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Abstract
This review presents “a state of the art” report on sustainability in construction materials. The authors propose different 
solutions to make the concrete industry more environmentally friendly in order to reduce greenhouse gases emissions 
and consumption of non-renewable resources. Part 1—the present paper—focuses on the use of binders alternative to 
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Portland cement, including sulfoaluminate cements, alkali-activated materials, and geopolymers. Part 2 will be dedicated 
to traditional Portland-free binders and waste management and recycling in mortar and concrete production.
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Introduction

With the dawn of the 21st century, the world has entered an 
era of sustainable development. As a consequence, the 
concrete industry has to face two antithetical needs: how to 
feed the needs of the growing population, while being—at 
the same time—sustainable?

Sustainability in the construction industry can be achieved 
through three different routes (Figure 1), with reductions in 
consumption of gross energy, polluting emissions, and non-
renewable natural resources. Different strategies can be iden-
tified along these three routes to make the concrete sector 
more environmentally friendly (Figure 2): (a) using alterna-
tive fuels and raw materials to reduce CO2 emissions to 
produce Portland cement; (b) replacing Portland cement 
with low-carbon supplementary cementitious materials 
(SCMs); developing alternative low-carbon binders (alkali-
activated materials, geopolymers, and calcium sulfoalumi-
nate cements); and (c) reducing natural resource consumption 
through to waste management and recycling.1–3,4

Part 1 of this review—the present paper—deals with 
use of binders other than Portland cement. Part 2 will be 
dedicated to waste management and recycling in mortar 
and concrete production.

Alternative binders to Portland 
cement

Different alternative binders to traditional Portland cement 
have been proposed, for example, sulfoaluminate cements, 
activated alkaline binders, and geopolymers.

Sulfoaluminate cements

Calcium sulfoaluminate cements (CSA) have been applied 
since the end of the 1950s.5 In the mid-1970s, CSA cement 
was produced on an industrial scale in China by burning 
limestone, bauxite, and gypsum at 1300–1350°C.6 In 
China, CSA cements are treated as a special binder with 
rapid setting, shrinkage compensation, and high early-age 
strength. The main phase of CSA is tetracalcium trialumi-
nate sulfate or ye’elimite (C4A3S̅). The amount of 
ye’elimite in CSA cement usually varies from 20% to 
70%. Apart from ye’elimite, belite (C2S) is another main 
phase in CSA cement, while secondary phases may include 
C4AF, C3A, C12A7, and C6AF2.7 CSA cement is a 

sustainable cement when compared with ordinary Portland 
cement (OPC),8,9 since less limestone is required due to the 
low CaO content in ye’elimite phase.8,10,11 Moreover, more 
gypsum or anhydrite (CaSO4) is needed to prepare CSA 
cement; therefore, the CO2 released in CSA cement pro-
duction process is much less than that in OPC produc-
tion.12 Secondly, its calcination temperature is 100–150°C 
lower than that of OPC, which helps reduce coal consump-
tion by 15% with respect to OPC.13 Thirdly, CSA clinker is 
porous, which makes it easier to be ground,14 and this fur-
ther reduces energy consumption. However, the use of 
CSA cement to replace OPC 100% might encounter some 
adversities such as overly short setting time,13 low pH,15 
high price,16 and expansion risk.8 Thereby, blending CSA 
with OPC might combine their advantages and improve 
properties such as expansion and setting time,17 passiva-
tion ability of steel, and porosity.15

The hydration process of CSA cement has been  
studied.18–22 The first hydration reaction in the presence of 
gypsum (CS̅H2) is:

C A S + 2CS H + 34H  C AS H + 2AH4 3 2 6 3 32 3→

The formation of ettringite (C6AS̅3H32), AFt, takes place 
mainly in the first hours.23 When gypsum is depleted, 
ye’elimite forms monosulfate (C6AS̅3H12): AFm. Hydration 
of belite occurs at a later stage due to its low reactivity. 
Because the hydration products of ye’elimite contain amor-
phous AH3, reaction of belite in the presence of AH3 will 
form stratlingite (C2ASH8) rather than C–S–H.24 Most of 
the ye’elimite and gypsum react in the first 7 days, while 
most of the belite can be unhydrated even at 90 days.8 In 
case of blended CSA/OPC cement, their hydration prod-
ucts depend highly on the ratio of OPC/CSA. For low OPC/
CSA ratio, the hydration of OPC takes place later, several 
days after casting.25 Alite (C3S) in OPC cement can react 
with AH3, which is the hydration product of ye’elimite at an 
early stage, to form stratlingite (C2ASH8) and portlandite 
(CH) at this early stage.17 For high OPC/CSA ratio, alite 
can yield C–S–H and portlandite; the portlandite together 
with gypsum may then change the hydration reaction of 
ye’elimite to form 3C6AS̅3H32. The short setting time of 
CSA concrete is due to the quick and large formation of 
ettringite in the first hours.26 Content of anhydrite in CSA 
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concrete can influence early-age compressive strength as 
well; increasing anhydrite content means more ye’elimite 
phase, which reacts at early stage and therefore forms more 
hydration products.27

Study performed on CSA cement paste have revealed 
that a bimodal pore distribution develops at a very early 
stage; lower porosity is dominant, but not connected with 
higher porosity.28 Moreover, the average pore size of CSA 
concrete is smaller than that of OPC. The porosity of the 
CSA mortar decreases with the increase in anhydrite con-
tent and the decrease in w/c ratio.27 A series of factors can 
influence the expansion of CSA concrete,8,29 but ye’elimite 

content plays an important role. If the proportion of 
ye’elimite is more than 50% in CSA cement, expansion, 
cracking, and loss of strength appear at later stage; the 
appropriate content of ye’elimite seems to range from 30% 
to 40%.30

Limited results are reported in the literature on the 
durability of concrete and mortars manufactured with CSA 
cement.27,31–33 In particular, Quillis showed that CSA-
based concretes exhibit excellent sulfate resistance but 
higher diffusion coefficient in Cl-rich environments with 
respect to OPC.13 Moreover, despite conflicting results on 
the carbonation rate of mixtures containing CSA, it is evi-
dent that, similarly to OPC-concretes, carbonation depth is 
directly proportional to the water/binder ratio.31,34

Alkali activated materials

Alkali-activated materials (AAMs), which were devel-
oped starting from the 1940s,35 are obtained by reaction of 
an alkali metal source with amorphous or vitreous cal-
cium-aluminosilicate precursors. The former is used to 
increase the pH of the reaction mixture thus accelerating 
the dissolution of the powders, while the composition of 
the latter determines the physical-chemical processes that 
produce hardening.36,37 Microstructures, workability, and 
strength and durability of AAMs can be tuned by the 
proper combination of activators and precursors. Mix 
design of AAMs includes materials from both natural 
sources (metakaolin (MK) and pozzolans (P)) and by-
products (slag (GGBS), fly ash (FA), and paper sludge 

Figure 1.  Main strategies to make the concrete sector more environmentally friendly.

Figure 2.  Reduction of energy and pollutants emission in 
construction materials production.
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(PS)). AAMs can be classified according to the nature of 
the precursor (CaO–SiO2–Al2O3 system) into two main 
categories: (a) high calcium and (b) low calcium. When 
alumino-silicate sources (MK, FA) are used, a (Na,K)2O–
Al2O3–SiO2–H2O system is generated. This can be con-
sidered a subset of AAMs usually referred as geopolymers, 
characterized by a peculiar pseudo-zeolitic network struc-
ture.38–40 When slag is used as precursor, a (Na,K)2O–
CaO–Al2O3–SiO2–H2O system is produced. It is activated 
under moderate alkaline conditions,41,42 and hardening is 
produced by the formation of a C–A–S–H gel. A combina-
tion of the preceding two systems is also possible,43,44 
where hardening is due to the formation of a C–A–S–H 
and (N,C)–A–S–H gels network.45

The reactive powder used to produce the calcium-rich 
binder is blast furnace slag originating from the purifica-
tion process of iron ore to iron.46 Ground granulated blast 
furnace slag (GGBFS) is a mixture highly glassy phases 
with a composition close to that of gehlenite and aker-
manite: (31–38%) SiO2, (38–44%) CaO, (9–13%) Al2O3 
and (7–12%) MgO, and S, Fe2O3, MnO, and K2O with 
percentages of less than 1%. When it is used to produce 
AAMs, parameters affecting GGBFS reactivity are the 
vitreous phase content (85–95%wt), its degree of depo-
lymerization (DP, from 1.3 to 1.5), and its specific surface 
(400–600 m2/kg).36

Slag alkaline activation consists of dissolution of the 
glassy particles,35–37 nucleation and growth of the initial 
solid phases, interactions and mechanical binding at the 
boundaries of the phases formed, ongoing reaction via 
dynamic chemical equilibria, and diffusion of reactive spe-
cies through reaction products formed at advanced times 
of curing.47,48 At the early stages, the alkaline solution 
reacts with dissolved species generating the outer C–A–
S–H. At later stages, the inner C–A–S–H gel is produced 
by ongoing reactions of the undissolved portions of the 
slag particles through a diffusion mechanism.49

The cations and anions of the activator play a specific 
role in the activation process. When hydroxides are used, 
the OH– acts as a catalyst and is responsible for the pH 
increase, thus allowing precursor dissolution and the for-
mation of stable hydrates.50 Slag-based binder can be pre-
pared using 2–4 M solution with Na2O content less than 
5% slag weight to guarantee mechanical properties and 
reduce efflorescence.51–54 When sodium silicate is used, 
the gel is characterized by lower Ca/Si and a less ordered 
structure. In both the cases, the gel is comprises coexisting 
11 and 14 Å desordered tobermorite-like phases,48 with a 
Ca/Si ratio (0.9–1.2) lower than in hydrated Portland 
cement system. AFm type phases or strätlingite are formed 
when NaOH or silicate, respectively, are used.55,56 If raw 
materials contain high amounts of MgO,57,58 hydrotalcite 
(Mg6Al2CO3(OH)16·4H2O) is produced, while in the pres-
ence of low MgO (<5 %) and high Al2O3 contents, zeolites 
are often found in the reaction products.59

MK- and FA-based geopolymers

As a general statement, MK can be said to be the “model 
system” for studying the activation process of AAMs.60–68 
MK (Al2O3:2SiO2) is a natural pozzolanic material 
obtained by the calcination of kaolin at 500–900°C.69,70 
MK consists of plate-like particles with a specific surface 
area generally between 9 and 20 m2/g.71 MK pastes usu-
ally require a liquid/MK > 0.6 by mass,72 and MK mortars 
need ∼1.0.73,74 In general, MK geopolymers set within 
24 h. Conversely, MK geopolymers have a higher reaction 
rate and a faster strength gain with respect to FA geopoly-
mers,75,76 because of the presence of secondary minerals 
in the kaolinite clay,77,78 the fineness of the particles,79 and 
the reaction temperature.80,81 Hydrothermal ageing (95°C) 
because of major formation of crystalline zeolite, is 
responsible for strength loss.76 Moreover, the thermal 
treatment of MK mixtures at 80°C accelerates strength 
development, but the final strength is lower than that of 
specimens cured at ambient temperature.73 In geopoly-
mers, SiO2/Al2O3, Na2O/Al2O3 and Na2O/H2O influence 
mechanical properties. Compressive strength and Young’s 
modulus were found to be dependent on alkali type (Na or 
K) and Si/Al ratio.82 However, at the same compressive 
strength, the authors found that the modulus of elasticity 
is lower in geopolymers than in OPC mortars due to the 
large number of small pores that promote the formation of 
micro-cracks.75,83 K-based geopolymers produce a higher 
compressive strength than Na-based ones, and the increase 
of SiO2/Al2O3 also increases mechanical strength.84 
Davidovits indicated that the optimum Na2O/Al2O3 and 
SiO2/Al2O3 ratios are 1 and 4, respectively,85 while most 
researchers reported an optimum SiO2/Al2O3 of 3–3.8,54,86 
The increase in Si/Al ⩾ 3 leads to chemical instability in 
air, with efflorescence formation on the surface attributed 
to the high residual free alkali cations.87 Usually, increas-
ing Na2O/H2O leads to improved dissolution ability  
and mechanical strength development of clay-based geo-
polymers.74,84,88,89 Geopolymers prepared only with MK 
are highly susceptible to shrinkage both at room and ele-
vated temperatures,72,90–94 because of their high water 
requirement.

Concerning the effect of aggressive/pollutant substances 
on MK concretes durability,95–98 Palomo et  al. found that 
MK geopolymers were stable if immersed in seawater, 
Na2SO4 solution (4.4 %), and H2SO4 solution (0.001 M) for 
up to 90 days.99 On the contrary, Mobili et al. noticed crack 
formation on MK geopolymers exposed to Na2SO4 solution 
(14 %), not present in FA geopolymers with the same activa-
tors.75 Gao et al. found that MK geopolymers remain sound 
after 28 days in HCl solution (pH 2).100–102 The capillary 
water absorption of MK-based geopolymers is higher than 
blended blast furnace slag,103,104 FA, or OPC geopolymers.75 
Currently, researchers are studying MK-based geopolymers 
also to produce non-structural plasters with lightweight 
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aggregates for thermal insulation,105–110 and to be used  
as mortars able to adsorb volatile organic compounds 
(VOCs).111–115

Another trend is to produce geopolymers suitable for 
refractory applications, adding a foaming agent, H2O2, or 
Al powder.106,116,117 Results show that only Al-geopolymers 
are successfully converted to crack-free ceramics upon 
heating.116 The partial substitution of MK with FA also has 
a positive influence on both thermal resistance and com-
pressive strength,106,118 thanks to the lower water demand 
and thus the lower free water evaporation. Foams have 
much lower thermal conductivity (0.15–0.4 W/m·K) than 
the solid geopolymer (0.6 W/m·K).119 The thermal conduc-
tivity increases with increased Si/Al ratio, because of the 
increased connectivity, reduced porosity, and finer pore 
size distribution.120,121 Moreover, increasing the K/Al ratio 
also increases the foaming efficiency (final volume/initial 
volume).122 Geopolymers derived from a K-based activa-
tor dissolve or degrade more readily compared with 
Na-based geopolymers whether foamed or not.123,124–126

Researchers have investigated “one-part” MK geo-
polymers, obtained by adding only water to the dry mate-
rials, avoiding the use of caustic solutions, by the 
calcination of the clay material with a powdered activa-
tor, such as NaOH or KOH,127 soluble sodium silicate,128 
sodium carbonate,129 or by using an alkali-rich by-product, 
such as potassium-rich biomass ash.130

FA is an industrial byproduct derived from coal-fired 
power stations with a highly variable composition, depend-
ent on the coal source and burning conditions.131 Particle 
size distribution, chemical composition and crystalline/
glassy phases of the precursor are key factors that need to 
be understood, since they control the precursor reactivity 
and solubility in alkaline solutions.132 It was found that the 
geopolymer microstructure is highly influenced by particle 
fineness, amorphous phase composition, and oxide content 
(particularly Fe2O3 and CaO).133,134 The lower Na2O/SiO2 
molar ratio, the higher the performances in terms of water 
absorption and mechanical properties.135 Geopolymers 
showed good thermal stability after firing due to the for-
mation of new crystalline phases.136 Developing a compre-
hensive knowledge of precursors is a fundamental and 
critical step in commercializing geopolymer products. For 
example, a preliminary study demonstrated the use of geo-
polymer mortars for strengthening of concrete struc-
tures.137 As workability is one of the main requirements, 
research on superplasticizers suitable for fly ash geopoly-
mers needs to be emphasized.138–145,146

Clayey sediments and sludge for geopolymers

Geopolymers are attractive because natural and industrial 
silico-aluminates wastes may be used as precursors. The 
exploration for alternative low cost and easily available 
materials led among others to “normal clays”. Clayey 

sediments consist of different clay minerals; these are 
widely available all over the world, and offer significant 
reactivity after a thermal activation process.147 Among sil-
ico-alumina wastes, reservoir sediments are worthy of 
consideration. Sediments should be removed periodically 
to avoid reduction in reservoir capacity. There are more 
than 7000 large reservoirs in the European Union (EU), of 
which 564 are in Italy. These data show that regular dredg-
ing operations can produce huge amounts of sediment. In 
this regard, some possibilities have been explored as raw 
materials in production of artificial aggregates, bricks and 
cement.148–153 Studies aimed at extending these possibili-
ties in the field of geopolymer materials have been reported 
by several authors.154–156

SiO2 and Al2O3 are the main components in sediments, 
while CaO and Fe2O3 are present in lower concentrations; 
K2O, MgO, and Na2O are present in minimum percent-
ages. The main mineralogical phases detected by X-ray 
diffraction analysis are quartz, calcite, clay phases, and 
feldspars. A pre-treatment of the sediment is always neces-
sary in order to enhance the reactivity in alkaline environ-
ments. Messina et  al. showed that 750°C is the optimal 
pre-treatment temperature for the production of concrete 
blocks and geopolymer mortars.157 Indeed, the 27Al NMR 
peak at 0 ppm related to octahedral Al (Figure 3) and 
absorbance FT-IR peaks at 3697, 3620, and 3415 cm–1 
were absent or greatly dampened, evidencing the collapse 
of the ordered clay structure.

The prevailing chemical components of the sediments 
are silica and alumina, thus making sediments good geo-
polymer precursors. However, within the wide range of 
natural and artificial silico-aluminates, the SiO2/Al2O3 
ratio in this case is quite high, such to make the alkali 
aluminate activation and/or the addition of alumina-rich 
additives an interesting alternative. Aluminate activation 
was studied in the manufacture of precast building blocks, 
with encouraging results.158 Regarding alumina-rich addi-
tives, water potabilization sludge is another key residue 
produced by reservoir management activities. These 
wastes are based on flocculation-clarification processes 
using alumina coagulants.159 The amount of sludge gener-
ated, and its chemical composition, depend mainly on the 
chemical and physical characteristics of the water, the 
efficiency of the removal process, and the type and dose 
of coagulant. The amount of sludge can be roughly esti-
mated in the range of 1–5% of the total amount of 
untreated water.159 This waste has been studied in only a 
few studies, mainly with regard to potential reuse in the 
construction industry.157,160–166

Management of the huge amounts of sediments coming 
from dredged activities is an important issue to be solved 
in many countries worldwide. Clean dredged materials can 
be used for construction fill, brick or asphalt manufactur-
ing, topsoil and marine projects. Recently, Lirer et al. pro-
posed dredged sediments with FAs in the production of 



Coppola et al.	 191

geopolymers.165 Regarding the environmental impact, the 
values of hazardous elements classify geopolymers as 
non-dangerous materials. Therefore, these preliminary 
results suggest that this methodology could represent a 
starting point for the investigation of possible beneficial 
uses of polluted sediments in geopolymeric matrices.

Corrosion behavior in alternative binders-based 
matrix

Replacement of Portland cement with alternative binders, 
especially CSA cements and AAMs, open the theme of 
protection of reinforcements in these new concretes.168–170 
Data seem to indicate that the durability of CSA concretes 
is at least comparable to that of traditional Portland cement 
mixtures, but they also evidence the need to perform long-
term tests in order to recognize the corrosion protection 
mechanism.24 The protective capacity of the CSA-matrix 
has been confirmed by positive experiences of these struc-
tures in China, in which no rebar corrosion occurred after 
14 years of exposure.171 However, little information is 
given about the actual aggressive environmental condi-
tions. Most works available are devoted to the study of 
hydration products in the very early period but only a few 
papers have addressed the corrosion behavior of reinforce-
ments by means of electrochemical techniques. Potential 
measurements performed in a few experimental works evi-
dence difficulties in achieving proper values of passive 
rebars due to the low alkali content of the pore water.172 
Studies on the durability of mixtures manufactured with 
such binders address only a few aspects—carbonation and 
chlorides—neglecting relevant aspects governing the cor-
rosion process.13,28,173,174

The main hydration product of CSA cement is ettring-
ite, which does not provide OH–. The pH values of two 
pure CSA concretes with 0.5 w/c were 10.23 and 10.53, 
respectively, after 90 days.15 In another case, w/c 0.45 

CSA mortar showed low pH values (around 6) of the pore 
solution at 7 days after casting.172 However, a high pH, 
around 13, within first 60 days has been observed by using 
a CSA cement paste with w/c 0.8.175 An exhaustive inves-
tigation on two CSA cement pastes with w/c 0.72 and 0.8 
revealed that, in the case of w/c 0.72 CSA cement paste, 
within the first hours, the pH was as low as 10.3–10.7 due 
to the fact that the initial saturated pore solution was domi-
nated by aluminate, calcium, and sulfate; after 16 h, cal-
cium and sulfate concentrations decreased noticeably due 
to the depletion of gypsum, thus the pH was around 11.8; 
after 28 days, the pH value reached 12.7 due to the ongoing 
release of alkali ions of CSA clinker and the increase of 
alkali concentrations caused by the consumption of the 
pore fluid by the formation of hydrates; while w/c 0.8 CSA 
cement paste showed a similar trend, but a slight higher pH 
at each stage.19

Ettringite is susceptible to carbonation.13,14 It seems that 
the carbonation resistance of CSA concrete is weaker 
(Figure 4) than that of OPC concrete.176 However, an 
investigation on two CSA concrete samples suggested that 
the carbonation resistance of CSA concrete is comparable 
with that of OPC concrete; high-strength CSA concrete has 
excellent carbonation resistance.32 It was found that the 
carbonation resistance of CSA mortar increased along with 
the anhydrite content, as well as the decrease of w/c; mean-
while it was also found that carbonation changed the 
strength performance of CSA mortar due to the modifica-
tion of porosity caused by carbonation.27

Lower chloride penetration resistance of CSA concrete 
was observed when compared with OPC concrete.13 
Conversely, low chloride diffusion coefficients of CSA 
concretes with different strengths were obtained when 
compared with their OPC counterparts.177 To enhance the 
chloride penetration resistance of CSA concrete, modify-
ing AFm/AFt through varying the gypsum content with the 
hope to let more AFm bind chlorides, was carried out.178 
Besides, good sulfate resistance of CSA concrete has been 
reported.13–15 In the case of blended CSA cement, it was 
shown that increasing OPC in blended CSA cement (15%–
85%) can improve the pH.179

Currently, there are very few publications dealing with 
the passivation of steel embedded in CSA concrete. Steel 
in CSA mortar showed a higher corrosion rate than steel in 
OPC mortar exposed to 3.5% NaCl solution.172 Half-cell 
potential measurement showed that steel embedded in the 
CSA mortar was depassivated, showing a high corrosion 
rate in 3.5% NaCl solution, due to the low pH (around 6) 
of the pore solution of CSA mortar. However, the corro-
sion potential and corrosion rate of steel embedded in w/c 
ratio 0.55 CSA concrete with a pH value of 11.5 showed 
the passivation of embedded steel, even in concrete 
exposed to an environment at 95% relative humidity and 
40°C, or immersed in water.176 Mortar made with 100% 
CSA cement (pH 11.88) was not capable of passivating 

Figure 3.  27Al NMR resonance spectra of Occhito sediment 
before thermal treatment (a), after thermal treatment at 650°C 
for 1 h (b), at 650°C for 2 h (c), at 750°C for 1 h (d), at 750°C 
for 2 h (e).
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steel; however, CSA cement blended with 15% OPC 
(pH 11.32) was enough to guarantee the passivation of 
steel.15

The pH of alkali activated binders is very high at ini-
tial stages due to the presence of activators, leading to 
the common conclusion that no corrosion issues can 
occur. However, the pH tends to decrease under endog-
enous conditions to values well below the limits for steel 
passivation in absence of chlorides because these types 
of binders consume alkalinity during the hydration pro-
cess.180 In addition, very scattered pH values are 
reported, and several doubts have still to be solved in 
terms of corrosion behavior of reinforcement due to the 
very different mineralogical composition of precur-
sors.181 In addition, the role of alkalinity reservoir should 
be well taken into account for CSA and AAMs binders, 
which are generally prone to consume calcium hydrox-
ide rather than produce it, as does Portland cement.13 
The protectiveness is attributable not only to the pH, but 
also to the ability of OPC concrete to bind its own chlo-
rides, leading to a lower amount of free chlorides. The 
main factors influencing the critical chlorides content 
for pitting initiation are alkalinity and the concrete-rein-
forcement interface characteristics.182–185 The effect of 
alkalinity on localized corrosion initiation can be 
described in terms of chlorides-hydroxyl ions critical 
molar ratio, usually assumed equal to 0.6.168,184–193 The 
critical chloride threshold in OPC concretes is much 
higher due to oversaturation of calcium hydroxide.194 
This lead to an increase in critical molar ratio at values 
exceeding 2.183,195 This difference can be ascribed to the 
buffer ability by calcium hydroxide. The presence of this 
phase directly in contact with the carbon steel surface 

represents a reservoir of alkalinity, which contrasts the 
pH drop due to localized corrosion initiation.

On the contrary, much attention should be paid to inno-
vative binders due to the great compositional variability of 
the raw materials, usually industrial by-products. Chloride 
contamination can be non-negligible, leading to an 
increased risk of localized corrosion, especially in the first 
period when alkalinity has not yet reached a sufficient 
level to maintain stable passivity.

Mobili studied also the corrosion behavior of carbon 
and galvanized bars embedded in pure FA and MK geo-
polymers with the same strength class compared to OPC 
mortars.75,196,197 During the curing period, geopolymers 
prolong the active state of rebars, but, after 10 days, corro-
sion rates (vcorr) decreased to moderate values (around 
10 μm/year) in all mortars.75 During wet/dry (w/d) cycles 
in 3.5% NaCl solution,198 MK geopolymers showed the 
greatest corrosion of embedded rebars and the highest con-
sumption of the galvanized coating because of the higher 
porosity compared to FA and OPC geopolymers.199,200 
Aguirre-Guerrero studied the chloride-induced corrosion 
in OPC concrete coated with an alkali-activated mortar 
(90% MK (or FA) and 10% OPC); the MK geopolymer 
coating exhibited the best performances.201

Accelerated carbonation (CO2 = 3 vol.%) on slag/MK 
geopolymers shows that carbonation occurs faster as MK 
content increases and leads to a reduction in compressive 
strength.202 Moreover, accelerated carbonation at 50% 
CO2 on MK-based geopolymers forms large amounts of 
sodium bicarbonate, leading to a lower pH of the pore 
solution; while the formation of sodium carbonate in natu-
ral conditions does not lead to a pH below 10.5 after 
1 year.203

Figure 4.  Time evolution of carbonation depth of CSA and reference OPC concrete under accelerated test (on the left) and 
indoor exposure (on the right). CSA: calcium sulfoaluminate cements; OPC: ordinary Portland cement.
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Reinforcement less sensitive to corrosion

Carbonation or chloride-induced corrosion are the main 
issues in reinforced concrete structure manufactured with 
different types of binders. In carbonated concrete without 
chlorides, stainless steel rebars are passive.204,205 For gal-
vanized steel, the presence of an external layer of pure zinc 
and its thickness is of primary importance to form a pas-
sive film; in contact with alkaline solutions, if the pH does 
not exceed 13.3, a layer of calcium hydroxyzincate is 
formed and zinc is passivated.206

In chloride-contaminated concrete, the onset of corro-
sion occurs if a chloride threshold is exceeded. Even 
though the measurement of this threshold is not easy, some 
major factors have been identified: the pH, the potential of 
the steel and voids at the steel/concrete interface; for car-
bon steel in aerated concrete at 20°C, critical chloride 
threshold is generally in the range 0.4–1% by cement 
mass.206 In the case of stainless steels, chemical composi-
tion is also important: corrosion resistance is improved by 
increasing Cr and Mo content, while probably the role of 
Ni is beneficial in alkaline environments and Mn appears 
to have worsening effect: for example, critical chloride 
threshold at 20°C in aerated alkaline concrete for typical 
18%Cr and 8% Ni AISI 304L steel (1.4307 according to 
EN) is a minimum 5% of cement mass for pickled surface, 
and lowers in the presence of a welding scale.206–211 
Galvanized steels has a good resistance to chloride-induced 
corrosion, even if not comparable to stainless steels: in 
aerated concrete the critical chloride content is maximally 
1–1.5%.206

Few papers have been published about the perfor-
mance of stainless or galvanized steels in new binders  
matrix.75,139,199,212,213 Moreover, results are not always con-
sistent. Most researchers agree that the chloride concentra-
tion in alkali activated slag mortars is lower than in 
traditional mortars.139,199 This effect has been attributed to 
the lower porosity and the different chloride binding 
capacity: while in Portland cement mortars chlorides form 
low solubility calcium-containing compounds, in geopoly-
mers, since calcium content is very low, the chloride bind-
ing effect is negligible.

The pH of the pore solution is a matter of discussion. 
Some authors stated, without indicating any practical meas-
urement, that pH is highly alkaline,212 or more alkaline than 
traditional mortars.75 On the contrary, other authors report 
pH values, measured by the leaching method, for alkali-
activated mortars similar to that of CEM II A-L 42.5 
R-based mortars (between 12.8 and 13.2), but after expo-
sure to 11 cycles of wetting with chloride solution and dry-
ing, the pH of alkali-activated mortars was found to be 
10.5–10.7 against 12.2 for cement-based mortars.139

Corrosion of low nickel (4.3%) manganese (7.2%) aus-
tenitic stainless steel with 16.5% Cr is compared with tradi-
tional stainless steel AISI 304 (1.4301 according to EN 

10088-1) in alkali-activated FA mortars characterized by 
high alkalinity (the authors reported pH higher than 13, 
although few details are provided).212 Both stainless steels 
exhibited passive behavior up to 2% chloride content, while 
carbon steel suffered corrosion in 0.4% chlorides. In 
another report, stainless steels (traditional type AISI 304 
and low nickel) in carbonated mortars subjected to acceler-
ated chloride exposure suffered localized corrosion.213 
Analysis of rebars after a 2-year exposure showed that in 
alkali activated slag mortars the behavior was better than in 
OPC mortars. The authors attributed the improvement to 
the higher concentration of inhibiting bicarbonate/carbon-
ate ions present in these binders.213 The results are promis-
ing but not conclusive: on the one hand, chloride content 
2% in alkaline mortar is not high enough to evaluate the 
long-term performance of stainless steel rebars,212 since the 
chloride content is well below than the critical chloride 
threshold in alkaline concrete. On the other hand, the results 
of the other group show a little improvement of corrosion 
behavior in alkali-activated mortars vs traditional ones.213 
Concerning galvanized rebars, it has been mentioned that 
geopolymeric mortars can have two opposite effects: a 
delay in the passivation due to the higher pH (potentially 
negative), and a reduction in corrosion rate after some 
cycles of wetting with 3.5% NaCl.75,199 Nevertheless, cor-
rosion rate in alkali-activated slag mortars was found to be 
50 µm/year. This value would lead to the consumption of 
the zinc layer (typically 150 µm) within a few years, so 
these results do not guarantee long-term performance of the 
galvanized rebar in geopolymeric mortars.

Alkali-activated materials in repair and 
conservation

The issue of retrofitting and seismic upgrade of existing 
masonry buildings and reinforced concrete structures has 
become of primary interest due to the huge architectural 
heritage all over the world. This topic is extremely com-
plex, especially because of many compatibility issues 
between existing structures and Portland cement repair 
mortars.214–217,218 In fact, use of Portland cement mixtures 
on masonry structures can cause damage due to the pres-
ence of sodium and potassium ions, which can promote an 
alkali-aggregate reaction,219 or, in the presence of wet 
environments and sulfur-rich natural stones,220 it could 
determine the development of thaumasite and secondary 
ettringite, with expansion and cracking phenomena. 
Another key parameter for repair mortars is the elastic 
compatibility221,222: if Young’s modulus of repair material 
is different from the substrate, it may create detachments 
and cracks. Finally, it is not possible to overlook the aes-
thetic compatibility between the original areas and those 
involved in maintenance works.223

Currently, natural hydraulic lime (NHL) represents the 
only binder that can be used in these contexts due to their 



194	 Journal of Applied Biomaterials & Functional Materials 16(3)

high compatibility with the substrates.224–226 However, due 
to their low mechanical strength, NHL-based mortars 
often do not meet elasto-mechanical requirements, and, for 
this reason, are very often mixed with Portland cement.

The use of cement-free alkali-activated materials 
(AAM), such as GGBFS, could also be a suitable alterna-
tive to Portland cement mixtures.227–230

The key parameter that regulates most of properties of 
alkali-activated compounds is the precursor/activator 
ratio.231–236

A key aspect for use in maintenance is the possibility 
to tailor the strength and stiffness with the activator/ 
precursor237–239; in particular, both the compressive 
strength and elastic modulus increased due to the high 
alkali-activator dosage in the mixture. Specifically 
(Figure 5), weakly alkali-activated GGBFS-based mor-
tars can be used for plasters or masonry mortars while, 
in presence of high activator/precursor ratios, can be 
employed for seismic retrofitting or for reinforced con-
crete structures restoration.

Another key parameter of alkali-activated mortars is 
elastic modulus (Figure 5); several authors showed less 
rigidity of GGBFS-based matrix respect to reference mix-
tures with OPC,36,55,240,241 at equal strength class due to the 
high shrinkage of AAM mortars that promote the forma-
tion of microcracks.83 In particular, low activator/precur-
sor ratios determine Young’s modulus ranging from 10 to 
15 MPa, while higher alkaline powders dosages cause an 
increase in GGBFS-based matrix-stiffness, and, conse-
quently, elastic modulus increases up to 20 MPa. In the 
presence of substrates restraining the dimensional contrac-
tion of repair mortar, this property determines the develop-
ment of low internal tensile stresses, and thus, a lower 
cracking risk.

In general, alkali-activated mortars and concretes show 
very high free shrinkage compared to conglomerates man-
ufactured with traditional binders.242 These problems are 
caused by the large amount of water not involved in the 
hydration reaction, which, by evaporating, creates dimen-
sional contraction and markedly porosity of matrix. 
Furthermore, alkali-activated slag pastes have a much 
higher range of pore sizes within mesopore region than 
OPC pastes. The radius of pores where the meniscus forms 
seems to be a key parameter for shrinkage.243–245

Researchers note that, by increasing the water/binder, 
there is a growth in shrinkage due to two factors: the large 
amount of water able to evaporate, and the increase in 
binder paste/aggregates.246 In addition, it is possible to 
note that shrinkage is also influenced by type and contents 
of alkaline activators.247 Reduction of shrinkage can be 
achieved by optimizing the mix with ethylene glycole 
SRA or calcium oxide expansive agents. In addition, 
methyl cellulose and starch ether (M.S.) can also be added 
in order to reduce water evaporation at the fresh 
state.41,248,249 In particular, the addition of blends based on 
ethylene glycol and calcium oxide can reduce free shrink-
age by about 40% compared to reference GGBFS-mortars 
without admixtures (Figure 6).

Another issue with AAMs is the efflorescence caused 
by excess of sodium oxide remaining unreacted in the 
material due to a disequilibrium in the mix towards the 
sodium-based activators. The parameter that influences the 
quantity of efflorescence is the Na/Al molar ratio; con-
glomerates with higher Na/Al molar ratios show a higher 
extent of alkali leaching, indicating a stronger tendency 
towards efflorescence.250,251

In conclusion, from analysis of the strengths and weak-
nesses of AAMs, it turns out that alkali-activated mortars 

Figure 5.  Compressive strength and elastic modulus of GGBFS-based mortars manufactured with blend of sodium metasilicate, 
potassium hydroxide, and sodium carbonate (7:3:1) at different activator/precursor ratios. GGBFS: Ground granulated blast furnace 
slag.
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and concretes can be a reasonable alternative to traditional 
Portland cement-based mixtures or NHL-based conglom-
erates for restoration of ancient buildings.
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