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The fuzzy transform (F-transform), introduced by I. Perfilieva, is a powerful tool for the 
construction of fuzzy approximation models; it is based on generalized fuzzy partitions and 
it is obtained by minimizing a quadratic (L2-norm) error function. In this paper, within the 
discrete setting, we describe an analogous construction by minimizing an L1-norm error 
function, so obtaining the L1-norm F-transform, which is again a general approximation 
tool. The L1-norm and L2-norm settings are then used to construct two types of fuzzy-
valued F-transforms, by defining expectile (L2-norm) and quantile (L1-norm) extensions of 
the transforms. This allows to model an observed time series in terms of fuzzy-valued 
functions, whose level-cuts can be interpreted in the setting of expectile and quantile 
regression. The proposed methodology is illustrated on some financial daily time series.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

The Fuzzy transform (F-transform) has been introduced by I. Perfilieva [32]; the books [31] and [35] contain recent and 
complete analysis of its possible implications for fuzzy modeling. The recent literature on F-transform is very rich, ranging 
from theoretical aspects [5,17,29,39,40,49,61] to applications in several fields of computational intelligence (see [10–12,30,
33,34,36–38,47,48]).

In this paper we will consider the discrete F-transform. It is assumed that m points (ti, f i) ∈R
2, i = 1, ..., m, are given val-

ues f i = f (ti) of a function f defined on a subset T of a real interval [a, b] and a decomposition P = {a = x1 < ... < xn = b}
of [a, b] with n knots xk , k = 1, ..., n is given, together with a family A = {A1, ...An} of n appropriate basic functions Ak
forming a fuzzy partition (P, A) of [a, b] (see section 2 for details).

In its simplest form, the direct F-transform is a vector (F1, ..., Fn) of real numbers such that each Fk is a weighted 
average of the function f at the points ti belonging to the subintervals of P containing xk as an extreme vertex; the value 
Ak(ti) of the basic function Ak is the weight assigned to f i when computing Fk , where Fk minimizes a quadratic (L2-norm 
based) weighted error function.

The inverse F-transform function is then obtained using an inversion formula: it is the linear combination of the basic 
functions Ak with coefficients given by the components Fk of the direct F-transform. The resulting function represents a 
good approximation of the values f (ti) and the reconstruction can be improved to arbitrary precision by refining the fuzzy 
partition (P, A) of [a, b].
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By generalizing the setting of discrete F-transform, we describe the quantile (based on L1-norm error minimization) and 
the expectile (based on L2-norm error minimization) F-Transforms. The suggested methodology is similar to the asymmet-
ric estimation technique recently adopted in Statistics to define quantile and expectile regression models. Based on some 
properties of the obtained (direct) F-transforms, we show that in both cases we can define, in a natural way, fuzzy-valued 
versions of the direct and inverse F-transforms.

Using quantile and expectile estimation models, we can obtain the intervals giving all level sets (α-cuts with α > 0), 
respectively, of fuzzy-valued quantile and expectile direct F-transforms.

In the case of expectiles, based on the minimization of L2-norm error functions, a vector of fuzzy numbers (where 
each Fk is now a membership function) is then obtained as our direct fuzzy-valued F-transform; the corresponding inverse
fuzzy-valued F-transform is the linear combination of the basic functions Ak with the fuzzy coefficients Fk . By an analogous 
construction, based on the minimization of an L1-norm error function, we obtain the quantile direct and the corresponding 
inverse F-transform, which is again a general approximation tool; finally, fuzzy-valued versions of the direct and inverse 
quantile F-transforms are obtained.

Concerning time series, smoothing is a very powerful technique to analyze their patterns and underlying trends; in this 
paper we illustrate the discrete F-transform obtained on a generalized fuzzy partition and we analyze its properties as a 
general smoothing tool, as it has been introduced in [48,49,17].

The F-transform setting appears to be a valid non-parametric methodology to describe movements in a time series; its 
basic properties are similar to the well-known kernel smoothing [44] or spline-based regression techniques using quantiles 
or expectiles ([4], [8] and [24]) or interval valued and fuzzy approaches to model time series (as in [6,23,25] and [26]). 
Based on the classical F-transform with generalized fuzzy partitions, expectile smoothing is obtained immediately (some 
preliminary results are described in [16] and specified in [54]). By the two types of quantile and expectile F-transforms, we 
define fuzzy-valued approximations of a time series.

In general, it is also possible to obtain fuzzy-valued approximations of a time series from quantile and expectile smooth-
ing procedures existing in the very extended literature on quantile or expectile regression and estimation, coming from 
different fields such as Robust Statistics, Generalized Quantile Regression for functional data, Statistical Learning Theory, 
Non-parametric Smoothing and Regularization, Adaptive Semi-parametric Estimation.

We discuss on some advantages of the proposed fuzzy-valued reconstruction of time series and we show the results 
obtained on three financial time series, in comparison with other efficient and well tested procedures recently developed in 
literature.

The paper is organized into seven sections: after the introduction we recall in section 2 the basic concepts about Fuzzy 
transform. In section 3 we show how to use the F-transform in expectile smoothing while in section 4 we show the use 
of F-transform in quantile smoothing. In section 5 we show that both expectile and quantile inverse F-transform functions 
satisfy the non-crossing property. Section 6 presents a detailed comparison of quantile and expectile F-transforms with 
existing methods in Robust Statistical Regression and recent Support Vector Machine (SVM) Regression, exploring evidence 
from financial data. Conclusions and future research are shortly highlighted in the final section.

2. Basic elements about F-transform

A fuzzy set on the field of real numbers R, as introduced in [60], is a mapping u : R −→ [0, 1]. A fuzzy interval is a fuzzy 
set on R with the properties that the mapping u is (i) normal (∃̂x ∈R with u(̂x) = 1), (ii) upper semi-continuous, (iii) fuzzy 
convex (u(λx′ + (1 − λ)x′′) ≥ min{u(x′), u(x′′)} for all λ ∈ [0, 1]), (iv) cl{x|u(x) > 0} is a compact interval. A consequence of 
(ii) and (iii) is that the α-cuts [u]α = {x|u(x) ≥ α} = [u−

α , u+
α ] are compact intervals for all α ∈]0, 1]. The 1-cut is the core 

[u]1 = {x|u(x) = 1} of u; the interval [u]0 = cl({x|u(x) > 0}) is the 0-cut of u (some authors call it the support of u).
We denote by RF the space of real fuzzy intervals. The fundamental relationship between the mapping u ∈ RF and its 

α-cuts, for α ∈ [0, 1], is

u(x) =
{

0 if x /∈ [u]0

sup{α|x ∈ [u]α} if x ∈ [u]0
.

For additional definitions and results on fuzzy numbers and intervals we will refer to the recent book [2].
Given a real interval [a, b] and a decomposition of [a, b] with n ≥ 2 points, say P = {a = x1 < ... < xn = b}, and given a 

finite family of fuzzy sets (in particular fuzzy numbers) A = {A1, ..., An}, we firstly define a fuzzy partition of [a, b] by the 
pair (P, A); the standard F-transform (see [32]) of a continuous function f : [a, b] −→ R is defined in terms of a vector of 
real numbers F = (F1, ..., Fn) (called the direct F-transform) where the components Fk are averages of f on the subintervals 
of P, namely on [a, x1] if k = 1, [xk−1, xk+1] if k = 2, ..., n − 1 (with n > 2) and [xn−1, b] if k = n, obtained by minimizing 
a weighted squared error (deviation) between f (x) and Fk on each subinterval. The direct F-transform F is then used to 
define the iF-transform (inverse F-transform) function f̂ : [a, b] −→ R and the main result is that f̂ is an approximating 
function of f on [a, b] (see [32] for details).

In [47–49] a generalized fuzzy r-partition of [a, b] is introduced, for any integer r ≥ 1, and corresponding direct and inverse 
F-transforms are defined. If r = 1, a 1-partition coincides with the pair (P, A) of a (standard) fuzzy partition introduced 
in [32].
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An r-partition of [a, b] is defined by the following two steps (A)–(B):
(A) Choose a decomposition P = {a = x1 < ... < xn = b} of [a, b] with n ≥ 2; introduce r additional nodes x−r+1 < ... <

x0 < a on the left side of [a, b] and r new nodes b < xn+1 < ... < xn+r on the right; remark that the resulting subintervals 
[xk, xk+1], for k = −r + 1, ..., n + r − 1, need not have the same length.

(B) Then, n + 2r − 2 continuous basic functions Ak : [a,b] −→ [0,1] are chosen, for k = −r + 2, ..., n + r − 1, with the 
following properties:

B. 1) if r > 1, for k = −r + 2, ..., 0, Ak is non-increasing on 
[
a,min

{
xk+r,b

}]
, with Ak(xk) = 1 and Ak(x) = 0 for x ≥

min
{

b, xk+r
}

;
B. 2) for k = 1, 2, ..., n, Ak is obtained by eventually restricting to [a, b] the membership function of a continuous fuzzy 

number with core {xk} and support [xk−r, xk+r]; in particular Ak(xk) = 1 and Ak(x) = 0 for all x /∈ ([xk−r, xk+r]
⋂[a,b]);

B. 3) if r > 1, for k = n + 1, ..., n + r − 1, Ak is non-decreasing on [max {a, xk}] with Ak(xk) = 1 and Ak(x) = 0 for 
x ≤ max

{
a, xk+r

}
;

B. 4) for all x ∈ [a,b] the following condition holds

n+r−1∑
k=−r+2

Ak(x) = r.

Remark that, on each subinterval ]xk−1, xk[ of the decomposition P, for k = 2, ..., n, only 2r basic functions Ak−r(x), ...,
Ak+r−1(x) are non-zero.

We denote a fuzzy r-partition by (P, A, r), without explicit reference to the added nodes on the left and the right sides 
of interval [a, b].

A family A satisfying the conditions in (B) can be obtained by choosing n + r − 2 continuous functions Lk(x), k =
2, ..., n + r − 1 such that each Lk(x) is increasing on [xk−r, xk] with L(xk−r) = 0, L(xk) = 1. Then, each Ak for x ∈ [a,b] is 
obtained as follows:

Ak(x) = 1 − Lk+r(x) if x ∈ [a, xk+r]⋂[a,b] for k = −r + 2, ...,1,

Ak(x) =
{

Lk(x) if x ∈ [xk−r, xk]⋂[a,b]
1 − Lk+r(x) if x ∈ [xk, xk+r]⋂[a,b] for k = 2, ...,n − 1, (1)

Ak(x) = Lk(x) if x ∈ [xk−r,b]⋂[a,b] for k = n, ...,n + r − 1.

In forthcoming illustrative examples, we construct the basic functions Ak above by choosing a (standardized) increasing 
function L : [0, 1] → [0, 1] such that L(0) = 0, L(1) = 1 and defining each Lk by translating and rescaling L as

Lk(x) = L

(
x − xk−r

xk − xk−r

)
for x ∈ [xk−r, xk]. (2)

A family of parametric standardized functions is, e.g., the following increasing rational spline (more details in [52] and 
[53], where also other monotonic functions L are considered)

L(τ ) = τ 2 + β0τ (1 − τ )

1 + (β0 + β1 − 2)τ (1 − τ )
for τ ∈ [0,1] (3)

where β0, β1 are non-negative real numbers representing the derivatives of L(τ ) at τ = 0 and τ = 1, respectively. By any 
non-negative values of the two parameters β0, β1, we can generate a large number of basic functions Ak as in (1) with Lk
given in (2) corresponding to L as in (3). For example, the pair of parameters β0 = 2, β1 = 0 results in the parabolic function 
L(τ ) = 2τ − τ 2.

2.1. L2-norm F-transform

Consider firstly the simple case where r = 1 and (P, A, 1) is a standard partition of [a, b] with n basic functions A1, ..., An

and nodes a = x1 < x2 < ... < xn = b. We will denote a partition simply by (P, A).

Definition 1. (from [32]) Given a continuous function f : [a, b] −→ R and a fuzzy partition (P, A) of [a, b], the direct fuzzy 
transform (F-transform) of f with respect to (P, A) is the n-tuple of real numbers (F1, ..., Fn) given by 

Fk =

b∫
a

f (x)Ak(x)dx

b∫
a

Ak(x)dx

, k = 1, ...,n (4)
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Definition 2. (from [32]) Given the direct F-transform (F1, ..., Fn) of a continuous function f : [a, b] −→ R on a fuzzy 
partition (P, A), the inverse F-transform (iF-transform) is the continuous function f̂(P,A) : [a, b] −→R given by

f̂(P,A)(x) =
n∑

k=1

Fk Ak(x) for x ∈ [a,b]. (5)

The following approximation property is relevant in the F-transform setting.

Theorem 3. (from [32]) If f : [a, b] −→R is a continuous function then, for any positive real ε, there exists a fuzzy partition (Pε, Aε)

such that the associated F-transform (F1,ε, F2,ε, ..., Fnε,ε) and the corresponding iF-transform ̂ f(Pε,Aε) : [a, b] −→ R satisfy∣∣ f (x) − f̂(Pε,Aε)(x)
∣∣< ε for all x ∈ [a,b].

The components of the F-transform solve a weighted L2-norm minimization problem.

Theorem 4. (from [32]) If f : [a, b] −→ R is a continuous function and a fuzzy partition (P, A) each component Fk of the associated 
F-transform (F1, F2, ..., Fn) is obtained by minimizing the following quadratic function with respect to the single real variable y:

�k(y) =
b∫

a

| f (x) − y|2 Ak(x)dx

In many applications, the function f is known or sampled at m ∈ N distinct points ti ∈ [a,b], i = 1, 2, ..., m or, more 
generally, m observations (ti, f i) are available such that f (ti) = f i ; a discrete version of F-transform was introduced by 
Perfilieva in her original paper.

Definition 5. (from [32]) Given m values (ti, f (ti)), ti ∈ [a, b], i = 1, ..., m, of a function f : T −→ R defined on a subset 
T ⊆ [a, b] and a fuzzy partition (P, A) of [a, b] such that each subinterval [xk−1, xk+1] contains at least one point ti in its 
interior (so that 

∑m
i=1 Ak(ti) > 0 for all k), the discrete direct F-transform of f with respect to (P, A) is the n-tuple of real 

numbers (F1, ..., Fn) given by

Fk =

m∑
i=1

f (ti)Ak(ti)

m∑
i=1

Ak(ti)

, k = 1, ...,n. (6)

Each Fk minimizes the function �m,k(y) =
m∑

i=1
| f (ti) − y|2 Ak(ti).

In the following, in view of the applications to expectile and quantile smoothing for time series, we always consider the 
discrete version of F-transform and its generalizations or extensions.

A first extension of F-transform is suggested in [32] and analyzed in [39,61]: the constant components Fk , representing 
a weighted average of the function f on [xk−1, xk+1], are substituted by (local) polynomials of fixed degree p ≥ 1

ϕp,k(x; Fk,0, ..., Fk,p) = Fk,0 + Fk,1(x − xk) + Fk,2

2! (x − xk)
2 + ... + Fk,p

p! (x − xk)
p . (7)

The parameters Fk, j , j = 0, ..., p, for each k, are obtained, in analogy to Theorem 4, by minimizing the L2-norm error 
function, with respect to y0, ..., yp ,

�m,k(y0, ..., yp) =
m∑

i=1

∣∣ f (ti) − ϕp,k(ti; y0, ..., yp)
∣∣2 Ak(ti), where (8)

ϕp,k(x; y0, ..., yp) = y0 + y1(x − xk) + y2

2! (x − xk)
2 + ... + yp

p! (x − xk)
p .

The optimal solution y∗
0, ..., y

∗
p will give the components Fk, j , j = 0, ..., p.

The direct F-transform polynomials ϕp,k(x; Fk,0, ..., Fk,p) and the corresponding inverse F-transform, defined by

f̂ (p)

(P,A)
(x) =

n∑
k=1

Ak(x)ϕp,k(x; Fk,0, ..., Fk,p) for x ∈ [a,b], (9)

are called F-transform of order p (the basic F-transform is then of order zero).
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Starting with a generalized r-partition (P, A, r), introduced in [49], and following the same ideas as in [32], the L2-norm 
F-transform of order p ≥ 0 on (P, A, r) is defined in a similar way: the direct F-transform is an (n + 2r − 2)-tuple of 
polynomials (ϕp,2−r(x), ..., ϕp,n+r−1(x)) and the corresponding inverse F-transform is given by the expression

f̂ (p)

(P,A,r)(x) = 1

r

n+r−1∑
k=2−r

Ak(x)ϕp,k(x; Fk,0, ..., Fk,p) for x ∈ [a,b], (10)

where the parameters Fk, j , j = 0, ..., p, for k = 2 − r, ..., n + r − 1, are obtained as above, and if the order is p = 0 simply by

f̂(P,A,r)(x) = 1

r

n+r−1∑
k=2−r

Fk Ak(x) for x ∈ [a,b] (11)

with the (n + 2r − 2)-tuple of the direct F-transform (F2−r , ..., Fn+r−1).
In subsection 2.3 we will describe a general matrix form of the minimization problems that are required to be solved in 

order to compute the coefficients Fk, j ( j = 0, 1, ..., p) of the polynomial components ϕp,k(x) (k = 2 − r, ..., n + r − 1).

2.2. L1-norm F-transform

For some fuzzy r-partition (P, A, r) of [a, b] and a function f : [a, b] −→ R, we have seen that the direct F-transform 

of f , as in the paper [32], is such that each Fk minimizes the function �k(y) =
b∫

a
| f (x) − y|2 Ak(x)dx with y ∈R; �k(y) can 

be interpreted as the integral (weighted) L2-norm of the error f (x) − y, restricted on the support of the basic function Ak
(assuming that the integrals exist).

We are now interested in generalizing this construction by considering the L1-norm; in particular we obtain the compo-
nents of the L1-norm direct F-transform, denoted them by Gk , as the minimizers of the integral (weighted) L1-norm of the 
error f (x) − y, given by

	k(y) =
b∫

a

| f (x) − y| Ak(x)dx with y ∈ R. (12)

Correspondingly, the L1-norm inverse F-transform is obtained as the analogous inverse F-transform with the components 
Fk substituted by the new components Gk .

Remark that, in general, Gk may not be unique as in fact there may exist an interval of values y∗ ∈ R with the same 
minimal value 	k(y∗).

According to the ideas above, the L1-norm direct and inverse F-transform are defined as follows.

Definition 6. An L1-norm direct F -transform of a function f : [a, b] →R on the r-partition (P, A, r) is any (n + 2r − 2)-tuple 
of real numbers (G2−r, ..., Gn+r−1), where each Gk minimizes the function 	k in (12).

Definition 7. Given the L1-norm direct F-transform (G2−r, ..., Gn+r−1) of a function f : [a, b] →R on the r-partition (P, A, r), 
the corresponding L1-norm inverse F -transform of f is the function f̃(P,A,r) : [a, b] →R, given by

f̃(P,A,r)(x) = 1

r

n+r−1∑
k=2−r

Gk Ak(x), x ∈ [a,b]. (13)

We can see that the same approximation property in Theorem 3 for the L2-norm F-transform, is valid also for the 
L1-norm F-transform. For the sake of simplicity, we consider a uniform partition (P, A), i.e., xk − xk−1 = h for all k, and 
r = 1.

Theorem 8. If f : [a, b] −→ R is a continuous function then, for any positive real ε, there exists a fuzzy partition (Pε, Aε) such that 
the associated L1-norm F-transform (G1,ε, G2,ε, ..., Gnε,ε) and the corresponding inverse L1-norm F -transform ̃f(Pε,Aε) : [a, b] −→ R

satisfy ∣∣ f (x) − f̃(Pε,Aε)(x)
∣∣< ε for all x ∈ [a,b].
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Proof. Consider a uniform partition (P, A) of [a, b] such that x j+1 − x j = h for j = 1, ..., n − 1. Considering the continuity of 
f on [a, b], define

m1 = min { f (x) | x ∈ [a, x2]} , M1 = max { f (x) | x ∈ [a, x2]}
m j = min

{
f (x) | x ∈ [x j−1, x j+1]

}
for j = 2, ...,n − 1

M j = max
{

f (x) | x ∈ [x j−1, x j+1]
}

for j = 2, ...,n − 1

mn = min { f (x) | x ∈ [xn−1,b]} , Mn = max { f (x) | x ∈ [xn−1,b]} .

Consider x ∈ [xk, xk+1] for a given k = 1, ..., n − 1; from Definition 6 we have that Gk ∈ [mk, Mk] and Gk+1 ∈ [mk+1, Mk+1] so 
that

| f (x) − Gk| ≤ Mk − mk and
∣∣ f (x) − Gk+1

∣∣≤ Mk+1 − mk+1

From Definition 7, we have that ̃ f(P,A)(x) = Gk Ak (x)+Gk+1 Ak+1 (x) and, considering that Ak(x) ≥ 0, Ak+1(x) ≥ 0 and Ak(x) +
Ak+1(x) = 1 for all x, we have∣∣ f (x) − f̃(P,A)

∣∣= ∣∣ f (x)
(

Ak(x) + Ak+1(x)
)− Gk Ak(x) − Gk+1 Ak+1(x)

∣∣
≤ |Gk − f (x)| Ak(x) + ∣∣Gk+1 − f (x)

∣∣ Ak+1(x)

≤ | f (x) − Gk| +
∣∣ f (x) − Gk+1

∣∣≤ Mk − mk + Mk+1 − mk+1.

We can choose h = hε and n = nε such that max
{

M j − m j | j = 1, ...,n
}

< ε
2 . For the uniform partition (Pε, Aε) obtained in 

the mentioned way, it follows that the inequality∣∣ f (x) − f̃(Pε,Aε)(x)
∣∣< ε

is satisfied for all x ∈ [a, b]. �
Starting with a generalized r-partition (P, A, r) and following the same ideas as in subsection 2.1, the L1-norm F-

transform of order p ≥ 0 on (P, A, r) can be defined. The constant components Gk are substituted by polynomials of fixed 
degree p ≥ 1, k = 2 − r, ..., n + r − 1,

ϕp,k(x; Gk,0, ..., Gk,p) = Gk,0 + Gk,1(x − xk) + Gk,2

2! (x − xk)
2 + ... + Gk,p

p! (x − xk)
p (14)

and the parameters Gk, j , j = 0, ..., p for each k, are estimated by minimizing the L1-norm error function

	
(p)

k (y0, ..., yp) =
b∫

a

∣∣ f (x) − ϕp,k(x; y0, ..., yp)
∣∣ Ak(x)dx,

or, in the discrete case with values (ti, f (ti)), ti ∈ [a, b], i = 1, ..., m, by minimizing the absolute deviation

	m,k(y0, ..., yp) =
m∑

i=1

∣∣ f (ti) − ϕp,k(ti; y0, ..., yp)
∣∣ Ak(ti),

where ϕp,k(x; y0, ..., yp) = y0 + y1(x − xk) + y2
2! (x − xk)

2 + ... + yp
p! (x − xk)

p is our (local) polynomial of order p with coeffi-
cients y0, ..., yp .

The optimal solution y∗
0, ..., y

∗
p gives the components Gk, j , j = 0, ..., p.

The direct L1-norm F-transform polynomials ϕp,k(x; Gk,0, ..., Gk,p) and the corresponding inverse F-transform, defined by

f̃ (p)

(P,A,r)(x) = 1

r

n+r−1∑
k=2−r

Ak(x)ϕp,k(x; Gk,0, ..., Gk,p) for x ∈ [a,b],

are called L1-norm F-transform of order p ≥ 0.
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2.3. Computation of L2-norm and L1-norm F-transforms

In this section we describe a matrix notation for the direct and inverse F-transforms in the discrete case.
As in the previous subsections, a function f , defined on a subset T of a compact interval [a, b] is given, and a fuzzy 

r-partition (P, A, r) of [a, b] is selected with the usual notation. Given m distinct points t j ∈ [a, b], j = 1, ..., m, such that 
each set Tk = {t j |Ak(t j) > 0}, k = 2 − r, ..., n + r − 1, is nonempty (assuming t1 < t2 < ... < tm , we say in this case that T =
{t1, t2, ..., tm} is sufficiently dense with respect to (P, A, r)), the discrete direct L1-norm F-transform of order p is obtained, 
for all k, by minimizing

	m,k(y0, ..., yp) =
m∑

j=1

∣∣ f (t j) − ϕp,k(t j; y0, ..., yp)
∣∣ Ak(t j) (15)

and the discrete direct L2-norm F-transform of order p is obtained by minimizing

�m,k(y0, ..., yp) =
m∑

j=1

∣∣ f (t j) − ϕp,k(t j; y0, ..., yp)
∣∣2 Ak(t j). (16)

Remark that the form of the (local) polynomials of order p ≥ 0 to generate the components of the direct F-transform, is 
the same ϕp,k(x; y0, ..., yp) (for all x and all y0, ..., yp ) for both the L1-norm and the L2-norm cases.

The two optimization problems (15) or (16) can be usefully formulated by using the same matrix notation, as follows.
We introduce the m-dimensional column vector ((·)T denotes transposition) f = ( f1, ..., fm)T with components f j = f (t j)

obtained by the observed values of function f at points t j ∈ [a, b]; the values of each basic function Ak of the fuzzy 
r-partition (P, A, r), evaluated at the points t j ∈ [a, b], are arranged into a diagonal matrix Wk of order m

Wk = diag[Ak(t1), Ak(t2), ..., Ak(tm)];
the p + 1 variables to be determined for each k, are arranged into the column vector y = (y0, ..., yp)T and the following 
matrices with m rows and p + 1 columns are generated for each k:

Xk =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 t1 − xk
1
2 (t1 − xk)

2 ... 1
p! (t1 − xk)

p

1 t2 − xk
1
2 (t2 − xk)

2 ... 1
p! (t2 − xk)

p

. . . ... .

. . . ... .

1 tm − xk
1
2 (tm − xk)

2 ... 1
p! (tm − xk)

p

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

According to the notation, the m terms ϕp,k(ti; y) for fixed k appearing in 	m,k(y) or in �m,k(y) are the components of 
the product Xky, i.e.,

	m,k(y) = ‖Wk(f − Xky)‖L1
, and

�m,k(y) =
∥∥∥W1/2

k (f − Xky)

∥∥∥
L2

where W1/2
k is the square root of the (non-negative) diagonal matrix Wk and ‖g‖L1

=∑m
j=1 |g j |, ‖g‖L2

=∑m
j=1 |g j |2 are the 

usual norms for real vectors.

Remark 9. For implementation of Wk and Xk it is sufficient to consider elements t j where Ak(t j) > 0, i.e. only t j ∈
]xk−r, xk+r[. If mk denotes the cardinality of set Tk defined above, then Wk is a square matrix of order mk and Xk is a 
rectangular matrix with mk rows and p + 1 columns.

The minimization of 	m,k(y) and �m,k(y) are well known problems in regression analysis: the first is a (weighted) linear 
Least Absolute Deviation (LAD) problem (see e.g., [42]) and the second is a linear Least Squares (LS) problem. From their 
solution, there exist available several very efficient computational procedures; some details are given in sections 3 and 4.

We end this section with an example, to show a first comparison of L1-norm and L2-norm F-transform.

Example 10. Consider the function (as in [5]) f : [0, 10] → R defined by f (x) = x(10 − x)sin(x2), x ∈ [0, 10]. The runs are 
executed with m = 2001 perturbed values f j = f (t j) + e j where the points t j are uniform on [0, 10] and e j are random 
numbers from the standard normal distribution N(0, 1); we compare two cases for the number n of basic functions n = 81
and n = 161; in both cases, the value of the bandwidth, obtained by GCV (see [49]), is r = 1. The mean absolute variation 
of the data { f j | j = 1, ..., m}, defined by M AV ( f ) = 1 ∑m−1 | f j+1 − f j |, is M AV ( f ) = 1.2612. For the two values of n, 
m−1 j=1
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Table 1
Results for L1-norm and L2-norm F-transform.

Cases f̃ L1 f̂ L2

M AV M S E M AV R M AV M S E M AV R

n = 81 p = 1 0.5507 2.43 0.437 0.5101 2.40 0.404
n = 81 p = 3 0.5566 0.91 0.441 0.5360 0.88 0.425
n = 161 p = 1 0.5516 0.98 0.437 0.5443 0.94 0.432
n = 161 p = 3 0.5510 0.85 0.437 0.5457 0.79 0.433

Fig. 1. (Example 10) Left: L1 (red, squares) and L2 (blue, circles) direct F-transform components Gk,0 and Fk,0; Right: L1 (red) and L2 (blue) inverse 
F-transform functions. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 2. (Example 10) Right: Local 1st order polynomials (lines) of the L1-norm based direct F-transform; Left: Local 1st order polynomials (lines) of the 
L2-norm based direct F-transform.

the L1-norm iF-transform f̃ and the L2-norm iF-transform f̂ are obtained for two orders p = 1 and p = 3. In Table 1 we 
report the average variation Vm( f̃ L1) and the mean squared error (residual) M S E( f̃ L1) = 1

m

∑m
j=1 | f j − f̃ j |2 (similarly for 

the L2-norm iF-transform f̂ ). The degree of smoothness, obtained by the iF-transforms, can be measured, e.g., by the mean 
absolute variation ratio M AV R( f̃ L1) = M AV ( f̃ L1 )

M AV ( f ) (similarly by M AV R( f̂ L2) = M AV ( f̂ L2 )

M AV ( f ) ).

In terms of the reported indicators, the L1-norm iF-transform f̃ and the L2-norm iF-transform f̂ perform similarly. Fig. 1
pictures the components of direct F-transform and the inverse F-transform of types L1 and L2 and order p = 1 for n = 81; 
Fig. 2 plots the local polynomials of first order (lines) corresponding to the L1-norm and L2-norm direct F-transforms, 
according to equation (7). 

The two figures show a very similar behavior for the L1 and the L2 F-transform smoothing approximations (at least for 
this example). 

3. L2-norm fuzzy-valued F-transform in expectile smoothing

In order to investigate the role of F-transform in smoothing, let us first introduce some basic facts on expectile regression, 
a recent interesting field in non-parametric regression (see e.g. [8], [43], [58], [59] and the references therein).

In applied statistics, given a set of m observations (values of a function f : [a,b] →R) f j = f (t j) with j = 1, ..., m, where 
t j ∈ [a,b], the expectiles μ (ω), for ω ∈]0, 1], are considered with respect to the set of values 

{
f j | j = 1, ..,m

}
and defined 
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by tail expectations: for a given value of ω ∈]0, 1], the sample expectile μ (ω) is obtained by minimizing the following 
so-called least asymmetrical weighted squares (LAWS) function

Sω(μ) =
m∑

j=1

w j (ω;μ)
(

f j − μ
)2 , (17)

where the weights are

w j (ω;μ) =
{

ω if f j > μ

1 − ω if f j ≤ μ
.

If ω = 1
2 we obtain the mean value μe of the observations

μe = arg min
μ

⎛⎝S 1
2
(μ) = 1

2

m∑
j=1

(
f j − μ

)2⎞⎠ .

The value μ = μ (ω) (depending on ω) is the population expectile for different values of the asymmetry parameter 
ω ∈]0, 1].

Consider now the F-transform of order zero (p = 0). The expectile fuzzy-valued F-transform, for a fixed r-partition 
(P, A, r) and according to the expectiles setting described above, is defined by using the minimizers of the following strictly 
convex functions, for k = −r + 2, ..., n + r − 1 and ω ∈ ]0,1[,

�k,ω (μ) =
m∑

j=1

w j (ω;μ)
(

f j − μ
)2

Ak
(
t j
)

. (18)

The minimization in (18) can be solved by applying the following iterated least asymmetrical weighted squares algorithm 
(see [28,59]).

Iterated LAWS algorithm for expectiles: Given: m observations (t j, f j) with t j ∈ T ⊆ [a, b], j = 1, ..., m; a generalized 
r-partition (P, A, r) of [a, b]; a value k ∈ {−r + 2, ..., n + r − 1} and a value ω ∈]0, 1[, find the real value μ∗

k(ω) that minimizes 
the function �k,ω in equation (18).

• Step 0 (Initialization)
Choose a positive small tolerance δ > 0 to use as a convergence test (e.g., δ= 0.00001).
Choose a positive integer mit to use as a maximum number of iterations (e.g., mit= 100).
Set l = 0 to count the number of performed iterations.
Choose w(0)

j , j = 1, ..., m as initial estimates of weights (e.g., w(0)
j = 1

2 for all j).
• Step 1 (Solve minimization at iteration l)

Compute the value μ(l) that minimizes 
∑m

j=1 w(l)
j

(
f j − μ

)2
Ak(t j) with respect to μ, i.e.,

μ(l) =
∑m

j=1 w(l)
j Ak(t j) f j∑m

j=1 w(l)
j Ak(t j)

.

• Step 2 (Update weights for next iteration)
Compute the new weights as

w(l+1)
j =

{
ω if f j > μ(l)

1 − ω if f j ≤ μ(l) for j = 1, ...,m

• Step 3 (Test if weights are stable)
Compare w(l+1)

j with w(l)
j ; if∣∣∣w(l+1)

j − w(l)
j

∣∣∣< δ for all j = 1, ...,m

then declare the set of current weights 
{

w(l+1)
j | j = 1, ...,m

}
as stable.
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• Step 4 (Test convergence or termination)

If the weights 
{

w(l+1)
j | j = 1, ...,m

}
are stable or if l = mit , then compute the final solution as

μ∗
k (ω) =

∑m
j=1 w(l+1)

j Ak(t j) f j∑m
j=1 w(l+1)

j Ak(t j)

and stop the procedure.
Otherwise, increase counter l by one and continue with steps 1 to 4.

The iterated LAWS algorithm alternates weighted least squares minimization (Step 1) and weights updating (Step 2) until 
the weights in two consecutive iterations do not change significantly (within the chosen tolerance δ). The loss function (18)
is continuously differentiable and convex with respect to μ and the algorithm is guaranteed to converge to the existing 
unique solution (see e.g. [59], Section 2.1). In practice, five to ten iterations are usually sufficient (see also [43], Section 3).

Remark that if ω = 0.5, the minimization of �k,0.5 (μ) with respect to μ is obtained in closed form as

μ∗
k (0.5) =

∑m
j=1 Ak(t j) f j∑m

j=1 Ak(t j)
.

The following well known result (see, e.g., [59]) allows the achievement of the construction.

Proposition 11. Consider the (unique) minimizing values μ∗
k (ω) of �k,ω (μ) for ω ∈]0, 1[; then μ∗

k (·), as a function of ω, is non-
decreasing, i.e.,

ω′ > ω′′ =⇒ μ∗
k

(
ω′)≥ μ∗

k

(
ω′′) . (19)

The monotonicity of functions μ∗
k : ]0,1[ −→ R for all k = −r + 2, ..., n + r − 1 ensures the existence of the following 

functions μk : ]0,1[ −→R, defined by the left limits

μk(ω) = lim
δ↓0

μ∗
k (ω − δ) for all ω ∈ ]0,1[ . (20)

It is well known that each function μk is left-continuous and non-decreasing on ]0,1[ (see [41], Ch. 4).

Proposition 12. Let {μk (ω) |ω ∈]0, 1[} be the set of values (from the minimizers of �k,ω (μ)) as in (20); consider α ∈ [0, 1] and 
define the following compact intervals

Uk,α =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{
μk
( 1

2

)}
if α = 1[

μk
(
α
2

)
,μk

(
1 − α

2

)]
if α ∈]0,1[

cl

( ⋃
β>0

Uk,β

)
if α = 0

. (21)

Then, for each k = 2 − r, ..., n + r − 1, the family of intervals {Uk,α; α ∈ [0, 1]} defines the α-cuts of a fuzzy number Fk ∈ RF having 
membership function

Fk(x) =
{

sup{α|x ∈ Uk,α} if x ∈ Uk,0

0 if x /∈ Uk,0
. (22)

Proof. Consider a fixed value of k. We apply the characterization theorem of Negoita–Ralescu (see [2], Theorem 4.8). Denote 
for convenience Uk,α = [uk,α, uk,α].
(i) Uk,α is a closed interval for all α ∈ [0, 1]: this is obvious from (21).

(ii) α′ < α′′ =⇒ Uk,α′′ ⊆ Uk,α′ for all α′, α′′ ∈ [0, 1]: this follows from (19) in Proposition 11. Indeed, with respect to α, 
μk
(
α
2

)
is increasing and μk

(
1 − α

2

)
is decreasing; consequently, if α′ < α′′ we have uk,α′ ≤ uk,α′′ and uk,α′′ ≤ uk,α′ , i.e., 

Uk,α′′ ⊆ Uk,α′ .

(iii) Let α ∈]0, 1] be fixed and let αn be any increasing sequence with lim
n−→∞αn = α; from αn+1 ≥ αn it follows that Uk,αn+1 ⊆

Uk,αn and the sequence of nested intervals (Uk,αn )n∈N is decreasing and consequently (section 6.3 in [27]) it has a limit and 

lim
n→∞Uk,αn =

∞⋂
Uk,αn ; from the left continuity of μk we then also have that lim

n→∞Uk,αn = Uk,α .

n=1
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(iv) From the definition of U0, we have that for any convergent decreasing sequence βn with lim
n−→∞βn = 0, βn+1 ≤ βn (so 

that Uβn ⊆ Uβn+1 ) the sequence of intervals (Uβn )n∈N is increasing and cl 
( ∞⋃

n=1
Uβn

)
= U0.

Clearly, Fk is normal with core(Fk) = Uk,1 and Fk is compactly supported, indeed cl(supp(Fk)) = Uk,0. �
Based on the last proposition, the discrete L2-norm iF-transform of f can be fuzzified to obtain a fuzzy-valued function.

Definition 13. Given a set of m points Ym = {(ti, f (ti)); i = 1, ..., m} of a function f : T −→ R with ti ∈ T ⊆ [a, b] and given a 
fuzzy r-partition (P, A, r) of [a, b], the (n + 2r − 2)-vector of fuzzy numbers

F(P,A,r) = (F−r+2, ..., Fn+r−1),

where each Fk is given by (22) in Proposition 12, is called the discrete direct expectile fuzzy transform of f with respect to 
(P, A, r), based on the data-set Ym .
The corresponding inverse expectile fuzzy transform of f is the fuzzy-valued function defined by

f̂(P,A,r) (x) = 1

r

n+r−1∑
k=2−r

Fk Ak (x) for x ∈ T . (23)

In Definition 13 and in the rest of the paper we always assume that the points ti ∈ [a, b], i = 1, 2, ..., m, are sufficiently 
dense with respect to the fuzzy partition (P, A, r).

The α-cuts of Fk will be denoted by

[Fk]α =
[

F −
k,α, F +

k,α

]
;

then, considering that each basic function Ak has non-negative values on [a, b], it follows that the α-cuts of f̂(P,A,r) (x) are

[
f̂(P,A,r) (x)

]
α

=
⎡⎣1

r

n+r−1∑
k=2−r

F −
k,α Ak (x) ,

1

r

n+r−1∑
k=2−r

F +
k,α Ak (x)

⎤⎦ . (24)

When α = 1 we obtain the standard (crisp) iF-transform, corresponding to the core of the expectile fuzzy-valued iF-
transform (24); indeed, we have, by construction, F −

k,1 = F +
k,1 for all k.

4. L1-norm fuzzy-valued F-transform in quantile smoothing

Given a set of m observations f j = f (t j) with j = 1, ..., m, where t j ∈ [a,b], the quantiles q (ω), for ω ∈]0, 1], are 
considered with respect to the population 

{
f j | j = 1, ..,m

}
and can be obtained as the solution to the minimization (with 

respect to q) of the function (see, e.g., [7,19,21,22])

Q ω(q) =
m∑

j=1

p j (ω;q) | f j − q|, (25)

where the weights are

p j (ω;q) =
{

ω if f j > q

1 − ω if f j ≤ q
.

We also have

Q ω (q) = (1 − ω)
∑
f j<q

(
q − f j

)+ ω
∑
f j>q

(
f j − q

)
and it is immediate to see that Q ω (q) ≥ 0 for all real q.

If ω = 1
2 , then the quantile gives the median me of the values { f j | j = 1, ..., m}, i.e. the following minimizer

me = arg min
q∈R

m∑
j=1

| f j − q|.
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Remark 14. As it is well known, function Q ω (q) is convex with respect to q but, in general, not strictly convex; as a 
consequence (see [1], Ch. 8), the optimal set arg min

q∈R Q ω(q) of all minimizers of Q ω is a nonempty closed and convex set, 

namely an interval [qL
ω, qR

ω], with qL
ω ≤ qR

ω .

The quantile fuzzy-valued F-transform, for a fixed fuzzy r-partition (P, A, r) can be defined, according to the quantile 
setting, by using the minimizers of the following convex functions, for k = −r + 2, ..., n + r − 1 and ω ∈]0, 1],

	k,ω (η) =
m∑

j=1

p j (ω;η) | f j − η|Ak
(
t j
)

. (26)

The minimization of 	k,ω(η) with respect to η, for fixed k and ω, can be obtained by solving the linear programming 
problem described with the following three steps.

LP minimization algorithm for quantiles: Given m observations (t j, f j) with t j ∈ T ⊆ [a, b], j = 1, ..., m; a generalized 
r-partition (P, A, r) of [a, b]; a value k ∈ {−r + 2, ..., n + r − 1} and a value ω ∈]0, 1[, find a real value η∗

k (ω) minimizes the function 
	k,ω in equation (26).

Step 1 (Define the variables and the constraints of the LP problem)
Introduce 2m non-negative new variables y−

j , y+
j , j = 1, 2, ..., m, related to η and the set 

{
f j | j = 1, ...,m

}
by

y−
j =

{
0 if f j ≥ η

η − f j if f j < η
and y+

j =
{

0 if f j ≤ η

f j − η if f j > η
;

then, the following identities y−
j − y+

j = η − f j will hold for all j = 1, 2, ..., m.

The 2m + 1 variables of the LP problem will be y−
j and y+

j , j = 1, 2, ..., m (to be non-negative), and η (to be 
unrestricted in sign).
Additionally, the constraints η − y−

j + y+
j = f j for all j = 1, ..., m are required to relate all the variables to the 

values f j .
Step 2 (Formulate the LP objective)

Considering that, from their definition, the variables y−
j and y+

j satisfy

y−
j + y+

j = | f j − η|, j = 1,2, ...,m,

we can express the objective function (26) as

	k,ω (η) = (1 − ω)
∑
f j<η

(
η − f j

)
Ak(t j) + ω

∑
f j>η

(
f j − η

)
Ak(t j)

and, from the non-negativity of all terms (1 − ω) Ak(t j) and ωAk(t j),

	k,ω (η) = (1 − ω)

m∑
j=1

y−
j Ak(t j) + ω

m∑
j=1

y+
j Ak(t j).

Step 3 (Solve the LP problem)
Solve the LP problem with 2m + 1 variables y−

j , y+
j and η (the cost coefficient of variable η is equal to zero)

min

⎛⎝ m∑
j=1

Ak(t j) (1 − ω) y−
j +

m∑
j=1

Ak(t j)ωy+
j

⎞⎠ (27)

s.t. ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
η − y−

j + y+
j = f j , j = 1, ...,m

y−
j ≥ 0, j = 1, ...,m

y+
i ≥ 0, j = 1, ...,m

η unconstrained

(28)

The component η of the solution found by solving (27)–(28) is our value η∗(ω).
k
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The minimization of function (26), for fixed k and ω, is obtained by solving a linear programming problem with 2m + 1
variables and linear constraints: any standard LP solver can be used.

As we have remarked, the values of η that minimize 	k,ω (η) form a closed real interval, say [ηL
k (ω) , ηR

k (ω)] with 
ηL

k (ω) ≤ ηR
k (ω) and with 	k,ω

(
η′)= min

η∈R	k,ω (η) for all η′ ∈ [ηL
k (ω) , ηR

k (ω)]. On the other hand, for any fixed ω ∈]0, 1[, 
we need to choose a single element from the optimal interval and several selection criteria have been proposed and imple-
mented in the available statistical packages (see [18] for a short survey and discussion); we adopt the most frequently used 
selection, i.e. the midpoint of the interval.

The following property, given e.g. in [7,21], is analogous to Proposition 11.

Proposition 15. For any fixed value of k, consider the intervals [ηL
k (ω) , ηR

k (ω)] corresponding to the minimizers of 	k,ω (η), for 
ω ∈]0, 1[; let η∗

k (ω) = 1
2 (ηL

k (ω) + ηR
k (ω)) denote their midpoint values. Then η∗

k (·), as a function of ω, is non-decreasing, i.e.,

ω′ > ω′′ =⇒ η∗
k

(
ω′)≥ η∗

k

(
ω′′) . (29)

The monotonicity of functions η∗
k : ]0,1[ −→ R for all k = −r + 2, ..., n + r − 1, similarly to equation (20), ensures that 

the functions ηk : ]0,1[ −→R defined in (30) are left-continuous and non-decreasing

ηk(ω) = lim
δ↓0

η∗
k (ω − δ) for all ω ∈ ]0,1[ . (30)

Proposition 16. Let ηk (ω) for ω ∈]0, 1[ be given as in equation (30); consider α ∈ [0, 1] and define the following compact intervals

Vk,α =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{
ηk
( 1

2

)}
if α = 1[

ηk
(
α
2

)
, ηk
(
1 − α

2

)]
if α ∈]0,1[

cl

( ⋃
β>0

Vk,β

)
if α = 0;

(31)

then, for each k = 2 − r, ..., n + r − 1, the family of intervals {Vk,α; α ∈ [0, 1]} forms the α-cuts of a fuzzy number Gk ∈ RF having 
membership function

Gk(x) =
{

sup{α|x ∈ Vk,α} if x ∈ Vk,0

0 if x /∈ Vk,0.

Proof. The proof is the same as for Proposition 12. �
Definition 17. Given a set of m points Ym = {(ti, f (ti)); i = 1, ..., m} of a function f : T −→ R with ti ∈ T ⊆ [a, b] and given 
a fuzzy r-partition (P, A, r) of [a, b], the (n + 2r − 2)-vector of fuzzy numbers

G(P,A,r) = (G−r+2, ..., Gn+r−1),

where each fuzzy interval Gk has α-cuts Vk,α given by (31) in Proposition 16, is called the discrete direct quantile fuzzy 
transform of f with respect to (P, A, r), based on the data-set Ym .

The corresponding inverse quantile fuzzy transform of f is the fuzzy-valued function defined by

f̃(P,A,r) (x) = 1

r

n+r−1∑
k=2−r

Gk Ak (x) for x ∈ T . (32)

Denoting the α-cuts of Gk by

[Gk]α =
[

G−
k,α, G+

k,α

]
and considering that each function Ak is non-negative on [a,b], the α-cuts of the fuzzy-valued function f̃(P,A,r) (x) will be

[
f̃(P,A,r) (x)

]
α

=
⎡⎣1

r

n+r−1∑
k=2−r

G−
k,α Ak (x) ,

1

r

n+r−1∑
k=2−r

G+
k,α Ak (x)

⎤⎦ . (33)

When α = 1 we obtain the crisp L1-norm iF-transform, corresponding to the core of the quantile fuzzy-valued iF-
transform (33); indeed, we have, by construction, G− = G+ for all k.
k,1 k,1
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5. Non-crossing property of F-transform smoothing

In this section we will describe the computational way to apply L1 and L2 inverse F-transforms in expectile and quantile 
smoothing of observed time series and we will show that both expectile and quantile reconstructions have the important 
non-crossing property.

As we have seen, both L1 and L2 fuzzy-valued (discrete) F-transforms are composed of two steps:
Step 1) given m data points (t j, f j), t j ∈ [a,b], j = 1, ..., m, and a fuzzy r-partition (P, A, r) of [a,b], the fuzzy-valued 

expectile F(P,A,r) or quantile G(P,A,r) direct F-transforms are computed, according to Definitions 13 or 17, respectively;
Step 2) from the direct F-transform obtained in Step 1), the fuzzy-valued L1 or L2 (inverse) iF-transforms f̂(P,A,r) or 

f̃(P,A,r) are then given with α-cuts as in (24) or (33), respectively; clearly, the iF-transforms are fuzzy-valued because so are 
both direct F-transforms, and because all basic functions Ak are non-negative on [a,b].

In forthcoming experiments, the decomposition P of [a, b] is uniform with knots xk = a + (k − 1)h and h = (b −a)/(n − 1)

for k = 2 − r, ..., n + r − 1; the basic functions Ak(x) are obtained as in equation (1) by translating and rescaling to the 
subintervals [xk−r, xk+r] the same symmetric fuzzy number U ∈ RF , with support [U ]0 = [−1, 1], core [U ]1 = {0} and 
membership

U (τ ) =

⎧⎪⎨⎪⎩
L(1 + τ ) if τ ∈ [−1,0]
1 − L(τ ) if τ ∈ [0,1]
0 otherwise

(34)

where function L, given by

L(τ ) = 2τ 2 + τ (1 − τ )

2 − 2τ (1 − τ )
,

is of type (3) with parameters β0 = 0.5, β1 = 0.5.
We remark that, in general, the smoothing effect is not so much depending on the choice of the membership function U , 

or, more generally, of the basic functions Ak , as documented by papers on applications of F-transform (see, among others, 
[11,17,33,34,37]).

Instead, the number n of subintervals in the decomposition P and the integer bandwidth r strongly impact the smoothing 
effect (see [48,49]). In general, the increase of n ≥ 2 and r ≥ 1 produce opposite effects: when n = 2 and P = {a,b} the direct 
F-transform of order p = 0 has 2r components F2−r, ..., Fr+1 and the inverse F-transform functions are flat; on the contrary, 
if n = m, r = 1 and P = {t j; j = 1, ...,m

}
(assuming a = t1 < ... < tm = b) then the inverse F-transforms (with α = 1) are 

interpolating (see [47,48]).
Within the implementation, the best combination of n and r is chosen by a generalized cross validation (GCV) approach 

(see [49]) in order to balance the smoothing and the fitting (interpolation) effects.
The crossing phenomenon in quantile and expectile smoothing frequently appears when several curves are computed, 

corresponding to different values of ω ∈ ]0,1[: the estimated functions can cross or overlap at different places in the interval 
[a,b] (see, e.g., [19,57,58]).

On the other hand, expectile and quantile smoothing curves corresponding to specified values of ω ∈]0, 1[, are easily 
obtained from the α-cuts of the fuzzy-valued expectile and quantile iF-transforms f̂(P,A,r) (x) and f̃(P,A,r) (x) given, respec-
tively, in equations (24) and (33): denoting by Eω(x) and Qω(x) the ω-expectile and the ω-quantile curves we have

Eω(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
r

n+r−1∑
k=2−r

F −
k,2ω Ak (x) if ω ≤ 1

2

1
r

n+r−1∑
k=2−r

F +
k,2(1−ω)

Ak (x) if ω ≥ 1
2

(35)

and

Qω(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
r

n+r−1∑
k=2−r

G−
k,2ω Ak (x) if ω ≤ 1

2

1
r

n+r−1∑
k=2−r

G+
k,2(1−ω)

Ak (x) if ω ≥ 1
2 .

(36)

In all cases, we apply the expectile and quantile F-transforms of order p = 0 in equations (7) and (14); this means that 
the direct L2 and L1 transforms are locally constant and the shapes of the inverse F-transforms are modeled by the form 
of the basic functions Ak , k = 2 − r, ..., n + r − 1. The choice of p = 0 has a motivation related to an important property of 
both expectile and quantile F-transforms.
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Proposition 18. The expectile and quantile functions Eω(x) and Qω(x) of order p = 0, defined in (35)–(36), have the non-crossing 
property, i.e., for all values of ω′, ω′′ ∈ ]0, 1], we have, for each x ∈ [a, b],

ω′ < ω′′ =⇒ Eω′(x) ≤ Eω′′(x) and Qω′(x) ≤ Qω′′(x).

Proof. The proof follows immediately from Propositions 12 and 16 and the definitions of Eω(x), Qω(x) in (35)–(36). �
6. Comparison with other expectile–quantile procedures

In this section we compare the fuzzy-valued iF-transform with other tools available within the scientific community, i.e.,
1) statistical expectile and quantile regression routines: the expectreg package (see [43,45,46]) and the well known

quantreg package (see [20]), both implemented in the R language and available at the CRAN repository, and
2) SVM-type (Support Vector Machine) non-parametric learning algorithms, for which a very efficient package exists for 

the R language at the CRAN repository, called liquidSVM; it is remarkable that this package implements both the expectile 
solver, routine exSVM, and the quantile solver, routine qtSVM (see [55], [56] and [13]).

We apply the described procedures to three well known daily time series from the financial market.
Clearly, fuzzy-valued approximations of a time series can be easily obtained also from the estimations based on the 

packages expectreg, quantreg and liquidSVM: the rule is that an α-cut, for α ∈ ]0, 1] has lower and upper functions given 
by the smoothed time series obtained with ω = α/2 and ω = 1 − α/2, respectively.

More precisely, let At denote the t-th observed value of a time series, t = 1, 2, ..., m and let St(ω) be the ω-expectile (or 
the ω-quantile) obtained by one of the procedures above with a given value of ω ∈ ]0,1[. Let At denote the fuzzy-valued 
smoothing series of At ; in order to compute the α-cuts of At corresponding to a set L = {0 < α1 < α2 < ... < αN = 1} on 
N > 2 values of α ∈ ]0,1], we generate the 2N − 1 curves

St

(αl

2

)
, St

(
1 − αl

2

)
for l = 1, ..., N − 1, and

St

(αN

2

)
for l = N ,

corresponding to the values of ω in the set  = {αl
2 , 1 − αl

2 |l = 1, 2, ..., N}.
If the series St(ω), ω ∈  do not cross, i.e. ω′ < ω′′ =⇒ St(ω

′) ≤ St(ω
′′) for all t , then the α-cuts of the fuzzy-valued 

series Ât are simply

[At]αl
=
[

St

(αl

2

)
, St

(
1 − αl

2

)]
for l = 1, ..., N .

If the curves St(ω), for different ω ∈ , are crossing at some t , then the α-cuts of At can be approximated as follows 
(see e.g. Definition 2 in [50]): the core is the singleton [At ]1 = {St

( 1
2

)}
and the remaining α-cuts are adjusted, for l =

N − 1, N − 2, ..., 1, by

[At]αl
=
[

min
{

St

(αl′

2

)
|l′ ≥ l

}
,max

{
St

(
1 − αl′

2

)
|l′ ≥ l

}]
.

The comparison is performed by considering the estimations denoted as follows, with the distinction between the corre-
sponding expectile and quantile procedures:

A: for the expectile estimations,
A.1) expFT: expectile iF-transform series corresponding to the α-cuts 

[
f̂(P,A,r) (t)

]
α

.
A.2) expRS: expectile regression smoothed series, obtained by routine expectreg.ls of package expectreg, corresponding 
to the α-cuts 

[
f̂ R S (t)

]
α

.
A.3) exSVM: expectile regression smoothed series, obtained by routine exSVM of package liquidSVM, corresponding to 
the α-cuts 

[
f̂ S V M (t)

]
α

.
B: for the quantile estimations,

B.1) quaFT: quantile iF-transform series corresponding to the α-cuts 
[

f̃(P,A,r) (t)
]
α

.
B.2) quaRS: quantile regression smoothed series, obtained by routine rq of package quantreg, corresponding to the 
α-cuts 

[
f̃ R S (t)

]
α

.
B.3) qtSVM: quantile regression smoothed series, obtained by routine qtSVM of package liquidSVM, corresponding to 
the α-cuts 

[
f̃ S V M (t)

]
α

.

We distinguish between the comparison of the fuzzy-valued time series with respect to the core, corresponding to α = 1
or equivalently to ω = 0.5 and to the fuzzy-valued series in terms of all their α-cuts for α ∈]0, 1].

The three time series are the following, well known from the financial market.
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Series 1: Silver prices in US dollars
The first time series contains the silver prices in US dollars. The price is set once a day by three London Bullion Market 

Association (LBMA) market makers that listen to customers’ purpose as buyers or sellers: the silver fixing price is then set 
by collating bids and offers until the supply and demand are matched. The role of silver in recent years has been different 
from the gold one because it’s considered a tangible asset rather than a store of value, that is why generally silver prices 
are more volatile than gold prices.

Series 2: Apple daily stock in US dollars
The second time series is the well-known Apple stock that has an high volatility in the short term, a shared property 

for all the stocks. As is visible from the graphical representations, something particular happened in June 2014: a share 
of Apple varied from $645.57 (as of Friday’s closing price) to $92.44, because the company issued more shares to existing 
investors in order to put down the price of the stock. Current shareholders received seven shares of Apple for each one they 
owned. As a result, the stock price is one-seventh of where it used to be. 

Series 3: S&P500 index
The third historical data series is the S&P500 index, that is probably the most accurate quantifier of the US economy, 

measuring the cumulative float-adjusted market capitalization of 500 of the nation’s largest corporations; due to its defini-
tion it is considered a low volatility stock. Practitioners remember very well the milestones of S&P500 index: on 11 October 
2007, S&P500 index reached its all-time intra-day high of 1,576.09; on 28 March 2013, the S&P500 finally surpassed its 
closing high level of 1,565.15, recovering all its losses from the financial crisis and on 26 August 2014 it closed a hair above 
2000 points.

It is generally known that the three considered time series are deduced by assets that behave in different ways in the 
financial market. The time period covers from October 9th 2007 to October 8th 2015 for a total amount of m = 2016
observations and it includes the most recent financial crisis.

6.1. Core comparison with three financial time series

To show the results for the core of the fuzzy-valued expectile and quantile estimations, we provide a set of (standard) 
performance measures; hereafter, we denote by A = {At , t = 1, ..., m} a given time series of observed (actual) data At and by 
S = {St , t = 1, ..., m} the smoothed time series obtained by one of the used methods, i.e., St is the forecast value at time t .

1. MAV (Mean Absolute Variation of time series A):

M AV (A) = 1

m − 1

m−1∑
t=1

|At+1 − At |

and we will also use the MAV ratio of smoothed S with respect to A:

M AV R(S,A) = M AV (S)

M AV (A)
;

Its percentage version is denoted by M AV %(S, A) = 100M AV R(S, A).
2. sqrtMSE (square root of Mean Square Error or Deviation of smoothed S with respect to A; the Mean Square Error, 

without taking the square root, is denoted by MSE):

sqrtM S E(S,A) =
√√√√ 1

m

m∑
t=1

|At − St |2.

3. sqrtRMSE (square root of Relative Mean Square Error or Deviation of smoothed S with A):

sqrt RM S E(S,A) =
√√√√ 1

m

m∑
t=1

∣∣∣∣ At − St

At

∣∣∣∣2.

4. MAD (Mean Absolute Deviation of S with A, sometimes denoted by AAD – Average Absolute Deviation, also called 
median pinball loss [57]):

M AD(S,A) = 1

m

m∑
t=1

|At − St | .
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5. MAPE (Mean Absolute Percentage Error or Deviation of S with A):

M A P E(S,A) = 100

m

m∑
t=1

∣∣∣∣ At − St

At

∣∣∣∣ .
The measures reported in all the tables are computed with At being the actual value of the time series at all times 

t = 1, ..., m, and St being the corresponding smoothed value obtained by one of the six smoothing methods (expFT, expRS, 
exSVM, quaFT, quaRS and qtSVM) for the central (median) quantile, i.e., in our notation, for the core (α-cut with α = 1)

of the fuzzy-valued smoothed series, corresponding to the quantile parameter ω = 1
2 in packages expectreg, quantreg and

liquidSVM.
Consider that the measures above can be computed also for time sub-periods of the series; in particular the indicator 

MAV can be interpreted as a measure of local variability, in addition to the well known volatility obtained using local 
variances.

The mean absolute variations of the three time series are M AV (Silver) = 0.2205, M AV (Apple) = 4.295 and M AV (S&P )

= 11.759.
We launch the comparison by executing the six methods according to their own (internal) best combination of smoothing 

and fitting effects; in particular, neither over-fitting nor under-fitting is required to happen.
As just underlined, the best combinations of n and r for the F-transforms have been chosen, for the different series, 

by a generalized cross validation (GCV) approach. In the expectreg and in the liquidSVM packages, similar GCV schemes 
are implemented; in particular, liquidSVM, based on a kernel smoothing technique with regularization, determines the 
best combination of two parameters, the bandwidth h > 0 of the kernel and the regularization parameter λ ≥ 0, based 
on a 10 × 10 grid of possible pairs (h, λ). The package quantreg adopts a more sophisticated procedure, based on the 
regularization of the total variation and a combination of criteria including GCV, the Akaike information index (AIC) and 
other extractor methods for the best selection.

In Table 2a we report some of the measures, obtained by running the six methods with their default selection strategies, 
as suggested by the authors of the corresponding packages.

Table 2a
MAV%, MSE and MAD for all time series and methods.

expFT expRS exSVM quaFT quaRS qtSVM

MAV%-Silver 9.2% 9.1% 12.0% 10.6% 8.9% 16.1%
MAV%-Apple 17.1% 20.3% 22.9% 17.9% 18.2% 22.9%
MAV%-S&P 9.5% 11.6% 11.0% 10.7% 11.3% 14.7%
MSE-Silver 0.64 0.97 0.72 0.60 1.07 0.51
MSE-Apple 1158.4 1711.1 932.4 957.3 2696.8 898.2
MSE-S&P 1205.2 1594.6 1412.3 1115.9 1655.8 780.0
MAD-Silver 0.56 0.73 0.65 0.52 0.75 0.51
MAD-Apple 15.6 23.1 16.9 14.0 23.9 11.8
MAD-S&P 26.3 30.0 30.4 24.9 29.7 19.9

As we can see from the first three rows, the six methods behave differently in terms of the MAV% measure; recall that 
this measure gives the percentage of total variation MAV in the smoothed series with respect to the MAV of the observed 
one, so that, in some sense, the quantity (100-MAV%) gives the percentage of total variation removed by the smoothing 
effect and this clearly depends on the adopted selection strategy.

Not only the MAV% is different for the three series, but also across the methods. This is an important fact to take 
into account, because all measures strongly depend on how the balancing between smoothing and interpolating levels is 
performed: at least qualitatively, a higher MAV% value (i.e., less reduction in total variation) will imply a lower value of 
error-based measures like MSE and MAD. For example, the quaRS and qtSVM methods for Silver series have very different 
MAV% measures and the quaRS method gives a much more rigid smoothed series than qtSVM; it is then not surprising that 
they have very different MSE and MAD.

Remark 19. It is to be remarked that, for all methods, the MSE obtained by expectile smoothing (where an L2 measure is 
minimized) is not necessarily smaller than the one resulting from quantile smoothing (where an L1 measure is minimized); 
and the MAD measure with quantiles may be not smaller than the one with expectiles (see, e.g., [19,44]). In particular, in the 
F-transform setting we have two levels of approximation, the first obtained by the components of the direct F-transforms 
and the second by the inverse F-transforms. A component Fk in the expectile direct F-transform is a local (weighted) average
of the time series around the node xk of the fuzzy partition, obtained by minimizing an L2-norm error; analogously, each 
component Gk in the quantile direct F-transform represents locally a weighted median of the series, obtained by minimizing 
an L1-norm error. But this does not imply, in general, that the reconstruction obtained by the inverse expectile iF-transform 
has globally an average L2-norm error smaller than the inverse quantile reconstruction. To be more precise, if we consider 
a linear approximating function
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f (x) =
n+r−1∑
k=2−r

ϑk Ak(x),

where Ak are basic functions of an r-partition and the parameters ϑk are obtained by minimizing the L2-norm (or the 
L1-norm) of the errors f (t j) −∑n+r−1

k=2−r ϑk Ak(t j), then the estimated coefficients ϑk have no relationship with the expectile 
components Fk (or the quantile components Gk); in general, the average L2-norm (or L1-norm) error for the ϑk will be much 
smaller than for the Fk and the smoothing effect will have a much greater MAV%. For example, the L2-norm estimation of 
the linear parameters ϑk for the Silver series with the same pair (n, r) as for expFT in first column of Table 2a, produces 
MAV%= 27.1%, MSE= 0.182 and MAD= 0.29, a very different result with respect to all smoothing methods.

In order to make the comparison effective, we have first executed our F-transform procedures expFT and quaFT with 
the purpose to determine the pairs of values (n, r) that reproduce the same (or the nearest) MAV% value as for the other 
procedures expRS and exSVM for the expectiles and quaRS and qtSVM for the quantiles. The results are given in Table 2b. 
For example, the pairs of values n and r, using expFT, that reproduced the nearest results to the MAV% of routines expRS 
and exSVM for the Silver series have been: (151, 4) and (181, 3).

Table 2b
Values of pair (n, r) used with F-transform.

expRS exSVM quaRS qtSVM

(n, r)-Silver (151,4) (181,3) (127,4) (281,3)

(n, r)-Apple (301,4) (317,3) (181,4) (285,3)

(n, r)-S&P (227,4) (143,3) (201,4) (307,3)

MAV%-Silver 09.05% 11.94% 08.86% 15.89%
MAV%-Apple 20.30% 22.85% 18.13% 23.05%
MAV%-S&P 11.64% 11.03% 11.34% 14.74%

The results obtained by expFT and quaFT with those pairs (n, r) have then (almost) the same smoothing effects, measured 
by M AV , as the other routines and we can now compare the F-transform results with the regression smoothing and the 
SVM smoothing ones.

Clearly, the comparison can be performed only pairwise, i.e., by splitting the comparison of the other measures under 
the condition of uniform values of MAV(S), i.e. by considering four separate cases:

1) expFT with expRS and the (n, r) pairs in first column of Table 2b;
2) expFT with exSVM and the (n, r) pairs in second column of Table 2b;
3) quaFT with quaRS and the (n, r) pairs in third column of Table 2b;
4) quaFT with qtSVM and the (n, r) pairs in fourth column of Table 2b.

Without having the same M AV values, the error-based measures sqrtMSE, sqrtRMSE, MAPE and MAD resulted essentially 
incomparable.

For the Silver time series, expFT and expRS smoothing have (almost) the same MAV% (9.05% and 9.1%, respectively) and 
similarly in the other cases.

To have a deeper knowledge of this series, we compute the volatility on annual basis and it goes from the highest 
σSilver,4th in the fourth year (Oct. 2010 to Oct. 2011) to the smallest σSilver,7th in the seventh year (Oct. 2013 to Oct. 2014); 
as it is expected, Silver is characterized by volatility values that can be very high. On the other hand, the MAV measure 
has a direct relationship with volatility; for example it holds that σSilver,4th = 58.78% and M AV (Silver, 4th) = 0.87 while in 
the seventh year it holds σSilver,7th = 21.14% and M AV (Silver, 7th) = 0.21. The main difference between the two measures 
is that volatility is expressed as a percentage based on intra-day returns, whereas M AV takes into account intra-day price 
variations and is not in percentage form.

Fig. 3 represents the core (1-cut) obtained by the expectile and quantile iF-transforms (23), (32), compared with the 
expectile regression smoothing obtained by the expRS and the quantile regression smoothing with quaRS. Fig. 4 gives the 
core of the expectile and quantile iF-transforms, compared with the corresponding smoothing obtained by methods exSVM 
and qtSVM.

From all figures, we see a better capability of the iF-transform smoothed series to capture local variations of the real 
time series; in particular, this happens at the portion of time where the values have local peaks or falls. This is confirmed 
by the performance measures as reported in Tables 3a and 3b.

Table 3a gives the performance measures for the comparison of F-transform and Regression-type expectile and quantile 
smoothing.

In Table 3b the same measures compare F-transform and SVM-type expectile and quantile smoothing; the values of the 
measures for expectile and quantile iF-transform are again better than the corresponding SVM smoothed series.

We see that, at the same level of MAV(S), the expectile and quantile F-transforms have a significantly smaller value for 
the four measures MSE, RMSE MAD and MAPE, with respect to the counterparts based on regression smoothing (Table 3a) 
and with respect to the SVM-based series (Table 3b).
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Fig. 3. (Silver time series) Left picture: expectile smoothing obtained by methods expFT (blue) and expRS (red); right picture: quantile smoothing obtained 
by quaFT (blue) and quaRS (red).

Fig. 4. (Silver time series) Left picture: expectile smoothing obtained by methods expFT (blue) and exSVM (red); right picture: quantile smoothing obtained 
by quaFT (blue) and qtSVM (red).

Table 3a
Comparison FT-RS for silver time series M AV (A) = 0.2205.

. . Measure . . expFT expRS quaFT quaRS

MAV(S) 0.0200 0.0206 0.0195 0.0204
sqrtMSE 0.8353 0.9872 0.8688 1.0330
sqrtRMSE 0.0548 0.0656 0.0570 0.0712
MAD 0.5912 0.7250 0.6102 0.7540
MAPE 4.2905 5.2667 4.4349 5.5567

Table 3b
Comparison FT-SVM for silver time series M AV (A) = 0.2205.

. . Measure . . expFT exSVM quaFT qtSVM

MAV(S) 0.0263 0.0265 0.0351 0.0354
sqrtMSE 0.6714 0.8478 0.5215 0.7161
sqrtRMSE 0.0431 0.0642 0.0340 0.0467
MAD 0.4561 0.6511 0.3384 0.5052
MAPE 3.2824 5.1082 2.4683 3.6481

Observe that, from Table 2a, the F-transform series and the RS-based or SVM-based series have very different smoothing 
levels; e.g., for the FT-SVM comparison, M AV %(expF T ) = 9.2% and M AV %(qt S V M) = 16.19.2%, but the MSE and MAD 
measures have essentially similar values.

It is well-known that the Apple time series, representing a stock value, has a high volatility in the short term, a property 
shared with the totality of stock prices. Figs. 5 and 6 that in June 2014, a share of Apple varied from $645.57 (as of Friday’s 
closing price) to $92.44, because the company issued more shares to existing investors in order to put down the price of 
the stock. Current shareholders received seven shares of Apple for each one they owned. As a result, the stock price became 
one-seventh of where it used to be. Examining this series offers a very interesting case of the possible problems raised by 
a rapid instantaneous big change in the subsequent values (levels).

We observe that, in this situation, the F-transform expectile and quantile smoothing have a significantly better capability 
to follow the variations in level without requiring to change the degree of smoothing (measured qualitatively, e.g., by MAV% 
index).

From Figs. 5 and 6 we see that expFT and expRS are able to follow the real values of the series (even in June 2014) 
significantly better than all other considered methods (the four error measures in Tables 4a and 4b are all smaller for 
F-transform methods); the best case is obtained with expectile F-transform, corresponding to the pair of values n = 317, 
r = 3 (see Table 4b and left picture of Fig. 6).
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Fig. 5. (Apple time series) Left picture: expectile smoothing obtained by methods expFT (blue) and expRS (red); right picture: quantile smoothing obtained 
by quaFT (blue) and quaRS (red).

Fig. 6. (Apple time series) Left picture: expectile smoothing obtained by methods expFT (blue) and exSVM (red); right picture: quantile smoothing obtained 
by quaFT (blue) and qtSVM (red).

Table 4a
Comparison FT-RS for Apple time series M AV (A) = 4.2949.

. . Measure . . expFT expRS quaFT quaRS

MAV(S) 0.8718 0.8727 0.7788 0.7793
sqrtMSE 25.6313 41.3656 30.1436 51.9308
sqrtRMSE 0.1746 0.3029 0.1501 0.1748
MAD 10.8842 23.1364 13.0787 23.9099
MAPE 4.7755 11.7144 5.2191 8.8218

Table 4b
Comparison FT-SVM for Apple time series M AV (A) = 4.2949.

. . Measure . . expFT exSVM quaFT qtSVM

MAV(S) 0.9812 0.9847 0.9900 0.9854
sqrtMSE 21.7176 30.5351 20.0894 29.9708
sqrtRMSE 0.1488 0.2106 0.1375 0.1617
MAD 8.8300 16.9497 8.3866 11.8088
MAPE 3.7912 8.4619 3.5133 4.9581

Observe that the MAV% values in Table 2a range, for the six methods, from 17.1% to 22.9% and the MAD value ranges 
from 11.8 to 23.9. With the values of the parameters (n, r) as in Table 2b (see the rows with label Apple), for each of the 
four cases 1)–4), the MAV% values are very similar. Tables 4a and 4b contain the results for the cases FT vs RS and FT vs 
SVM, respectively.

The measures show that the quantile iF-transform has a better fitting with respect to the expectile iF-transform (true 
also in Table 2a): the main reason is that the fitting performance may not depend on the L1- or L2-norm minimization 
to estimate the direct components of the F-transform, but on the property that both expectile and quantile iF-transform 
exhibit uniform convergence as given by Theorems 3 and 8.

Also for the second time series, the pair of measures M AD and M S E produce a strong reduction in the errors of both 
quantile and expectile iF-transform smoothed series, confirming the strength of our proposed methodology.

The S&P500 time series (Figs. 7 and 8) contains the historical values of the Standard & Poor’s 500 Index, that is probably 
the most accurate quantifier of the U.S. economy, measuring the cumulative float-adjusted market capitalization of 500 large 
U.S. publicly traded companies; due to its definition it is considered a low volatility stock. Practitioners remember very well 
the milestones of S&P500 index: on October 2007, S&P500 index reached its all-time intra-day high of 1,576.09; on March 
2013, the index finally surpassed its closing high level of 1,565.15, recovering all its losses from the financial crisis and on 
August 2014 it closed a hair above 2000 points. The average variation is M AV (S&P ) = 11.759.
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Fig. 7. (S&P500 time series) Left picture: expectile smoothing obtained by methods expFT (blue) and expRS (red); right picture: quantile smoothing obtained 
by quaFT (blue) and quaRS (red).

Fig. 8. (S&P500 time series) Left picture: expectile smoothing obtained by methods expFT (blue) and exSVM (red); right picture: quantile smoothing obtained 
by quaFT (blue) and qtSVM (red).

Table 5a
Comparison FT-RS for S&P500 time series M AV (A) = 11.759.

. . Measure . . expFT expRS quaFT quaRS

MAV(S) 1.3692 1.3703 1.3332 1.3320
sqrtMSE 30.5665 39.9330 31.0307 40.6918
sqrtRMSE 0.0258 0.0340 0.0265 0.0352
MAD 22.9776 30.0181 23.0007 29.6685
MAPE 1.7556 2.3289 1.7693 2.3193

Table 5b
Comparison FT-SVM for S&P500 time series M AV (A) = 11.759.

. . Measure . . expFT exSVM quaFT qtSVM

MAV(S) 1.2967 1.2969 1.7322 1.7338
sqrtMSE 32.9268 37.5801 23.3289 27.9291
sqrtRMSE 0.0280 0.0305 0.0197 0.0225
MAD 24.8522 30.3933 16.6673 19.8776
MAPE 1.9057 2.2752 1.2811 1.5065

Also in this third case, we see that, at the same level of MAV(S), the expectile and quantile F-transforms perform better 
in the four average error-bases measures (Tables 5a and 5b). On the other hand, from Table 2a we can remark that the 
expectile and quantile F-transforms have a smaller value of M AV % than the RS-based or SVM-based ones but also a smaller 
value of the error-based measures, with an exception: expFT performs better than expRS and exSVM, quaFT is better than 
quaRS, but qtSVM is more precise than quaFT, possibly due to the difference in the M AV % value.

To summarize the results for the three time series, we can refer to Table 6, containing the ratios between the values 
(as reported in Tables 3a, 3b, 4a, 4b, 5a and 5b) of the measures for the F-transform series to the ones with RS-based and 
SVM-based series: e.g., the value in column exp:FT/RS and row sqrtMSE, contains the ratio of the sqrtMSE measure obtained 
by expFT over the sqrtMSE one by expRS, similarly for the other entries.

What emerges clearly is that the F-transform expectile and quantile smoothing have error-based measures significantly 
smaller than the other methods. The best performances of F-transform are more evident in the case of the Apple series, in 
particular in the time period where the values have the great decrease as we described above.

6.2. Comparison results for fuzzy-valued smoothing

To show the results for the fuzzy-valued series corresponding with respect to all the α-cuts with α ∈ ]0,1], we choose 
three measures well known in the fuzzy literature: the ambiguity, the average fuzzy distance and the length of 0.5-cut.
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Table 6
Summary of Performance ratios.

. Silver Series . exp:FT/RS exp:FT/SVM qua:FT/RS qua:FT/SVM

MAVR 0.9709 0.9925 0.9559 0.9915
sqrtMSE 0.8461 0.7919 0.8410 0.7283
sqrtRMSE 0.8354 0.6713 0.8006 0.7281
MAD 0.8154 0.7005 0.8093 0.6698
MAPE 0.8146 0.6426 0.7979 0.6766

. Apple Series . exp:FT/RS exp:FT/SVM qua:FT/RS qua:FT/SVM

MAVR 0.9990 0.9964 0.9994 1.0047
sqrtMSE 0.6196 0.7112 0.5805 0.6703
sqrtRMSE 0.5764 0.7066 0.8587 0.8503
MAD 0.4704 0.5210 0.5470 0.7102
MAPE 0.4077 0.4480 0.5916 0.7086

. S&P Series . exp:FT/RS exp:FT/SVM qua:FT/RS qua:FT/SVM

MAVR 0.9992 0.9998 1.0009 0.9991
sqrtMSE 0.7654 0.8762 0.7626 0.8353
sqrtRMSE 0.7588 0.9180 0.7528 0.8756
MAD 0.7655 0.8177 0.7753 0.8385
MAPE 0.7538 0.8376 0.7629 0.8504

For a fuzzy number u ∈ RF , with α-cuts [u]α = [u−
α , u+

α ], the (fuzzy) ambiguity is defined (see [9]) as

amb(u) =
1∫

0

α(u+
α − u−

α )dα

and the central interval is simply its (1/2)-cut [u]1/2 = [u−
1/2, u

+
1/2]. For two fuzzy numbers u, v ∈ RF the (integral) 

L2-distance is

dist(u, v) =
⎛⎝ 1∫

0

α
(
(u+

α − v+
α )2 + (u−

α − v−
α )2
)

dα

⎞⎠1/2

.

The ambiguity amb(u) ≥ 0 can be seen as a measure of how much vagueness or spread is present in the ill-defined 
magnitude which underlies the fuzzy number u ∈ RF ; if u is crisp, then amb(u) = 0.

The central interval is frequently used as an easy-to-obtain alternative to the mean interval; in terms of a quantile 
interpretation of the membership function of u ∈ RF (see [51]) it coincides with the inter-quartile interval and its length is 
the well known inter-quartile range: approximately 50% of observed points with positive membership values is contained in 
the interval, remaining 25% is on its left and 25% on its right (see [7,19]).

The (weighted) L2-distance (with some of its variants) is a standard metric in the space of fuzzy numbers (see [2]); 
it can be used also to measure the distance between a fuzzy and a crisp number.

A fuzzy-valued time series is denoted by U = {Ut; t = 1, ...,m} where each Ut is a fuzzy number with α-cuts [
(Ut)

+
α , (Ut)

−
α

]
. Accordingly, the three reported measures are

1. AMB (Mean Ambiguity measure of fuzzy-valued time series U):

AM B(U) = 1

m

m∑
t=1

amb(Ut);

2. CIR (Mean Central Interval Range (Length) of fuzzy-valued time series U):

C I R(U) = 1

m

m∑
t=1

(
(Ut)

+
1/2 − (Ut)

−
1/2

)
;

3. DIS (Mean Distance measure between fuzzy-valued time series U and observed values ft , where the crisp data are 
considered as fuzzy numbers with concentrated membership value 1 at ft and 0 elsewhere):

D I S(U) = 1

m

m∑
t=1

dist(Ut , ft).
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In all figures of this section, the reported α-cuts are obtained for the N = 11 values of α ∈ L = {0.001, 0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, corresponding to the 21 quantile values ω ∈ {α
2 , 1 − α

2 |α ∈ L}. The curves with ω = α
2 , α ∈ L are 

red-colored (corresponding to the lower branches of the fuzzy-valued functions) and the curves with ω = 1 − α
2 , α ∈ L are 

blue-colored (corresponding to the upper branches of the fuzzy-valued functions); the core is black-colored.

Remark 20. In the estimation by exSVM or qtSVM (see Figs. 10, 12, 14) and for small α, i.e. values of ω near to 0 or 1, the 
smoothed curves are constant and the support of the fuzzy-valued functions does not change for all t j ; the same did not 
happen for all other methods. For this reason, in computing measures AMB and DIS we have not considered the 0.001-cut 
(this is easy to obtain by approximating the integrals by trapezoidal rule).

For the four pairs of comparisons (expFT, expRS), (quaFT, quaRS), (expFT, exSVM), and (quaFT, qtSVM), the three performance 
measures are collected in Table 7 for the Silver time series, in Table 8 for the Apple time series and in Table 9 for the S&P500
time series.

Table 7
Silver time series.

Fuzzy-valued FT and RS

. . . Measure . . . expFT expRS quaFT quaRS

AMB 1.0017 0.9634 1.5546 1.4830
CIR 0.7818 0.7757 1.3645 1.3890
DIS 1.3768 1.4491 1.7435 1.7336

Fuzzy-valued FT and SVM

. . . Measure . . . expFT exSVM quaFT qtSVM

AMB 0.5504 0.8038 0.6610 0.6469
CIR 0.6184 0.7390 0.7717 0.7750
DIS 0.8481 1.3537 0.8049 0.9664

Table 8
Apple time series.

Fuzzy-valued FT and RS

. . . Measure . . . expFT expRS quaFT quaRS

AMB 18.0861 31.1668 34.4456 47.9194
CIR 14.3794 25.4447 29.4278 44.8778
DIS 25.1900 46.5326 39.3149 54.9424

Fuzzy-valued FT and SVM

. . . Measure . . . expFT exSVM quaFT qtSVM

AMB 10.4197 25.1443 16.2968 18.5887
CIR 11.7270 23.4582 19.5498 21.8254
DIS 16.3738 39.8699 20.3668 25.1815

Table 9
S&P500 time series.

Fuzzy-valued FT and RS

. . . Measure . . . expFT expRS quaFT quaRS

AMB 40.0614 41.5572 60.5002 59.6647
CIR 31.2139 32.7700 52.1620 53.5968
DIS 54.2838 61.9662 67.2433 71.1619

Fuzzy-valued FT and SVM

. . . Measure . . . expFT exSVM quaFT qtSVM

AMB 30.3988 46.7578 32.3657 30.2987
CIR 34.0324 50.1652 36.8682 35.4048
DIS 46.3936 71.5752 39.4386 42.1775

Figs. 9, 10 for Silver, Figs. 11, 12 for Apple and Figs. 13, 14 for S&P500 represent the α-cuts obtained by the repeated 
application of F-transform (23), (32) for the indicated values of α ∈L.

After a preliminary inspection of the figures, we see that the F-transform series are significantly more adherent to the 
observed values, not only for the core of the fuzzy-valued series. In some portions of time, expectile and quantile curves 
based on RS and on SVM may have (locally) a value of crossing (see particularly the Apple series).
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Fig. 9. (Silver time series) Left: fuzzy-valued expectile smoothing by methods expFT and expRS. Right: fuzzy-valued quantile smoothing by methods quaFT 
and quaRS.

Fig. 10. (Silver time series) Left: fuzzy-valued expectile smoothing by methods expFT and exSVM. Right: fuzzy-valued quantile smoothing by methods quaFT 
and qtSVM.

Fig. 11. (Apple time series) Left: fuzzy-valued expectile smoothing by methods expFT and expRS. Right: fuzzy-valued quantile smoothing by methods quaFT 
and quaRS.

With respect to the distance measure D I S , a measure of how much the fuzzy-valued series is adherent to the ob-
served values, the F-transform performs significantly better than the other methods. E.g., in expectile smoothing we have 
D I S(F T ) = 1.38 vs D I S(R S) = 1.45 for the Silver series (Table 7), D I S(F T ) = 25.19 vs D I S(R S) = 46.53 for the Apple series 
(Table 8) and D I S(F T ) = 54.28 vs D I S(R S) = 61.97 for the S&P500 series (Table 9). In the quantile cases the behavior is 
similar, except for the Silver series where quaRS has a small advantage: D I S(quaR S) = 1.73 < D I S(quaF T ) = 1.74.



JID:IJA AID:8329 /FLA [m3G; v1.252; Prn:31/01/2019; 16:47] P.25 (1-27)

M.L. Guerra et al. / International Journal of Approximate Reasoning ••• (••••) •••–••• 25

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61
Fig. 12. (Apple time series) Left: fuzzy-valued expectile smoothing by methods expFT and exSVM. Right: fuzzy-valued quantile smoothing by methods quaFT 
and qtSVM.

Fig. 13. (S&P500 time series) Left: fuzzy-valued expectile smoothing by methods expFT and expRS. Right: fuzzy-valued quantile smoothing by methods 
quaFT and quaRS.

Fig. 14. (S&P500 time series) Left: fuzzy-valued expectile smoothing by methods expFT and exSVM. Right: fuzzy-valued quantile smoothing by methods 
quaFT and qtSVM.

Finally, with respect to the fuzzy ambiguity AMB and the central interval range CIR, which measure the spread or disper-
sion of the fuzzy-valued series, we can say that the F-transforms tend to construct less dispersed approximations than the 
other methods; this is particularly evident in the Apple case where both expectile and quantile F-transforms have the AM B
and C I R smallest values.

As a conclusion of the computational comparison we can assert that expectile and quantile fuzzy-valued smoothing based 
on F-transform represent very promising tools, having good theoretical approximation properties and excellent empirical 
performance.
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7. Concluding remarks and further work

We introduced two new non-parametric smoothing methodologies, called expectile and quantile fuzzy-valued direct and 
inverse F-transform, the first one based on the classical direct F-transform obtained by minimizing a least squares (L2-norm) 
operator, the second one based on the L1-type direct F-transform, obtained by minimizing an L1-norm operator.

We model three different time series belonging to disjoint classes of assets (one commodity, one stock and one index) 
in terms of fuzzy-valued functions supposing that level-cuts are deduced in the setting of expectile and quantile smoothing. 
Taking into account some standard measures to compare the smoothing techniques, we deduce that the expectile and 
quantile F-transform smoothed series perform very well in all the examined situations. As we have seen, the F-transforms 
of order p = 0 have the non-crossing property, but this is in general not true for p > 0, where the direct F-transform 
components Fk and Gk are functions (polynomials) instead of constants. An efficient procedure to preserve the non-crossing 
property for quantile and expectile F-transforms of order p > 0 can take advantage of additional non-crossing constraints 
(usually linear) introduced into the optimization problems outlined in sections 3 and 4, as is done e.g. in [57] for the 
quantile case.

Future research involves the investigation of relationships between probabilistic and fuzzy financial instruments for 
derivatives pricing and for risk management. More generally, the F-transform expectiles and quantiles contribute to the 
setting and analysis of fuzzy time series. In particular, it will be interesting to study possible connections of fuzzy-valued 
smoothing with volatility in markets, commonly measured as a standard deviation. We studied volatility models since the 
contribution [15], and in [14] we show their effects on financial options pricing. By adopting a fuzzy-valued approximation 
we can hopefully apply fuzzy logic and possibility theory to formulate or revisit volatility-like concepts; this idea is not new 
in the literature (see [3] and the references therein) and this area of investigation is of great interest.
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