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Release of bud dormancy in perennial plants resembles vernalization in Arabidopsis thaliana
and cereals. In both cases, a certain period of chilling is required for accomplishing the
reproductive phase, and several transcription factors with the MADS-box domain perform
a central regulatory role in these processes. The expression of DORMANCY-ASSOCIATED
MADS-box (DAM )-related genes has been found to be up-regulated in dormant buds of
numerous plant species, such as poplar, raspberry, leafy spurge, blackcurrant, Japanese
apricot, and peach. Moreover, functional evidence suggests the involvement of DAM genes
in the regulation of seasonal dormancy in peach. Recent findings highlight the presence of
genome-wide epigenetic modifications related to dormancy events, and more specifically
the epigenetic regulation of DAM -related genes in a similar way to FLOWERING LOCUS C,
a key integrator of vernalization effectors on flowering initiation in Arabidopsis. We revise
the most relevant molecular and genomic contributions in the field of bud dormancy, and
discuss the increasing evidence for chromatin modification involvement in the epigenetic
regulation of seasonal dormancy cycles in perennial plants.
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SEASONALITY OF BUD DORMANCY FOR ADAPTATION
The vegetative and reproductive meristems of many perennial
plants in temperate climates remain in a non-growing latent
state during the cold period of autumn and winter, within
buds, which ensure an optimal protection against low tempera-
tures and drought. The cessation of meristem growth and bud
set are controlled by photoperiod, temperature, or a combi-
nation of both in different species (Olsen, 2010; Cooke et al.,
2012); followed by the induction of bud dormancy, which
precludes the growth resumption even under favorable environ-
mental conditions (Rohde and Bhalerao, 2007). Bud dormancy
is dynamically modulated by intrinsic, environmental, and hor-
monal factors (Arora et al., 2003; Horvath et al., 2003; Allona
et al., 2008; Cooke et al., 2012), which in several aspects, resem-
ble those factors regulating dormancy in seeds (Powell, 1987;
Leida et al., 2012b). Paradoxically, in species from the Rosaceae
family among others, bud dormancy is released by the same low-
temperature conditions that induce dormancy, differing in the
cumulative and quantitative perception of chilling required for
an effective dormancy release (Coville, 1920; Couvillon and Erez,
1985).

The genotype specificity of chilling requirements for dormancy
release, in addition to fruit maturation dates, are two major fac-
tors limiting the geographical distribution of temperate species
(Chuine, 2010). Under a perspective of global warming, pheno-
logical issues may have a critical impact on the distribution and
performance of cultivars and species. For instance, a later ful-
fillment of the chilling requirements of the meadow and steppe
vegetation of the Tibetan Plateau from the mid-1990s, due to a
warmer environment, has been found associated with a delay in

the beginning of the growing season (Yu et al., 2010). The length of
the growth season, limited by the growth cessation and bud-burst
dates, is nevertheless expected to increase or decrease in different
species according to their particular interaction with the envi-
ronment (Hänninen and Tanino, 2011). This significant impact
on yield from established orchards could alter the range of both
native and invasive plants, and it also represents a challenge for tree
breeders involved in improving varieties for better adaptability to
a particular environment.

REGULATORY FACTORS IMPINGING ON BUD DORMANCY
The study of the mechanisms involved in bud dormancy initia-
tion and release, and chilling perception, has been approached
by genetic, genomic, and physiological analyses. Numerous tran-
scriptomic studies have arisen during the last few years, addressing
the changes in gene expression triggered by bud dormancy events
in poplar (Populus spp.; Rohde et al., 2007; Ruttink et al., 2007),
raspberry (Rubus idaeus; Mazzitelli et al., 2007), leafy spurge
(Euphorbia esula; Horvath et al., 2008), Japanese apricot (Prunus
mume; Yamane et al., 2008; Zhong et al., 2013), grapevine (Vitis
spp.; Mathiason et al., 2009; Díaz-Riquelme et al., 2012), peach
(Prunus persica; Jiménez et al., 2010a; Leida et al., 2010), blackcur-
rant (Ribes nigrum; Hedley et al., 2010), white spruce (Picea glauca;
El Kayal et al., 2011), and pear (Pyrus pyrifolia; Liu et al., 2012; Bai
et al., 2013) among other perennial species. These studies highlight
the existence of common and specific gene expression programs
affecting cell cycle regulation, light perception, hormonal signaling
and stress response, and novel putative regulators of the dormancy
stage of buds (Horvath et al., 2003; Cooke et al., 2012; Leida et al.,
2012a; Doğramaci et al., 2013).
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The identification and characterization of non-dormant
mutants, such as the evergrowing (evg) mutant of peach
(Rodriguez et al., 1994), in addition to several functional studies
using transgenic poplar, have contributed to renew the dormancy
field with increasing molecular works at the gene level. A deletion
affecting several members of a series of six tandemly repeated
MADS-box genes (DAM1-6, for DORMANCY-ASSOCIATED
MADS-box) has been proposed to cause the non-dormant phe-
notype of the evg mutant (Bielenberg et al., 2004, 2008). The
six DAM genes of peach were presumably originated by serial
tandem duplications from an ancestor related to the flowering
transition regulator SHORT VEGETATIVE PHASE (SVP) of Ara-
bidopsis thaliana (Jiménez et al., 2009). In addition to their tight
linkage to the evg locus, several recent molecular studies sup-
port the involvement of DAM genes in promoting dormancy.
DAM genes are expressed in buds following different develop-
mental patterns and are distinctly affected by photoperiod and
chilling signals (Li et al., 2009). However, the expression of two
of them, DAM5 and DAM6, correlates particularly well with the
dormancy status of buds, being high in dormant buds and low
after the fulfillment of chilling requirements prior to bud dor-
mancy release (Jiménez et al., 2010b; Yamane et al., 2011). To
acquire further genetic evidences about DAM function, DAM6 has
been constitutively expressed in transgenic plums (Prunus domes-
tica), showing some degree of dwarfing and increased branching
(Fan, 2010). Moreover, several independent quantitative trait loci
(QTL) analyses dissecting the flowering time and chilling require-
ment traits in peach (P. persica), apricot (Prunus armeniaca),
and almond (Prunus dulcis) have found a common QTL in link-
age group 1 coincident with the genomic location of the DAM
locus (Quilot et al., 2004; Olukolu et al., 2009; Fan et al., 2010;
Sánchez-Pérez et al., 2012; Romeu et al., 2014). Interestingly, the
low chilling requirement trait evaluated in one of these QTL seg-
regating populations in peach, is associated with the presence of
large insertions within intronic sequences in DAM5 and DAM6
genes (Zhebentyayeva et al., 2014). However, none of the poplar
homologs of DAM genes colocalizes with QTLs associated with
bud set in this species (Rohde et al., 2011), suggesting a somehow
different role or a reduced natural variability of DAM genes in
poplar.

Related DAM-like genes with dormancy-dependent expression
have been found in other perennial species such as raspberry
(Mazzitelli et al., 2007), leafy spurge (Horvath et al., 2008, 2010),
Japanese apricot (Yamane et al., 2008), pear (Ubi et al., 2010;
Saito et al., 2013), blackcurrant (Hedley et al., 2010), and kiwifruit
(Actinidia deliciosa; Wu et al., 2012). The heterologous expression
of some of these genes in transgenic plants has offered additional
clues about their role in flowering and dormancy. Arabidopsis
plants expressing DAM1 from leafy spurge (Horvath et al., 2010)
and SVP1 and SVP3 from kiwifruit (Wu et al., 2012) show a
delay in flowering time; whereas the expression of PmDAM6
from Japanese apricot in poplar causes growth cessation and
bud set under conditions favorable for growth (Sasaki et al.,
2011).

Other regulatory genes belonging to different clades within
the MADS-box family have also been found to be related to
bud dormancy events. Thus, the overexpression of the birch

(Betula pendula) FRUITFULL (FUL)-like gene BpMADS4 delays
senescence and winter dormancy in Populus tremula (Hoenicka
et al., 2008), and the presence of different allelic variants in a
SUPPRESSOR OF OVEREXPRESSION OF CONSTANS (CO) 1
(SOC1)-like gene in apricot is found associated with different
chilling requirements for dormancy break (Trainin et al., 2013).
Interestingly, FUL and SOC1 are activated in the shoot apex of
Arabidopsis by the mobile florigen protein produced by the FLOW-
ERING LOCUS T (FT) gene, and mediate the effect of FT and
CO on the photoperiod-dependent induction of flowering (Yoo
et al., 2005; Melzer et al., 2008). In poplar, a regulatory path-
way including two genes homologous to CO and FT controls the
growth cessation induced by short days, and also seasonal bud
set (Böhlenius et al., 2006). Moreover, transgenic plums overex-
pressing FT1 from poplar do not enter dormancy and experience
continuous flowering among other developmental alterations
(Srinivasan et al., 2012). A deep study about the role of the par-
alogs FT1 and FT2 in poplar, using heat-inducible constructs,
has shown that FT1 determines the reproductive onset in win-
ter, whereas FT2 promotes the vegetative growth in spring and
summer (Hsu et al., 2011). This work postulates the seasonal suc-
cession of reproductive, vegetative, and dormant phases in poplar
through the divergent expression and function of FT1 and FT2
genes.

The role of abscisic acid (ABA) and ABA-responsive factors
in dormancy maintenance in buds has been mainly addressed in
poplar. The overexpression and downregulation of PtABI3, an
homolog of ABSCISIC ACID INSENSITIVE 3 (ABI3) of Arabidop-
sis involved in seed dormancy regulation by ABA signaling, cause
developmental alterations in bud formation and misregulation
of gene expression during bud dormancy processes (Rohde et al.,
2002; Ruttink et al., 2007). Furthermore, the ectopic expression of
the mutant gene abscisic acid insensitive 1 (abi1) in poplar modi-
fies the dormant response of buds to exogenous ABA (Arend et al.,
2009).

PIECES OF AN EPIGENETIC “ALARM CLOCK” FOR BUD
DORMANCY AND AWAKENING
Several reviews postulate the participation of different epigenetic
mechanisms involving histone modification, DNA methylation,
and the synthesis of small non-coding RNAs in regulating bud
dormancy events, based on evident similarities between the envi-
ronmental and molecular control of dormancy in buds and other
well-known processes, such as flowering initiation, vernaliza-
tion, and seed development (Horvath et al., 2003; Horvath, 2009;
Hemming and Trevaskis, 2011; Cooke et al., 2012). However, only
few recent works have provided experimental support for these
postulates.

The global levels of genomic DNA methylation and acetylated
histone 4 (H4) show cyclic and opposite variations during the
seasonal development of chestnut (Castanea sativa), with higher
DNA methylation ratios and lower H4 acetylation levels in dor-
mant buds with respect to actively growing tissues (Santamaría
et al., 2009; Figure 1). These data support a significant silencing
of bulk gene expression concomitant with bud dormancy; how-
ever, the epigenetic regulation of particular genes with a relevant
role in regulatory issues may differ from this global tendency to
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FIGURE 1 | General and specific modifications of chromatin in dormant

and dormancy-released buds. The following chromatin modifications have
been identified in chestnut at the genome level (left), and specifically in the
DAM locus in leafy spurge and peach (right): DNA methylation (DNAme),
acetylation of histone H4 (H4ac), acetylation of H3 (H3ac), trimethylation of
H3 at K4 (H3K4me3), and trimethylation of H3 at K27 (H3K27me3).

gene repression. Indeed, in a subsequent work, the authors have
found the gene CsAUR3 encoding an H3 kinase-like expressed
in growing tissue, and genes CsHUB2 and CsGCN5L coding for
putative histone mono-ubiquitinase and histone acetyltransferase
with higher expression in dormant buds (Santamaría et al., 2011).
Interestingly, the hub2 mutant in Arabidopsis displays reduced
seed dormancy (Liu et al., 2007). In agreement with overall DNA
methylation changes in chestnut, a decrease in DNA methylation
at 5′-CCGG-3′ sites precedes dormancy release, transcriptional
activation, and meristem growth in potato tubers (Law and Suttle,
2003).

Some transcriptomic studies have contributed to the identi-
fication of genes involved in epigenetic regulation differentially
expressed in dormant and growing samples. Two genes similar
to FERTILIZATION INDEPENDENT ENDOSPERM (FIE) and
PICKLE (PKL) are strongly up-regulated in poplar immediately
after transfer to short-day (SD) conditions, leading to bud for-
mation and dormancy induction (Ruttink et al., 2007). FIE is a
component of the Polycomb repressive complex 2 (PRC2) involved
in the trimethylation of H3 lysine 27 (H3K27me3), a chro-
matin modification associated with stable gene silencing, whereas
PKL is an ATP-dependent chromatin-remodeller that regulates
embryo identity traits and associates with multiple H3K27me3-
enriched loci (Ogas et al., 1999; Zhang et al., 2012). In Arabidopsis,
fie mutants show fertilization-independent development of the
endosperm (Ohad et al., 1999), precocious flower-like struc-
tures (Kinoshita et al., 2001), and seeds with impaired dormancy
(Bouyer et al., 2011). According to these data suggesting a role
of Polycomb complexes in SD-induction of dormancy, transgenic
hybrid aspen lines with RNAi-mediated downregulation of FIE are
not able to establish dormancy, even though growth cessation and
bud formation processes seem not to be affected (Petterle, 2011).

Other genes up-regulated during the activity–dormancy tran-
sition in hybrid aspen encode putative histone deacetylases
(HDA14 and HDA08), histone lysine methyltranferase (SUVR3),
and HUB2, while several genes belonging to the Trithorax
family of factors counteracting the repressive effect of Polycomb

complex and putative DEMETER-like DNA glycosylases are down-
regulated during the same period (Karlberg et al., 2010). These
results prompted the authors to propose a model in which
some unknown target genes are repressed by chromatin com-
paction during dormancy induction due to histone deacetylation
and methylation, histone ubiquitination, DNA methylation, and
Polycomb activity. Interestingly, dormancy release upon chilling
treatment is accompanied by the up-regulation of other histone
deacetylase genes (HDA9 and SIN3) and also a DEMETER-like
gene, suggesting that chromatin repression mechanisms with dis-
tinct target specificity could act on the different stages of the
activity–dormancy cycle (Karlberg et al., 2010).

RESEMBLANCES OF BUD DORMANCY AND VERNALIZATION
The similarities of bud dormancy in perennials with the vernal-
ization treatment for flowering in Arabidopsis and cereals reside
in their common requirement of a time period of quantita-
tive and cumulative chilling, and the participation of certain
MADS-box domain transcription factors with key regulatory tasks
(Chouard, 1960; Horvath et al., 2003; Hemming and Trevaskis,
2011). The MADS-box genes FLOWERING LOCUS C (FLC) and
VERNALIZATION1 (VRN1) control, respectively, the vernaliza-
tion response in Arabidopsis and cereals (Sheldon et al., 2000;
Trevaskis et al., 2007), whereas DAM genes exert an analogous
role in bud dormancy processes. Interestingly, the vernalization
and bud dormancy responses are mediated by the regulation of
FLC, VRN1, and DAM gene expression through common epige-
netic mechanisms. After prolonged cold exposure, concomitantly
with gene repression and dormancy release, the chromatin in the
promoter of leafy spurge DAM1 shows a decrease in trimethyla-
tion of H3 lysine 4 (H3K4me3) and an increase of H3K27me3
(Horvath et al., 2010), two histone modifications found also asso-
ciated with the vernalization-dependent repression of FLC in
Arabidopsis (Bastow et al., 2004; Kim et al., 2005), and in VRN1 in
barley before vernalization (Oliver et al., 2009). In peach, DAM6
shows similar epigenetic changes associated with gene repression
after dormancy release, in addition to a decrease of H3 acety-
lation in the chromatin around the ATG region (Leida et al.,
2012a; Figure 1). Such changes occurred at different dates in
two different cultivars, in close agreement with their particular
chilling requirements and dormancy release dates (Leida et al.,
2012a).

In addition to histone modifications, the synthesis and action
of long non-coding RNAs (lncRNAs) play a crucial role in the
epigenetic regulation of FLC gene in Arabidopsis (Turck and Cou-
pland, 2011). Both, a natural antisense transcript called COOLAIR
expressed from a promoter located in the 3′ flanking region of
FLC, and a sense intronic lncRNA named COLDAIR, participate
in different phases of the cold-induced repression and the stable
silencing of FLC by PRC2 (Swiezewski et al., 2009; Heo and Sung,
2011).

Other non-coding RNAs acting on the epigenetic regulation
of many plant processes are microRNAs (miRNAs). Recently, a
genome-wide approach for the isolation of conserved and novel
peach miRNAs has allowed the identification of miRNAs differ-
ently expressed in chilled vegetative buds (Barakat et al., 2012).
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Some of these miRNAs colocalize with known QTLs for chill-
ing requirement and blooming date traits, offering new tools
and targets for the genetic analysis of dormancy mechanisms. An
epigenetic mechanism involving the synthesis of specific miRNA
has been also proposed for an adaptive memory of temperature
observed in Norway spruce, in which the environmental temper-
ature during embryo development determines the bud phenology
and cold acclimation (Yakovlev et al., 2010, 2011). An miRNA
cascade involving miR156 and miR172 and their respective tar-
gets SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL),
and APETALA2 (AP2)-like genes modulates flowering induction
in Arabidopsis through the regulation of FT and other flowering-
related genes (Khan et al., 2014; Spanudakis and Jackson, 2014).
Evidence on the differential expression of SPL genes and miR172
during dormancy induction has been obtained from transcrip-
tomic studies in poplar and leafy spurge (Ruttink et al., 2007;
Doğramaci et al., 2013), which suggests that this miRNA pathway
may also play a regulating role in dormancy processes.

PERSPECTIVES
As new details of the epigenetic regulation of gene expres-
sion during bud dormancy processes emerge, its mechanistic
similarities with the well-known regulation of Arabidopsis FLC
gene are becoming increasingly evident. Based on such anal-
ogy, one may reasonably figure out the remaining pieces of the
“alarm clock” outlined above. The chromatin of the transcription
start site of pre-vernalized FLC is trimethylated at H3K36 and
monoubiquitinated at H2B, favored by the interaction of chro-
matin modification enzymes with the transcriptional machinery
(He, 2012). These modifications and proteins could be similarly
identified in dormant buds of perennial species where DAM-like
genes are transcriptionally active, prior to cold-dependent down-
regulation. Also cold-induced COOLAIR-like and COLDAIR-like
lncRNAs could be involved, respectively, in the initial down-
regulation of DAM genes and the function of PRC2 complexes.
In fact, the presence of a large intron shortly after the begin-
ning of the coding region in DAM genes in peach resembles
the situation of the first intron of FLC, particularly impor-
tant in the synthesis of COLDAIR and the nucleation of the
PRC2-dependent trimethylation of H3K27 (Song et al., 2012). In
spite of the coincident identification of H3K27me3 in the chro-
matin of DAM-like genes in dormancy-released buds of leafy
spurge and peach, the components and the role of PRC2 com-
plexes in the stable silencing of DAM need to be established
in temperate perennials, as already performed in Arabidopsis
(Jiang et al., 2008). In summary, the rich literature describ-
ing vernalization in model plants may radically accelerate the
knowledge of the epigenetics of bud dormancy regulation over
the next few years, but it will require the implementation of
more informative biochemical and functional approaches in
perennial species to complement previous genetic and genomic
studies.

In addition to these mechanistic commonalities between the
regulation of vernalization and bud dormancy, specific regula-
tory elements are expected to operate in buds. In particular, the
seasonality of bud dormancy with undefined repeated cycles of
growth–dormancy along the life of an individual, the major role

of hormones such as ABA,and the occurrence of dormancy-related
processes on preformed flowers located within buds instead of veg-
etative tissues, among other particularities, suggest the existence
of yet unknown exciting pieces in the “clock.”
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