and will be the objective of the fitting process.
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Fig. 4: Study of the influence of the parameter R10 on the output voltage,
for variations of ±90% of the reference value.

TABLE I: Overview of the error values corresponding to variations from
−90% to +90% of the parameter R10

Variation ∆[V] Variation ∆[V]
-10% 0.0057 +10% 0.0069
-20% 0.0095 +20% 0.0099
-30% 0.0134 +30% 0.0137
-40% 0.0175 +40% 0.0182
-50% 0.0214 +50% 0.0222
-60% 0.0253 +60% 0.0265
-70% 0.0292 +70% 0.0305
-80% 0.0334 +80% 0.0346
-90% 0.0373 +90% 0.0386

In order to find the parameters of the equivalent electrical
model described so far, a fitting process that entails a two-step
approach was developed and applied to each discharge curve.
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The first step focuses on the first half of the discharge
curve only, and is devised to obtain an accurate value of R30

(introduced, as previously discussed, to better model the initial
phase of the discharge curve). The output of this step also
gives an initial estimate of the other parameters of the model.
The second step uses as starting point the output solution of
the previous step (without R30), with the goal of refining the
pre-solution output of the first step; this time the evaluation
function of this second part is different from the previous one
since it considers the whole curve and not only the first half.

For the first step, a Particle Swarm Optimization (PSO,
see [19]) algorithm is initially applied to the fitting problem;
after the PSO has found the initial set of data, a further fine-
tuning is performed on such data set by means of a non-linear
programming algorithm which works more efficiently over the
smaller solution interval range already identified by the PSO.
The second step employs a non-linear programming algorithm
working over the starting point as output by the first step.

The first action required to start the fitting process is
choosing the set of parameters’ upper and lower bounds to
avoid unfeasible solutions and long computation times:

• A31 and R30 play a significant role in determining the
behavior of the first part of the voltage curve. A31 was
considered as a negative value, because when the battery
is nearly empty (SOC ' 0) the resistance (R3) will tend
to R30, which must be positive;

• KC is strictly related to the capacity and its value needs
to be greater than 1, otherwise the capacity might be less
than zero for some discharge current which is physically
incorrect;

• R10 needs to be positive otherwise the resistance R1 of
the equivalent circuit could assume negative values;

• A0 cannot be less than -1 otherwise the resistance R0 of
the equivalent circuit could assume negative values.

The selected lower and upper bounds are reported in Table II.

TABLE II: Parameter lower and upper bounds used in the fitting algorithms

Parameter Lower bound Upper bound
R10 0 Ω 0.06 Ω
KC 1.001 2
A0 -1 3
R30 0 Ω 1E-2 Ω
A31 -25 0

III. RESULTS AND CONCLUSIONS

In this Section, the results of the optimization process
applied to determine the best fit value of the parameters
described in the Appendix and in (1) are reported. The fitting
methodology was applied on each of the discharge curves
made available by the data-sheets. Within the parameter set,
R10 and A31 have shown such narrow variation ranges that
they have been set to constant values to reduce the computation
time without loss of accuracy. R10 and A31 values have
been chosen from the fitting of the 0.1 C discharge curve
and then passed on to the following fitting phases as fixed
parameters. Moreover, since KC can be simplified in (A.1),
it is not used for 0.1C discharge curve fitting. Therefore the

parameters used for the fitting of this first curve are: R10, A0,
R30 and A31. After selecting the constant values for R10 and
A31, the fitting for the other discharge curves was performed
over the remaining parameters: KC , A0 and R30. The process
described above is represented in Fig. 5.

Some of the constant values used for the fitting have been
taken from the data-sheet or calculated as an average of the
parameters given in [11] and are shown in Table III. The values
found by the fitting algorithm are shown in Table IV.

The results can be graphically appreciated in Fig. 6 and
Fig. 7. The differences between the data-sheet curves and the
optimized ones have been calculated using (3) and are reported
in Table V. The results are satisfactory, as the application of
the proposed methodology results to be crucial for reaching
this degree of precision. Indeed, the direct application of any
heuristic algorithm the authors are aware of, did not give
results with the same level of accuracy as those shown in this
section. A comparison between our proposed methodology and
a direct application of heuristic algorithms is not shown for
lack of space.
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Fig. 5: Schematic of the two fitting steps for the 0.1C (above) and the other
discharge curves (below).

TABLE III: Fixed values of the circuit model parameters

Parameter Value Parameter Value
θa 20 ◦C ε 1.24
Cθ 54000 J/◦C KE 7E-4 V/◦C
Rθ 0.2 ◦C/W τ1 6100 s
θf -40 ◦C Em0 2.25 V
C0 540000 As I∗ 15 A
δ 1.575

TABLE IV: Optimized values of the circuit model parameters

Current R10[Ω] KC A0 R30[Ω] A31 R00[Ω]
0.1C 3.73E-3 - -0.65 5.04E-3 -18.5 6.11E-3
0.26C 3.73E-3 1.0782 -0.95 1.60E-3 -18.5 2.93E-3
0.68C 3.73E-3 1.0290 -1.00 3.14E-4 -18.5 1.57E-3
1.22C 3.73E-3 1.0831 -0.46 7.6E-5 -18.5 1.24E-3

2C 3.73E-3 1.2401 -0.12 4.6E-5 -18.5 9.17E-4
2.6C 3.73E-3 1.5192 0.44 0 -18.5 8.72E-4
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Fig. 6: Comparison between data-sheet and simulated discharge curves in linear scale: (a) 0.1C curve and (b) 2.6C curve.

TABLE V: Differences between data-sheet curves and optimized curves

Current ∆[V]
15A (0.1C) 0.0023
39A (0.26C) 0.0077
102A (0.68C) 0.0075
183A (1.22C) 0.0061

300A (2C) 0.0109
390A (2.6C) 0.0145

In Fig. 8 it is highlighted how the proposed model improves
on [11] for the 0.1 C discharge curve. Please note that the
addition (and optimization) of the network component R3

is proven to be adequate for the modeling of the initial
exponential-like behavior of the voltage curve. This peculiar
behavior of the initial voltage is particularly visible for slow
discharge current rates.
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Fig. 7: Comparison between data-sheet and simulated discharge curves in log
scale.

At discharge current rates greater than 2.0 C, the initial
voltage profile does not exhibit the aforementioned behavior
and, in these conditions, Ceraolo’s model can reproduce very
well the experimental data. This observation is corroborated
by the optimized values of the model parameters reported in
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Fig. 8: Fitting of the 0.1C curve in (a) linear scale and (b) log scale:
comparison between [11] and the new model.

Table IV. As a matter of fact, comparing the values of R30

and R00, it can be noticed that the first becomes negligible
with respect to the second for the current discharge rate of 2.6
C, but remains significant until the 2.0 C discharge rate. The
comparison with [11] is only shown for the 0.1 C discharge
current since in this case the difference between the two
models can be better appreciated.

The purpose of this work was to accurately model the
discharge behavior of lead-acid batteries over the full capacity
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range by taking as reference the discharge curves provided
by commercially available data-sheets. Starting from the well-
known third-order dynamical model in [11], an improvement
to the electrical circuit and a fitting algorithm have been
proposed to improve the accuracy of the model over the
complete set of discharge curves. As a result, it is now
possible to use the model with greater accuracy in more
comprehensive simulation packages designed for the sizing
and analysis of full-fledged energy plants that use batteries as
electricity storage devices.

A hybrid optimization methodology was developed, con-
sisting in the combination of particle swarm optimization and
non-linear programming minimization algorithm:

• starting from a wide search range, the particle swarm
optimization algorithm finds the region in which the
minimum is located;

• the non-linear minimization algorithm works in the neigh-
borhood of the minimum and further minimizes the error.

The results are satisfactory as the discharge curves at all
current rates are modeled with a negligible error, even when
considering the slowest discharge rate that lasts over a period
of several hours.

The proposed lead-acid battery model cannot be further
tested and improved by using only commercial data-sheets
data. Future studies will be performed on the basis of the
developments discussed in this paper by taking advantage
of more accurate information from direct measurements on
batteries subjected to various load profiles taken from real
world applications, that will complement the commercial data-
sheets discharge curves used so far. The goal is an accurate
modeling not only of the discharge process, but also of the
battery thermal behavior and charge process. Furthermore, it is
also of interest to acquire a better understanding and evaluation
of the recovery of capacity phenomena occurring after battery
idling or with variable discharge current rates, for lead-acid as
well as other battery electrochemical technologies.

APPENDIX A
THIRD-ORDER MODEL DESCRIPTION FROM [11]

The total capacity C is described as follows:

C(I, θ) =

KCC0
∗
(

1− θ

θf

)ε
1 + (KC − 1)

(
I

I∗

)δ (A.1)

where:
• I is a discharge current (in Amps), in particular:

I = I1 =
Im

1 + τ1s
with τ1 = R1C1 (A.2)

• I∗ is a reference current. For instance, the nominal
current, defined as the ratio between the nominal capacity
and the nominal discharge time;

• θ is the electrolyte temperature (in ◦C);
• θf is the electrolyte freezing temperature, usually as-

sumed as equal to −40 ◦C;

• C0
∗ = C0

∗(I) = C0(I∗) where C0(I) is an empirical
function of the discharge current and it is equal to the
battery capacity at 0 ◦C;

• Kc, ε, δ are empirical constant coefficients for a given
battery at a given I∗.

The extracted charge Qe is given by:

Qe(t) = Qe init +

∫ t

0

−Im(τ)dτ (A.3)

where the battery is assumed to be completely charged at t =
0.

The State Of Charge (SOC) and Depth Of Charge (DOC)
are computed using:

SOC = 1− Qe
C(0, θ)

(A.4)

DOC = 1− Qe
C(I1, θ)

. (A.5)

A uniform value of the electrolyte temperature over its
volume θ is used3 and computed as:

Cθ
dθ

dt
= Ps −

(θ − θa)

Rθ
(A.6)

where Cθ is the battery overall thermal capacitance, assumed
independent from temperature, Rθ is the thermal resistance
between the battery and the environment, θa is the ambient
temperature, and Ps is the internally generated heat of the
battery (source thermal power), namely the heating power
generated inside the battery by the conversion from chemical
to electrical energy and vice-versa.

The electrolyte temperature θ(t) results in:

θ(t) = θinit +

∫ t

0

Ps −
(θ − θa)

Rθ
Cθ

dτ (A.7)

where θinit is the initial temperature of the battery in ◦C,
assumed to be equal to the surrounding ambient temperature.

The main branch voltage Em comes from:

Em = Em0 −KE(273 + θ)(1− SOC) (A.8)

where Em0 is the open-circuit voltage at full charge, KE is a
constant for the battery under study, and (273 + θ) is simply
the electrolyte temperature in Kelvin.

The terminal resistance R0 is provided by:

R0 = R00[1 +A0(1− SOC)] (A.9)

where R00 is the value of R0 at full charge (SOC = 1),
and A0 is a constant that depends on the specific battery
technology.

The main branch resistance R1 is computed with:

R1 = −R10 ln(DOC) (A.10)

where R10 is a constant that depends on the specific battery
technology.

3The precise characterization of the thermal behavior of the battery entails
a-priori knowledge on battery construction, materials, thermal exchanges with
the outside environment which is outside the scope of this paper.
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The main branch capacitance C1 is given by:

C1 =
τ1
R1

(A.11)

The dynamic equations of this third-order model are finally
the following:

dI1
dt

=
1

τ1
(Im − I1) (A.12)

dQe
dt

= −Im (A.13)

dθ

dt
=

1

Cθ

[
Ps −

(θ − θa)

Rθ

]
(A.14)
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