BPH-15-005 Measurement of quarkonium production cross sections in pp collisions at $\sqrt{s} = 13$ TeV

-Supplemental material

Dimuon invariant mass and lifetime distributions, numerical values of differential cross section, and correction factors for alternative polarization scenarios

The CMS Collaboration^a

^aCERN

Abstract

Keywords: CMS, quarkonium, cross sections

Email address: cms-publication-committee-chair@cern.ch (The CMS Collaboration)

Preprint submitted to Elsevier

Figure 1: Examples of fits of the dimuon invariant mass (left) and decay length (right) distributions for J/ψ (upper row) and $\psi(2S)$ (lower row) candidate events in the p_T and |y| ranges given in the plots. The results from the total fit and from the various components included in the fit are shown.

Figure 2: Examples of a fit of the dimuon invariant mass distribution for the $\Upsilon(nS)$ candidate events in the p_T and |y| ranges given in the plot. The results from the total fit and for the background component are shown.

120-150	95-120	75–95	60-75	50-60	46-50	42–46	38-42	36-38	34-36	32-34	30-32	29 - 30	28-29	27-28	26-27	25 - 26	24–25	23 - 24	22 - 23	21 - 22	20 - 21	[GeV]	p_{T}	
131.1	104.7	82.7	66.0	54.2	47.8	43.8	39.8	37.0	35.0	33.0	31.0	29.5	28.5	27.5	26.5	25.5	24.5	23.5	22.5	21.5	20.5	[GeV]	$\langle p_{\rm T} \rangle$	
	8.37E-03	2.54E-02	8.96E-02	2.79E-01	5.34E-01	8.33E-01	1.45E+00	2.12E+00	2.78E+00	3.84E+00	5.47E+00	6.68E+00	8.14E+00	1.00E+01	1.21E+01	1.46E+01	1.80E+01	2.14E+01	2.72E+01	3.52E+01	4.68E+01	[pb/GeV]	લ	
t	2	9.0	5.4	3.7	4.2	3.3	2.6	3.1	2.7	2.3	1.9	2.5	2.3	2.1	1.9	1.8	1.6	1.5	1.4	1.3	1.7	stat %	< 0.3	
ç	8.3	7.7	8.0	7.8	7.0	6.9	6.4	6.2	5.7	5.4	5.2	5.2	5.1	5.0	5.1	5.0	5.0	5.0	5.2	5.4	5.3	syst %		
	8.56E-03	2.62E-02	9.05E-02	2.74E-01	5.48E-01	8.33E-01	1.40E+00	2.03E+00	2.84E+00	3.84E+00	5.44E+00	6.92E+00	8.31E+00	1.00E+01	1.22E+01	1.50E+01	1.81E+01	2.25E+01	2.80E+01	3.65E+01	4.63E+01	[pb/GeV]	0.3	
ţ	2	8.5	5.0	3.5	4.0	3.2	2.5	2.9	2.5	2.2	1.9	2.4	2.2	2.0	1.8	1.7	1.5	1.4	1.3	1.2	1.3	stat %	< y < 0	
c i	8.2	6.4	6.9	7.1	6.1	6.1	5.7	5.4	4.9	4.6	4.5	4.5	4.5	4.4	4.4	4.5	4.5	4.5	4.5	4.8	4.6	syst %	.6	
	7.16E-03	2.37E-02	8.23E-02	2.49E-01	4.96E-01	7.74E-01	1.39E+00	2.02E+00	2.76E+00	3.72E+00	5.03E+00	6.78E+00	7.88E+00	9.76E+00	1.13E+01	1.38E+01	1.76E+01	2.18E+01	2.75E+01	3.52E+01	4.47E+01	[pb/GeV]	0.6	Bd
ŧ	5	8.7	5.6	3.7	4.2	3.3	2.5	3.0	2.5	2.2	1.9	2.4	2.2	2.0	1.9	1.7	1.5	1.4	1.3	1.2	1.2	stat %	< y < 0	$\sigma^2/dp_T d$
	7.3	6.4	6.9	7.1	6.1	5.9	5.6	5.3	4.9	4.4	4.3	4.4	4.3	4.3	4.3	4.3	4.3	4.3	4.4	4.6	4.5	syst %	.9	Y
0.011 00	5.61E-03	2.03E-02	6.64E-02	2.14E-01	4.54E-01	7.47E-01	1.33E+00	1.85E+00	2.62E+00	3.50E+00	4.91E+00	6.39E+00	7.67E+00	9.17E+00	1.11E+01	1.39E+01	1.66E+01	2.12E+01	2.69E+01	3.42E+01	4.51E+01	[pb/GeV]	0.9	
ţ	19	9.6	6.2	4.1	4.5	3.4	2.6	3.1	2.7	2.3	2.0	2.5	2.3	2.1	1.9	1.8	1.6	1.5	1.3	1.3	1.3	stat %	< y < 1	
	9.1	7.6	8.2	7.7	6.7	6.5	5.9	5.6	5.1	4.8	4.6	4.6	4.5	4.5	4.5	4.5	4.5	4.4	4.6	4.8	4.6	syst %	.2	
1.53E-03	7.42E-03	2.39E-02	8.28E-02	2.54E-01	5.08E-01	7.96E-01	1.39E+00	2.00E+00	2.75E+00	3.72E+00	5.20E+00	6.70E+00	7.99E+00	9.75E+00	1.17E+01	1.43E+01	1.76E+01	2.18E+01	2.74E+01	3.53E+01	4.58E+01	[pb/GeV]	¢	
17	$T_{1}T_{2}$	4.4	2.7	1.9	2.1	1.7	1.3	1.5	1.3	1.1	1.0	1.2	1.1	1.0	0.9	0.9	0.8	0.7	0.7	0.6	0.7	stat %	< 1.2	
7.9	7.9	6.3	7.3	7.2	6.3	6.2	5.8	5.5	5.0	4.7	4.6	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.6	4.8	4.6	syst %		

Table 1: Double-differential cross section times the dimuon branching fraction of the J/ ψ meson for different ranges of p_T , in bins of |v| and for the full |v| range, for the unpolarized decay hypothesis, with their statistical and systematic uncertainties in percent. The average p_T value in each bin is also given. The global uncertainty in the integrated luminosity of 2.3% is not included in the systematic uncertainties.

Table 2: Double-differential cross section times the dimuon branching fraction of the $\psi(2S)$ meson for different ranges of p_T , in bins of |y| and for the full |y| range, for the unpolarized decay hypothesis, with their statistical and systematic uncertainties in percent. The average p_T value in each bin is also given. The global uncertainty in the integrated luminosity of 2.3% is not included in the systematic uncertainties.

		yst %	5.8	5.4	6.8	6.8	11	12	12	16	20	20
	< 1.2	stat % s	1.6	2.1	2.8	3.3	3.3	4.7	4.8	11	6.6	24
	y	[pb/GeV]	1.63E+00	9.19E-01	5.10E-01	3.45E-01	1.80E-01	8.46E-02	2.81E-02	4.97E-03	1.08E-03	2.85E-04
	5	syst %	5.8	5.3	6.7	6.7	11	12	12	17	20	
	y < 1.	stat %	3.6	4.8	6.1	6.8	8.2	11	11	18	23	
	> 6.0	[pb/GeV]	1.58E+00	8.30E-01	4.89E-01	3.55E-01	1.46E-01	7.22E-02	2.63E-02	6.59E-03	8.81E-04	
2	6	syst %	5.0	4.6	4.4	5.0	6.2	9.0	9.1	15	18	
$^{2}/dp_{T}dy$	y < 0.5	stat %	3.2	3.9	5.3	7.3	6.6	9.2	9.6	10	23	
${\mathcal B} \operatorname{dc}$	0.6 <	[pb/GeV]	1.67E+00	1.03E+00	5.23E-01	3.08E-01	1.82E-01	8.42E-02	2.90E-02	4.82E-03	1.24E-03	
	ý	syst %	5.5	5.0	5.2	5.6	7.0	8.1	8.2	15	17	
	y < 0.0	stat %	3.3	4.4	5.7	6.3	6.2	9.1	9.4	21	17	
	0.3 <	[pb/GeV]	1.65E+00	8.90E-01	5.12E-01	3.77E-01	2.04E-01	8.87E-02	2.87E-02	5.07E-03	1.20E-03	
		syst %	5.4	5.0	5.0	5.4	6.1	7.3	7.5	12	18	
	< 0.3	stat %	3.3	4.2	5.6	6.9	6.4	9.2	9.3	99	48	
	<u>[v]</u>	[pb/GeV]	1.62E+00	9.46E-01	5.23E-01	3.45E-01	1.94E-01	9.68E-02	2.93E-02	4.75E-03	1.01E-03	
	$\langle p_{\mathrm{T}} \rangle$	[GeV]	21.1	23.7	26.2	28.7	32.2	37.2	45.7	62.5	84.2	111.0
	p_{T}	[GeV]	20-22	22–25	25–28	28 - 30	30–35	35-40	40–55	55-75	75 - 100	100 - 130

100-130	70–100	60–70	55-60	50-55	46–50	43–46	40-43	38-40	36-38	34–36	32 - 34	30-32	28 - 30	26-28	24-26	22-24	20-22	[GeV]	p_{T}	
111.5	80.5	64.3	57.3	52.3	47.9	44.4	41.4	39.0	37.0	35.0	33.0	31.0	29.0	26.9	25.0	22.9	20.9	[GeV]	$\langle p_{\rm T} \rangle$	
	3.83E-03	1.51E-02	3.72E-02	5.36E-02	7.87E-02	1.39E-01	2.17E-01	2.37E-01	3.52E-01	4.88E-01	6.43E-01	8.50E-01	1.19E+00	1.72E+00	2.50E+00	3.60E+00	5.76E+00	[pb/GeV]	لا ا	
	12	10	8.8	7.4	7.0	6.0	5.4	6.1	5.2	4.2	4.0	3.5	2.6	2.2	1.9	1.6	1.7	stat %	< 0.6	
	5.4	5.2	5.4	5.0	5.2	5.5	5.4	5.0	4.8	4.7	4.9	4.9	4.9	4.8	5.3	6.0	7.1	syst %		
	4.85E-03	1.72E-02	2.96E-02	4.96E-02	8.25E-02	1.17E-01	1.91E-01	2.65E-01	3.12E-01	4.55E-01	6.26E-01	8.62E-01	1.21E+00	1.75E+00	2.44E+00	3.77E+00	5.46E+00	[pb/GeV]	0.6 <	B dc
	12	11	11	8.2	7.0	7.3	5.7	6.5	6.0	5.1	4.1	3.5	3.1	2.5	2.1	2.1	1.7	stat %	y < 1	$r^2/dp_T d$
	5.6	5.6	5.6	5.2	5.1	5.0	5.1	6.2	6.1	5.4	5.0	5.3	5.2	5.3	6.1	6.7	7.8	syst %	.2	Y
6.48E-04	4.32E-03	1.62E-02	3.33E-02	5.16E-02	8.07E-02	1.28E-01	2.04E-01	2.51E-01	3.32E-01	4.72E-01	6.36E-01	8.55E-01	1.20E+00	1.73E+00	2.47E+00	3.68E+00	5.62E+00	[pb/GeV]	ly	
20	7.7	6.8	6.5	5.2	4.6	4.3	3.5	3.9	3.4	2.8	2.4	2.1	1.8	1.5	1.3	1.1	0.9	stat %	< 1.2	
4.7	4.7	5.1	4.8	4.7	4.6	4.9	4.8	6.0	5.8	5.3	4.8	5.1	4.9	4.9	5.6	6.3	7.3	syst %		

Table 3: Double-differential cross section times the dimuon branching fraction of the $\Upsilon(1S)$ meson for different ranges of p_{T} , in bins of |y| and for the full |y| range, for the unpolarized decay hypothesis, with their statistical and systematic uncertainties in percent. The average p_{T} value in each bin is also given. The global uncertainty in the integrated luminosity of 2.3% is not included in the systematic uncertainties.

Table 4: Double-differential cross section times the dimuon branching fraction of the $\Upsilon(2S)$ meson for different ranges of p_T , in bins of |y| and for the full |y| range, for the unpolarized decay hypothesis, with their statistical and systematic uncertainties in percent. The average p_T value in each bin is also given. The global uncertainty in the integrated luminosity of 2.3% is not included in the systematic uncertainties.

		syst %	6.4	6.8	5.8	5.6	5.5	6.3	5.5	6.0	5.6	5.6	5.1	4.7	5.0	4.9	5.1	5.5	5.9	6.0
	< 1.2	stat %	1.4	1.7	1.9	2.3	2.7	3.1	3.6	4.1	5.0	5.7	5.0	6.4	6.9	7.3	8.6	8.8	12	35
	$ \mathbf{v} $	[pb/GeV]	2.38E+00	1.57E+00	1.16E+00	7.89E-01	5.45E-01	4.14E-01	3.18E-01	2.41E-01	1.57E-01	1.26E-01	9.89E-02	6.19E-02	3.93E-02	2.68E-02	1.88E-02	9.96E-03	2.08E-03	5.79E-04
v	2	syst %	6.9	7.1	6.1	5.9	5.8	6.5	5.7	6.2	6.0	5.8	5.4	5.0	5.4	5.4	5.8	6.3	7.1	
$^{-2}/dp_{T}d$	y < 1.	stat %	2.7	3.3	3.1	3.7	4.6	5.2	5.8	7.6	8.3	9.4	8.0	11	12	12	14	13	17	
${\cal B}{ m d} o$	0.6 <	[pb/GeV]	2.30E+00	1.60E+00	1.16E+00	8.27E-01	5.39E-01	4.28E-01	3.31E-01	2.47E-01	1.61E-01	1.23E-01	1.03E-01	5.68E-02	3.32E-02	2.57E-02	1.77E-02	1.10E-02	2.24E-03	
		syst %	6.1	5.7	5.2	4.9	5.0	5.4	6.0	4.8	4.7	4.9	5.2	4.9	4.8	5.1	5.5	5.5	6.3	
	< 0.6	stat %	2.6	2.3	2.7	3.3	3.7	4.8	5.8	5.9	7.2	7.8	7.6	8.3	9.1	9.9	11	13	19	
	[y]	[pb/GeV]	2.45E+00	1.55E+00	1.15E+00	7.54E-01	5.51E-01	4.02E-01	3.04E-01	2.36E-01	1.54E-01	1.28E-01	9.52E-02	6.83E-02	4.53E-02	2.81E-02	2.00E-02	8.99E-03	1.91E-03	
	$\langle p_{\mathrm{T}} \rangle$	[GeV]	20.9	22.9	25.0	26.9	29.0	31.0	33.0	35.0	37.0	39.0	41.4	44.4	47.9	52.3	57.3	64.3	80.5	111.5
	p_{T}	[GeV]	20-22	22–24	24–26	26–28	28 - 30	30–32	32–34	34–36	36–38	38-40	40-43	43-46	46-50	50-55	55-60	60-70	70–100	100-130

100-130	70–100	60–70	55-60	50-55	46–50	43–46	40-43	38-40	36-38	34–36	32 - 34	30 - 32	28 - 30	26-28	24-26	22-24	20-22	[GeV]	p_{T}	
111.5	80.5	64.3	57.3	52.3	47.9	44.4	41.4	39.0	37.0	35.0	33.0	31.0	29.0	26.9	25.0	22.9	20.9	[GeV]	$\langle p_{\rm T} \rangle$	
	1.88E-03	6.34E-03	1.48E-02	2.22E-02	3.64E-02	4.46E-02	7.36E-02	1.16E-01	1.41E-01	1.82E-01	2.54E-01	2.93E-01	4.11E-01	5.72E-01	7.94E-01	1.08E+00	1.64E+00	[pb/GeV]	لا ا	
	17	16	14	12	11	11	9.4	8.7	7.9	7.0	6.9	6.0	4.5	3.9	3.4	2.9	3.3	stat %	< 0.6	
	13	10	8.1	6.9	6.8	6.3	6.4	6.0	5.8	5.9	6.1	6.4	5.8	6.2	6.2	6.0	7.3	syst %		
	2.10E-03	8.50E-03	1.35E-02	2.28E-02	2.84E-02	4.81E-02	7.23E-02	1.23E-01	1.27E-01	1.84E-01	2.13E-01	3.10E-01	3.79E-01	5.84E-01	7.81E-01	1.21E+00	1.55E+00	[pb/GeV]	0.6 <	B dc
	19	17	18	13	13	13	10	11	10	9.7	7.9	6.6	6.0	4.8	4.1	4.0	3.5	stat %	y < 1.	$r^2/dp_T d$
	13	11	8.8	7.2	6.4	6.0	6.5	8.0	8.2	8.1	6.9	7.3	7.0	6.6	6.4	6.5	7.1	syst %	.2	Y
2.30E-04	1.98E-03	7.36E-03	1.43E-02	2.24E-02	3.24E-02	4.59E-02	7.33E-02	1.19E-01	1.34E-01	1.82E-01	2.34E-01	3.01E-01	3.96E-01	5.79E-01	7.88E-01	1.13E+00	1.60E+00	[pb/GeV]	ly	
48	12	10	11	8.4	7.7	7.7	6.1	5.7	5.4	4.7	4.3	3.8	3.3	2.8	2.4	2.0	1.8	stat %	< 1.2	
13	13	10	8.3	6.9	6.0	5.8	6.1	7.9	8.0	7.9	6.8	7.0	6.8	6.3	6.1	6.2	6.7	syst %		

Table 5: Double-differential cross section times the dimuon branching fraction of the $\Upsilon(3S)$ meson for different ranges of p_{T} , in bins of |y| and for the full |y| range, for the unpolarized decay hypothesis, with their statistical and systematic uncertainties in percent. The average p_{T} value in each bin is also given. The global uncertainty in the integrated luminosity of 2.3% is not included in the systematic uncertainties.

= +1, k, -1) from the unpolarized cross section measurements given in	
ble 6: Multiplicative scaling factors to obtain the J/ ψ differential cross sections for different polarization scenarios $(\lambda_{\eta}^{\rm H})$	ble 1. The value of k is taken equal to $+0.10$, and corresponds to an average over p_T of the CMS measurement [1].
Tab	Tat

	$\lambda_{\theta} = -1$	0.76	0.76	0.77	0.78	0.78	0.79	0.79	0.80	0.80	0.81	0.81	0.82	0.83	0.84	0.84	0.85	0.86	0.88	0.90	0.92	0.93	0.93
y < 1.2	$\lambda_{\theta} = k$	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.00	1.00
	λ_{θ} =+1	1.19	1.18	1.17	1.16	1.16	1.15	1.15	1.14	1.14	1.13	1.13	1.12	1.12	1.11	1.10	1.09	1.09	1.07	1.06	1.04	1.03	1.03
1.2	$\lambda_{\theta} = -1$	0.76	0.77	0.78	0.78	0.79	0.79	0.80	0.81	0.81	0.81	0.82	0.82	0.83	0.85	0.85	0.85	0.86	0.88	0.90	0.91	0.92	
< y <	$\lambda_{\theta} = k$	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	
0.9	$\lambda_{\theta} = +1$	1.18	1.17	1.17	1.16	1.15	1.15	1.14	1.14	1.14	1.13	1.13	1.12	1.11	1.10	1.10	1.09	1.09	1.08	1.06	1.05	1.04	t · XHey
0.9	$\lambda_{\theta} = -1$	0.76	0.77	0.78	0.78	0.79	0.79	0.79	0.80	0.81	0.81	0.82	0.82	0.83	0.84	0.85	0.86	0.87	0.88	0.00	0.92	0.94	-
y < y	$\lambda_{\theta} = k$	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.00	
0.6	λ_{θ} =+1	1.18	1.18	1.17	1.16	1.16	1.15	1.15	1.14	1.13	1.13	1.12	1.12	1.11	1.11	1.10	1.09	1.08	1.07	1.06	1.04	1.03	5
0.6	$\lambda_{\theta} = -1$	0.75	0.76	0.77	0.77	0.78	0.78	0.79	0.79	0.80	0.80	0.81	0.82	0.82	0.83	0.84	0.85	0.86	0.89	0.90	0.93	0.94	
y < y < y	$\lambda_{\theta} = k$	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.00	1.00	1.00	
0.3	$\lambda_{\theta} = +1$	1.17	1.17	1.16	1.16	1.15	1.15	1.14	1.14	1.13	1.13	1.12	1.11	1.11	1.11	1.10	1.09	1.08	1.06	1.05	1.04	1.02	
	$\lambda_{\theta} = -1$	0.75	0.76	0.76	0.77	0.77	0.78	0.78	0.79	0.79	0.80	0.81	0.82	0.82	0.83	0.84	0.85	0.86	0.88	0.89	0.91	0.93	
v < 0.3	$\lambda_{\theta} = k$	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.02	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01	-
	$\lambda_{\theta} = +1$	1.20	1.19	1.19	1.18	1.17	1.17	1.16	1.16	1.15	1.14	1.14	1.13	1.13	1.11	1.11	1.10	1.09	1.08	1.06	1.05	1.03	
p_{T}	[GeV]	20–21	21–22	22–23	23–24	24–25	25–26	26–27	27–28	28–29	29–30	30–32	32–34	34–36	36–38	38-42	42-46	46–50	50-60	60–75	75–95	95-120	120–150

Table 7: Multiplicative scaling factors to obtain the $\psi(2S)$ differential cross sections for different polarization scenarios ($\lambda_{\theta}^{HX} = +1, k, -1$) from the unpolarized cross section measurements given in Table 1. The value of k is taken equal to +0.03, and corresponds to an average over p_T of the CMS measurement [1].

p_{T}	_	y < 0.3		0.3	$\frac{\langle v \rangle}{\langle v \rangle}$	0.6	0.6	$\frac{\langle y \rangle}{\langle x \rangle}$	0.9	0.9	$\frac{ x }{ x }$	1.2		y < 1.2	
[GeV]	λ_{θ} =+1	$\lambda_{\theta} = k$	$\lambda_{\theta} = -1$	$\lambda_{\theta} = +1$	$\lambda_{\theta} = k$	$\lambda_{\theta} = -1$	$\lambda_{\theta} = +1$	$\lambda_{\theta} = k$	$\lambda_{\theta} = -1$	$\lambda_{\theta} = +1$	$\lambda_{\theta} = k$	$\lambda_{\theta} = -1$	$\lambda_{\theta} = +1$	$\lambda_{\theta} = k$	$\lambda_{\theta} = -1$
20-22	1.19	1.01	0.76	1.17	0.99	0.75	1.18	1.01	0.77	1.17	1.01	0.77	1.18	1.00	0.76
22-25	1.18	1.01	0.77	1.15	1.00	0.77	1.16	1.01	0.78	1.16	1.01	0.78	1.16	1.00	0.78
25-28	1.16	1.01	0.79	1.14	1.00	0.79	1.14	1.00	0.80	1.15	1.01	0.79	1.15	1.00	0.79
28 - 30	1.15	1.01	0.80	1.12	1.00	0.80	1.13	1.00	0.81	1.13	1.00	0.81	1.13	1.00	0.81
30 - 35	1.14	1.01	0.81	1.12	1.00	0.81	1.12	1.00	0.82	1.12	1.00	0.82	1.12	1.00	0.82
35-40	1.12	1.01	0.83	1.10	1.00	0.83	1.11	1.00	0.84	1.11	1.00	0.84	1.11	1.00	0.83
40-55	1.10	1.00	0.85	1.08	1.00	0.86	1.08	1.00	0.86	1.08	1.00	0.87	1.09	1.00	0.86
55-75	1.07	1.00	0.88	1.07	1.00	0.88	1.06	1.00	0.89	1.06	1.00	0.89	1.07	1.00	0.88
75–100	1.04	1.00	0.92	1.03	1.00	0.93	1.03	1.00	0.94	1.04	1.00	0.92	1.03	1.00	0.93
100-130													1.03	1.00	0.93

Table 8: Multiplicative scaling factors to obtain the $\Upsilon(1S)$ differential cross sections for different polarization scenarios ($\lambda_{\theta}^{HX} = +1, k, -1$) from the unpolarized cross section measurements given in Table 3. The parameter *k* corresponds to a linear interpolation of the CMS measured value of λ_{θ}^{HX} [2] as a function of p_T for $p_T < 50$ GeV. For $p_T > 50$ GeV, where no measurements of λ_{θ}^{HX} exist, *k* is taken as the average of all the measured values of λ_{θ}^{HX} for $p_T < 50$ GeV.

p_{T}		y < 0.6		0.6	5 < y < 1	1.2		y < 1.2	
[GeV]	$\lambda_{\theta} = +1$	$\lambda_{\theta} = k$	$\lambda_{\theta} = -1$	$\lambda_{\theta} = +1$	$\lambda_{\theta} = k$	$\lambda_{\theta} = -1$	$\lambda_{\theta} = +1$	$\lambda_{\theta} = k$	$\lambda_{\theta} = -1$
20-22	1.14	0.98	0.78	1.14	0.98	0.78	1.14	0.98	0.78
22-24	1.13	0.99	0.78	1.13	0.99	0.78	1.13	0.99	0.78
24-26	1.12	0.99	0.79	1.12	0.99	0.79	1.12	0.99	0.79
26-28	1.11	0.99	0.80	1.11	0.99	0.80	1.11	0.99	0.80
28-30	1.11	0.99	0.81	1.11	0.99	0.81	1.11	0.99	0.81
30-32	1.10	1.01	0.81	1.10	1.01	0.81	1.10	1.01	0.81
32–34	1.10	1.01	0.82	1.10	1.01	0.82	1.10	1.01	0.82
34–36	1.09	1.01	0.82	1.09	1.01	0.82	1.09	1.01	0.82
36–38	1.09	1.01	0.83	1.09	1.01	0.83	1.09	1.01	0.83
38-40	1.10	1.01	0.83	1.10	1.01	0.83	1.10	1.01	0.83
40-43	1.08	1.01	0.84	1.08	1.01	0.84	1.08	1.01	0.84
43-46	1.07	1.01	0.85	1.07	1.01	0.85	1.07	1.01	0.85
46-50	1.07	1.01	0.85	1.07	1.01	0.85	1.07	1.01	0.85
50-55	1.06	0.99	0.86	1.06	0.99	0.86	1.06	0.99	0.86
55-60	1.05	0.99	0.88	1.05	0.99	0.88	1.05	0.99	0.88
60-70	1.05	0.99	0.88	1.05	0.99	0.88	1.05	0.99	0.88
70-100	1.03	1.00	0.92	1.03	1.00	0.92	1.03	1.00	0.92
100-130							1.03	1.00	0.92

Table 9: Multiplicative scaling factors to obtain the $\Upsilon(2S)$ differential cross sections for different polarization scenarios ($\lambda_{\theta}^{HX} = +1, k, -1$) from the unpolarized cross section measurements given in Table 4. The parameter *k* corresponds to a linear interpolation of the CMS measured value of λ_{θ}^{HX} [2] as a function of p_T for $p_T < 50$ GeV. For $p_T > 50$ GeV, where no measurements of λ_{θ}^{HX} exist, *k* is taken as the average of all the measured values of λ_{θ}^{HX} for $p_T < 50$ GeV.

p_{T}		y < 0.6		0.6	$\overline{b} < y < y $	1.2		y < 1.2	
[GeV]	$\lambda_{\theta} = +1$	$\lambda_{\theta} = k$	$\lambda_{\theta} = -1$	$\lambda_{\theta} = +1$	$\lambda_{\theta} = k$	$\lambda_{\theta} = -1$	$\lambda_{\theta} = +1$	$\lambda_{\theta} = k$	$\lambda_{\theta} = -1$
20-22	1.14	1.03	0.78	1.14	1.03	0.78	1.14	1.03	0.78
22-24	1.13	1.03	0.79	1.13	1.03	0.79	1.13	1.03	0.79
24-26	1.12	1.03	0.79	1.12	1.03	0.79	1.12	1.03	0.79
26-28	1.11	1.03	0.80	1.11	1.03	0.80	1.11	1.03	0.80
28-30	1.11	1.03	0.81	1.11	1.03	0.81	1.11	1.03	0.81
30-32	1.10	1.03	0.82	1.10	1.03	0.82	1.10	1.03	0.82
32-34	1.10	1.03	0.82	1.10	1.03	0.82	1.10	1.03	0.82
34–36	1.09	1.03	0.82	1.09	1.03	0.82	1.09	1.03	0.82
36–38	1.09	1.03	0.83	1.09	1.03	0.83	1.09	1.03	0.83
38–40	1.09	1.03	0.83	1.09	1.03	0.83	1.09	1.03	0.83
40-43	1.08	1.03	0.84	1.08	1.03	0.84	1.08	1.03	0.84
43-46	1.07	1.02	0.85	1.07	1.02	0.85	1.07	1.02	0.85
46-50	1.07	1.02	0.86	1.07	1.02	0.86	1.07	1.02	0.86
50-55	1.06	0.99	0.87	1.06	0.99	0.87	1.06	0.99	0.87
55-60	1.06	0.99	0.86	1.06	0.99	0.86	1.06	0.99	0.86
60-70	1.05	0.99	0.90	1.05	0.99	0.90	1.05	0.99	0.90
70-100	1.03	0.99	0.92	1.03	0.99	0.92	1.03	0.99	0.92
100-130							1.03	0.99	0.92

Table 10: Multiplicative scaling factors to obtain the $\Upsilon(3S)$ differential cross sections for different polarization scenarios ($\lambda_{\theta}^{HX} = +1, k, -1$) from the unpolarized cross section measurements given in Table 5. The parameter *k* corresponds to a linear interpolation of the CMS measured value of λ_{θ}^{HX} [2] as a function of p_{T} for $p_{T} < 50$ GeV. For $p_{T} > 50$ GeV, where no measurements of λ_{θ}^{HX} exist, *k* is taken as the average of all the measured values of λ_{θ}^{HX} for $p_{T} < 50$ GeV, which are all consistent with a single value.

p_{T}		y < 0.6		0.6	$5 < y < 10^{-1}$	1.2		y < 1.2	
[GeV]	$\lambda_{\theta} = +1$	$\lambda_{\theta} = k$	$\lambda_{\theta} = -1$	$\lambda_{\theta} = +1$	$\lambda_{\theta} = k$	$\lambda_{\theta} = -1$	$\lambda_{\theta} = +1$	$\lambda_{\theta} = k$	$\lambda_{\theta} = -1$
20-22	1.13	1.03	0.78	1.13	1.03	0.78	1.13	1.03	0.78
22-24	1.13	1.02	0.79	1.13	1.02	0.79	1.13	1.02	0.79
24-26	1.12	1.02	0.79	1.12	1.02	0.79	1.12	1.02	0.79
26-28	1.11	1.02	0.80	1.11	1.02	0.80	1.11	1.02	0.80
28-30	1.11	1.02	0.81	1.11	1.02	0.81	1.11	1.02	0.81
30-32	1.10	1.03	0.82	1.10	1.03	0.82	1.10	1.03	0.82
32-34	1.10	1.03	0.82	1.10	1.03	0.82	1.10	1.03	0.82
34–36	1.09	1.03	0.83	1.09	1.03	0.83	1.09	1.03	0.83
36–38	1.09	1.03	0.83	1.09	1.03	0.83	1.09	1.03	0.83
38-40	1.09	1.03	0.84	1.09	1.03	0.84	1.09	1.03	0.84
40-43	1.08	1.03	0.84	1.08	1.03	0.84	1.08	1.03	0.84
43-46	1.07	1.02	0.85	1.07	1.02	0.85	1.07	1.02	0.85
46-50	1.06	1.02	0.86	1.06	1.02	0.86	1.06	1.02	0.86
50-55	1.06	0.99	0.87	1.06	0.99	0.87	1.06	0.99	0.87
55-60	1.06	0.99	0.87	1.06	0.99	0.87	1.06	0.99	0.87
60–70	1.05	0.99	0.89	1.05	0.99	0.89	1.05	0.99	0.89
70-100	1.03	0.99	0.92	1.03	0.99	0.92	1.03	0.99	0.92
100–130							1.03	0.99	0.92

60–75 75–95 95–120 120–150	50-60	46-50	42–46	38-42	36–38	34–36	32 - 34	30 - 32	29-30	28 - 29	27-28	26-27	25 - 26	24-25	23 - 24	22 - 23	21-22	20 - 21	[GeV]	p_{T}
0.04 0.05 0.06 0.07	0.05	0.05	0.04	0.05	0.04	0.04	0.04	0.04	0.05	0.05	0.04	0.04	0.04	0.04	0.05	0.04	0.04	0.04		~~
42 10 71	10	10	9	6	7	6	6	S	6	S	S	S	4	4	ω	ω	ω	ω	stat %	μ(2S) /
20 29 38	25	25	22	21	20	20	18	18	17	17	16	15	14	13	11	11	11	11	syst %	J/₩
	100-130	70-100	60-70	55-60	50-55	46-50	43-46	40-43	38-40	36-38	34-36	32-34	30-32	28-30	26-28	24-26	22-24	20 - 22	[GeV]	p_{T}
	0.89	0.48	0.62	0.56	0.52	0.49	0.48	0.48	0.50	0.47	0.51	0.50	0.48	0.45	0.46	0.47	0.43	0.42		r
	40	14	11	11	8.9	8.3	7.7	6.1	6.8	6.1	5.0	4.3	3.8	3.2	2.8	2.3	2.0	1.7	stat $\%$	(2S)/ Y
	6.6	6.6	6.6	6.2	5.4	5.3	5.4	5.7	8.3	8.3	7.9	6.3	7.8	6.4	6.2	6.9	8.4	8.5	syst %	(1S)
	0.35	0.46	0.46	0.43	0.43	0.40	0.36	0.36	0.47	0.40	0.38	0.37	0.35	0.33	0.33	0.32	0.31	0.28		Y
	52	14	12	12	9.8	9.0	8.8	7.0	6.9	6.4	5.5	4.9	4.3	3.8	3.1	2.7	2.3	2.0	stat %	(3S)/ Y
	14	14	11	9.2	7.5	6.6	6.6	7.1	11	11	11	8.3	8.9	8.1	6.8	7.1	7.5	9.1	syst %	(1S)

Table 11: Ratios of the p_T differential cross sections times dimuon branching fractions of the prompt $\psi(2S)$ to J/ ψ , $\Upsilon(2S)$ to $\Upsilon(1S)$, and $\Upsilon(3S)$ to $\Upsilon(1S)$ mesons for |y| < 1.2, with their statistical and systematic uncertainties in percent.

References

- [1] CMS Collaboration, Measurement of the prompt J/ ψ and ψ (2S) polarizations in pp collisions at $\sqrt{s} = 7$ TeV, Phys. Lett. B 727 (2013) 381. doi:10.1016/j.physletb.2013.10.055. arXiv:1307.6070.
- [2] CMS Collaboration, Measurement of the $\Upsilon(1S)$, $\Upsilon(2S)$, and $\Upsilon(3S)$ polarizations in pp collisions at $\sqrt{s} = 7$ TeV, Phys. Rev. Lett. 110 (2013) 081802. doi:10.1103/PhysRevLett. 110.081802. arXiv:1209.2922.