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Indoor Environment-Adaptive Mapping
with Beamsteering Massive Arrays

Francesco Guidi Member, IEEE, Andrea Mariani Member, IEEE, Anna Guerra Member, IEEE,

Davide Dardari Senior, IEEE, Antonio Clemente Senior, IEEE, Raffaele D’Errico Member, IEEE

Abstract—Beamsteering massive arrays have been recently
proposed for indoor environment mapping in next 5G scenarios
thanks to their capability to better penetrate materials with re-
spect to current laser or vision-based systems. In the perspective
of integrating radars in small portable devices, architectures
based on non-coherent processing of raw measurements represent
a viable solution to overcome the limitations of current indoor
radio mapping techniques, which entail a too high processing or
receiver complexity. In this paper we investigate the capability of
low-complexity mobile radars, equipped with mm-wave massive
arrays, to adapt to the environment in order to reconstruct
it, by adjusting a threshold with respect to the collected data
and the radiation pattern. Results, corroborated by means of a
measurement campaign, show the effectiveness of the proposed
approach.

Index Terms—Massive Arrays, Beamsteering, Indoor Map-
ping, Adaptive Threshold.

I. INTRODUCTION

The joint use of millimeter-waves (mm-wave) and massive
arrays technologies has recently shown the capability to pack
a large number of antennas onto a small area, thus paving the
way for a future integration in next generation portable devices
(e.g. 5G) [1]–[3]. Thanks to the possibility to better penetrate
materials than laser and vision-based systems, mm-wave mas-
sive arrays could be integrated into such systems. Towards
this direction, devices moving in indoor environments could
assist the user navigation even in scarce visibility conditions
or could enable the creation of indoor maps, where Global
Positioning System (GPS) fails, without exploiting signals
coming from ad-hoc infrastructures [4]. Consequently, to
enable the possibility to integrate such systems in relatively
low-cost and low-power portable devices for personal radar
applications, there is the need to reduce both the receiver
and the algorithm complexity [1]. However, when limiting the
array complexity for implementation constraints (e.g using a
small number of phase quantization bits to combine signals
[2]) the array radiation pattern is far from being laser-like
and side-lobes are present [2], [5]. To counteract such an
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undesired effect, several solutions have been tackled to guar-
antee high mapping performance [6]. Regarding techniques
not accounting for massive arrays, the CLEAN approach has
been usually considered robust in mitigating the image artifacts
[7], [8]. For the considered mm-wave personal radar, such a
technique cannot be exploited in practice due to the need of
a high-complexity architecture to guarantee a large number of
iterations and perfect alignment of signals [9].

Other works considered an adaptive scheme based on the
generalized likelihood ratio test (GLRT) for detecting coherent
pulses in presence of disturbances [10] and a side-lobe blanker,
eventually provided by a single array element, to eliminate
interference [11], [12]. Again, these solutions demand coherent
receivers [13]. Thus current imaging techniques not exploiting
massive arrays require an implementation complexity on a real
hardware which would be unfeasible, especially at 60GHz
[10], [12]–[15].

Nonetheless, state-of-the-art approaches based on the use
of large antenna elements arrays usually do not exploit simple
non-coherent architectures, apart from [16] where the receiver
is replicated for each antenna. Thus, the procedure would
result to be too much expensive when an extremely large
number of antennas is employed, which is not in line with
the requirements of our application.
Consequently, to assure mapping capabilities in low-cost and
low-complexity portable devices, a single energy detector [1]
with analog beamsteering massive arrays has been proposed,
overcoming the need of digital chains that entail integrating
expensive analog-to-digital converters [17]. The approach in
[5] requires a preliminary estimation of the environment
backscattering characteristics to properly work.
To move a step forward and overcome the shortcomings in [5]
due to the need of a-priori map information, we propose an
approach based on the following two phases: (i) a first noise-
thresholding phase to mask unwanted noise components; (ii)
a second new thresholding phase to ameliorate the mapping,
which is adaptive with respect to the environment as it
compares measurements collected from different steering di-
rections and takes advantage on the knowledge of the radiation
pattern.

In summary, our new contributions with respect to the state-
of-the-art are as follows.

• The proposal of a new adaptive scheme for indoor
environment mapping, not requiring a high complexity
processing (like, e.g., the CLEAN-inspired algorithms)
that keeps the overall complexity as low as possible to
ease the integration into a portable device [5], [18];
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• The introduction of a new thresholding strategy able
to adapt itself to the measured signals, overcoming the
limitations present in [5] and mainly related to the need
of having a-priori knowledge of the backscattering prop-
erties of the indoor environment;

• The performance assessment, using measurement data, of
the considered architecture which is simpler than those
requiring a higher complexity (i.e. coherent receivers)
allowing the reconstruction of a map of the surrounding
indoor environment with a portable device equipped with
a massive array.

The rest of the paper is organized as follows. Sec. II
describes the system model. Sec. III investigates the proposed
adaptive thresholding technique, whose results are detailed in
Sec. IV. Finally, conclusions are drawn in Sec. V.

II. SIGNAL MODEL

We now describe an ad-hoc signal model suitable for
the system under investigation. In particular, the considered
portable radar is based on the concept that a mobile device,
equipped with a massive array, moves in an unknown indoor
environment and for each position steers its beam towards
different directions to reconstruct the surrounding scenario.
The radar investigated exploits a monostatic configuration, i.e.,
the transmitter and receiver are co-located. For each steering
direction θb, the transmitter sends a train of Np pulses and, for
each pulse, it collects the backscattered response to detect the
possible presence of targets and their distances with respect to
the radar itself.1,2

To avoid the complexity entailed by coherent receivers, here
we account for an energy detector. Let Nsteer be the number of
steering directions during the scanning process where, for each
steering direction, a generic interrogation signal composed of
Np pass-band pulses p(t) of large bandwidth W and central
frequency fc is transmitted

g(t) =

Np−1
∑

l=0

p(t− lTf) (1)

with Tf being the time frame chosen so that all signals
backscattered by the environment are received before the
transmission of the successive pulse, avoiding inter-frame
interference. Since each pulse is backscattered by the sur-
rounding targets, the received signal for the steering direction
θb can be expressed as

r(t, θb) =

Np−1
∑

l=0

g(t− lTf , θb) + n(t) (2)

where g(t, θb) is the response to the transmitted pulse p(t) at
direction θb and with n(t) being the additive white Gaussian
noise (AWGN) with two-sided power spectral density N0/2.3

1Note that here we simplify the analysis to the case in which the beam-
steering is performed over the plane defined by the azimuth angle θb.

2Differently from laser-based systems, the beam can be electronically
steered, thus avoiding mechanical components and easing the integration in
small devices.

3For fixed θb, we assume that the channel and noise characteristics are the
same for each transmitted pulse.

The receiver section is the same as the one described in [5],
where the collected signal is first filtered with an ideal band-
pass filter (BPF) with center frequency fc. The filtered signal
is denoted by

y(t, θb) =

Np−1
∑

l=0

x(t− lTf , θb) + z(t) (3)

where x(t, θb) and z(t) are the filtered versions of g(t, θb)
and n(t), respectively. The energy receiver is chosen due to the
complete uncertainty on the received waveform shape deriving
from the a-priori ignorance on the surrounding environment.
Energy is then evaluated for each time frame Tf after the
transmission of each pulse by dividing the time frame into
Nbins = ⌊Tf/TED⌋ time slots (bins) of duration TED

4 and
energy measurements are accumulated for each time bin over
the Np frames of the received signals. Such an operation is
repeated for each steering direction, giving a Nbins × Nsteer

matrix E, whose generic element at the sth time bin and bth
steering angle is

ebs=

Np−1
∑

k=0

∫ s TED

(s−1)TED

y2(t+ kTf , θb) dt

≃
1

2W

Np−1
∑

k=0

sNd∑

i=(s−1)Nd

(

xi(θb) + z(k)i

)2
(4)

with s = 1, 2, . . . , Nbins and b = 1, 2, . . . , Nsteer, and Nd =
2WTED, z(k)i are for odd i (even i) the samples of the real
(imaginary) part, respectively, of the equivalent low-pass of
z(t + kTf), k = 0, 1, . . . , Np − 1, taken at Nyquist rate W
in each interval TED and σ2 = N0W is the noise variance.
In (4) we used the property x(t+ kTf , θb) = x(t, θb), so that
xi(θb) represents for odd i (even i) the samples of the real
(imaginary) part of the equivalent low-pass of x(t, θb), taken
at Nyquist rate W in each interval TED.

In the following, we describe the proposed approach, which
first accounts for a traditional thresholding phase (phase 1)
and, successively, for a new thresholding phase (phase 2) to
mask unwanted side-lobe contributions.

III. THRESHOLD DESIGN

A. Phase 1: Noise Threshold Design

The first step requires to mask unwanted noisy energy bins
through the adoption of traditional detection approaches. In
fact, energy bins in E belong to two main categories: only-

noise and useful (i.e., useful signal in addition to the noise)
bins. Thus, at the output of phase 1, only the useful bins are
kept and the information on the bin index s and on the steering
direction θb is gathered. To this end, we define a threshold
based on the probability to wrongly classify a bin due to the
receiver noise so that, in presence of only noise, i.e. y(t, θb) =
z(t), (4) can be written as

ebs ≃
1

2W

Np−1
∑

k=0

sNd∑

i=(s−1)Nd

(

z(k)i

)2
. (5)

4Note that TED must be chosen to accommodate most of the energy of the
received pulse, i.e. TED ≈ 1/W .
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In (5) we have the sum of the squares of N = Np Nd

independent Gaussian random variables (RVs) which turns
out into a central chi-square distribution, with N degrees
of freedom. A threshold-crossing event at the sth bin, that
is, {ebs≥ξzbs}, results in a single-bin probability of false

classification (PFC) p(FC)
bs given by [5], [19]

p(FC)
bs = Γ̃

(
N

2
,
ξzbs
2

)

(6)

with ~Γ denoting the regularized gamma function [19]. The
noise threshold ξzbs can be computed starting from a require-
ment on the global PFC P ⋆

FC given by

P ⋆
FC = 1−

Nsteer
∏

b=1

Nbins
∏

s=1

(

1− p(FC)
bs

)

≈ NbinsNsteer · pFC (7)

where we assume that all bins are statistically independent

and p(FC)
bs = pFC, with pFC ≪ 1. Equation (7) translates into a

required p⋆FC per bin given by

p⋆FC ≈
P ⋆

FC

NbinsNsteer
. (8)

Note the threshold does not depend on the bin and steering
indexes, i.e. ξzbs = ξz , and it is set to keep the PFC due to
the receiver noise to a desired value P ⋆

FC. Then, according to
[19], we can write

ξz = 2 σ2

[

InvΓ̃

(
N

2
,

P ⋆
FC

NbinsNsteer

)]

(9)

where InvΓ̃ (·, ·) is the inverse gamma regularized function.
As shown in [5], by adopting the previously defined thresh-

old, the system becomes sensitive to the presence of inter-
ference in the side-lobe direction. Thus, the technique in [5]
has been proposed, relying on a-priori assumptions on the
environment backscattering properties, and it could become
limiting in real-time localization scenarios. To avoid the need
of having any preliminary information on the environment, in
the following we discuss a procedure that, starting from (9),
allows to adapt the threshold to the measured signals.

B. Phase 2: Adaptive Threshold Design

In order to keep the overall complexity affordable, we define
an adaptive threshold approach, which does not need any a-
priori information of the environment. Let consider the set

B = {B1, ..., Bs, ..., BNbins} (10)

whose generic element Bs contains the steering angle indexes
of the energy bins ebs that have overcome the noise-threshold
during the phase 1 for a given time bin index s.5 Moreover,
we consider Bs to be arranged as

Bs =
{

b1s, ... , b(l−1)s , bls, ..., bLss

}

(11)

so that the corresponding set of energies

Es =

{

eb1ss, ... , eb(l−1)ss
︸ ︷︷ ︸

E(l−1)s

eblss, ..., ebLs
s

}

(12)

5The ranging information d is related to s in the form d ≈ s · c TED/2,
with c being the speed of light.

is organized in decreasing order, i.e.,

eb1ss > ... > eblss > ... > ebLs
s (13)

where Ls = |Bs| is the cardinality of the set and varies
according to s. Thus, we have the definition of Nbins sets
which can be empty or upper bounded by the number of
steering directions Nsteer. For each distance, i.e., for each
time index s, we can assume that if at least one bin is
above the threshold ξz , b1s likely corresponds to the steering
direction where the target is intercepted and thus eb1ss will be
considered at the output of phase 2.

Let also define the respective non-centrality parameter
(NCP) vector given by

Ns =
{

eb1ss − ξz , ..., eblss − ξz, ..., ebLs
s − ξz

}

(14)

where each NCP element is the difference between the corre-
spondent measured energy bin and ξz . To keep the algorithm
complexity low, we design the threshold by accounting for the
presence of a single target in the environment.6 Specifically,
if Ls ≥ 2, for l > 1 we consider the energy test

eblss
H1

≷
H0

ξxls (15)

where ξxls is the threshold set in the phase 2 which expression
will be hereafter derived. When H1 in (15) is satisfied, the
corresponding energy bin eblss is considered at the output
of phase 2 in addition to eb1ss. Specifically, we propose a
method according to which, for the sth time bin and the lth
steering direction, the threshold in (15) accounts only for the
subset E(l−1)s including the previous l − 1 bins of the set in
(12). Such an operation is performed in order to check if a
component has been intercepted in a side-lobe direction and,
consequently, it derives from a higher energy bin with index
i < l. Mathematically, the threshold ξxls is given by

ξxls = argmax
(i<l)

(νli · Nis) + ξz , l ≥ 2 (16)

where Nis is the ith element in (14), and νli is a scaling factor
which puts in relation the antenna gain in the blsth and bisth
steering directions in the form

νli =

[
G(bls−bis)

Gmax

]2

(17)

with Gk being the array gain in the kth direction, k =
−Nsteer/2, ..., 0, ..., Nsteer/2 and G(bls−bis) gives the array
gain in the side-lobe direction with respect to the steering
direction, as shown in the left of Fig. 1. Note that G0=Gmax

is the maximum array gain.
Notably, the threshold design does not require a-priori

knowledge of the environment but it operates directly on the
measured data. In fact, ξxls is evaluated for each time bin s
according to the measured environment, the steering angles
and the antenna gain in that directions. As stated before, this
approach neglects the effect of possible false bin classification

6Such a procedure is possible thanks to the high difference of the main beam
and the side-lobes in the considered massive arrays. Moreover, the constructive
interference deriving from multiple targets can be accounted for by introducing
an extra marging in the threshold.
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Target at s
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Output

Phase 1: application of ξz Phase 2: application of ξxls

Radar

NsteerNsteer

NbinsNbins

Es :

E

Fig. 1. Example of beamsteering scheme, with the construction of E and the two thresholding phases.

when consecutive targets constructively overlap due to side-
lobes but, as shown in numerical results, such an effect does
not impact too much on the map accuracy due to the high
difference between the main beam and the side-lobes.

IV. RESULTS

To validate the previously described system, we now ex-
ploit as a case study the mm-wave measurement campaign
extensively analyzed in [20]. In particular, measurements were
collected centered at 60GHz with 6GHz bandwidth, and
transmitarrays (TAs) with 400 elements and only one bit for
phase compensation [2] were adopted. Such arrays represent a
practical solution when array complexity has to be kept as low
as possible while preserving good directional radiation proper-
ties. To meet the requirements of the considered mobile radar,
37 steering directions were considered ranging from −90◦ to
+90◦ with a step of 5◦. Measurements were conducted in
two indoor environments, that is an office room and a cor-
ridor. They were chosen due to their different backscattering
characteristics, since the room is dense of furniture, whereas
the corridor can be considered as a furniture-free and tunnel-
shaped environment, with a completely different geometry. As
transmitted signal, root raised cosine (RRC) pulses, centered
in the same bandwidth, have been considered.

Thresholds have been set by using (6) and (16) and account-
ing for the non-idealities of the measurements.7 In order to
have a quantitative comparison among the approaches, indicate
with m and mref the reconstructed and the reference map,
respectively, both divided in bins/pixels. Then, we define the
map similarity score metric between the two maps as

Ψ(m,mref) = d(m,mref, o) + d(mref,m, o) (18)

with

d(m,mref, o) =

∑

q∈qo
min(dist(q,qref))

No
(19)

where o denotes the occupied state of the bin, No is the number
of occupied bins in m, qo = [(x, y)|m(x, y) = o] denotes the
vector of the spatial coordinates (x, y) such that the corre-
spondent bin is occupied, and qref = [(x, y)|mref(x, y) = o]

7The threshold accounts for a margin to mask the impairments due to the
mechanical beamsteering. In fact, if from one side this operation preserves
the same pattern in all the directions, small misalignments were present due
to some mechanical issues, but they did not affect the measurement validity.

indicates the counterpart in the reference map. Thus, the con-
sidered metric allows to have a quantitative evaluation of how
much the obtained map differs from the initial one. Note that,
ideally, in case of perfect map reconstruction, Ψ(m,mref) = 0.
Obviously, the considered approach suffers from the not
perfect reproduction of the environment, but it represents a
reliable benchmark for performance comparison. Differently
from [21], for each steering direction θb, dist(q,qref) accounts
for the distance in terms of number of bins/pixels of the two
maps along θb. Obviously, this approach neglects the estimate
of the energy level but gives a further indicator of the map
quality with respect to the visual inspection.

Figure 2 shows the true mref map (e.g., a mere reproduction
of the true layout) and the maps estimated at the output of
phase 1 and 2 for both the corridor and the office room, respec-
tively. The value 0 is assigned to not-occupied state of the bin
in the estimated map. As it can be seen, results are promising
as with this simple approach the map is cleaned.8 Thanks
to the adaptive threshold, the similarity score is improved of
approximately the 36% in corridor and the 78% in the room,
with respect to the noise threshold. Thus, it is experimentally
verified, that our algorithm, designed for the detection of a
unique target, still performs well in environments showing
different backscattering characteristics, thanks to the adoption
of extremely narrow beam arrays. This further motivates the
importance of adopting massive instead of non-massive arrays.

Fig. 3 reports the mapping reconstruction when the radar is
located in a different position of the room as measurements
were collected each 0.5m, to show the robustness of the
algorithm also when moving in an indoor environment.

Considering the comparison with other indoor mapping
techniques, those relying on coherent receivers, digital beam-
forming and more complex algorithms are expected to attain
better performance but, due to the entailed complexity in
their architectures, they are not suitable for personal radars
applications. Furthermore, by properly tuning the algorithm
parameters in the extended version of the CLEAN approach
described in [20], it is possible to attain a very defined
environment contour. Unfortunately, to practically realize the
method, there is the need to adopt high-cost hardware to

8Differences in the reconstruction of the true perimeter layout can be
ascribed also to possible imperfections in the environment representation in
simulations, and in neglecting the presence of furniture, since it would require
a precision level which is out of the scope of the manuscript.
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Fig. 2. Mapping results in the office room (left) and in the corridor (right).
Top: Reference map mref where white bins indicate the environment to be
reconstructed. Middle: Estimated map m at the output of phase 1. Bottom:
Estimated map m at the output of phase 2.
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Fig. 3. Left: Estimated map m at the output of phase 1. Right: Estimated
map m at the output of phase 2. Results are collected from a different radar
position obtained by moving the radar of 0.5m along the y-axe.

guarantee the perfect signals alignment required by CLEAN.
On the other side, in [5], preliminary interesting results us-
ing a low-complexity receiver are reported. Unfortunately, as
previously stated, such an approach is limited by the need to
perform a preliminary characterization of the backscattering
characteristics of the surrounding environment, which might
be not possible in real-time applications. Thus, the solution
herein proposed can ease the practical integration in radar
transceivers with a simple and environment-adaptive scheme.
To further clean the map, our method can be refined by
discarding, as an example, components containing a low
percentage of the overall measured energy, as typically done
in CLEAN-inspired algorithms.

V. CONCLUSIONS

In this paper we proposed the design of a radar, suitable
for small-size and low-complexity devices, capable of self-

estimating a threshold for cleaning measured data during the
beamsteering operation without requiring a-priori information
of the environment. We showed the feasibility of the proposed
approach by exploiting measurements collected with real 400-
element massive arrays at mm-wave. It has been experimen-
tally verified that our algorithm allows to mitigate the side-
lobes effect in dense scatterers scenarios without the need
of a more complex coherent receiver architecture or of more
complex CLEAN-like algorithms.
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