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Abstract

Human motion models are finding an increasing number of novel applications in many differ-

ent fields, such as building design, computer graphics and robot motion planning. The Social

Force Model is one of the most popular alternatives to describe the motion of pedestrians.

By resorting to a physical analogy, individuals are assimilated to point-wise particles subject

to social forces which drive their dynamics. Such a model implicitly assumes that humans

move isotropically. On the contrary, empirical evidence shows that people do have a pre-

ferred direction of motion, walking forward most of the time. Lateral motions are observed

only in specific circumstances, such as when navigating in overcrowded environments or

avoiding unexpected obstacles. In this paper, the Headed Social Force Model is introduced

in order to improve the realism of the trajectories generated by the classical Social Force

Model. The key feature of the proposed approach is the inclusion of the pedestrians’ head-

ing into the dynamic model used to describe the motion of each individual. The force and tor-

que representing the model inputs are computed as suitable functions of the force terms

resulting from the traditional Social Force Model. Moreover, a new force contribution is intro-

duced in order to model the behavior of people walking together as a single group. The pro-

posed model features high versatility, being able to reproduce both the unicycle-like

trajectories typical of people moving in open spaces and the point-wise motion patterns

occurring in high density scenarios. Extensive numerical simulations show an increased

regularity of the resulting trajectories and confirm a general improvement of the model

realism.

Introduction

There is an indisputable steadily increasing attention on human motion models in different

research areas, ranging from building architectural design to service robotic planning and con-

trol. A taxonomy of the different approaches proposed in the literature can be found in the sur-

vey [1], which describes different models suitable for building evacuation dynamics in both

emergency and normal situations. The models proposed for this kind of problems have been
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historically based on macroscopic quantities, such as densities and fluids [2]. In more standard

circumstances, where the interactions are less frequent than in overcrowded evacuation

dynamics, a microscopic description of pedestrians is preferable. In the latter case, the pro-

posed approaches can be roughly categorized into four main classes: cellular automata [3],

agent-based models [4], graph-based methods [5] and social force models [6]. Cellular autom-

ata are especially suitable for modeling human motion in complex environments. This models

consist of a discrete system evolving on a discrete set of cells, at discrete time intervals. The

value of each cell depends on the modeled behavior of the agent occupying it, on the neighbor-

ing cell values and on a set of local updating rules (e.g., see [7–12]). Agent-based approaches

model the active and reactive behaviors of the pedestrians according to stochastic models. In

this framework, constant velocity models have received large attention since they are easily

tractable and allow the direct use of Kalman filters for predictions and belief computations

(e.g., see [13, 14]). In graph-based approaches, the environment is subdivided into regions

using empirical observations and learning algorithms. The regions are usually mapped as

nodes on the graph, while the paths joining them are the arcs. The nodes are usually consid-

ered as places in the environment of particular interest, where people stop or make decisions

(e.g., see [5, 15]).

The idea of modeling pedestrian motions by using a system of forces describing social inter-

actions dates back to 1979. In [16], magnetic forces acting on a pedestrian and generated by a

magnetic pole have been used for computer simulations, with the purpose of designing build-

ing architectures. The Social Force Model (SFM) [6, 17] is one of the most popular human

motion models based on social forces. In the SFM, each individual is assimilated to a point-

wise particle subject to social forces. Hence, the pedestrians’ dynamics are described by means

of a system of differential equations. The SFM is especially well suited to reproduce individual

motion of pedestrians in high-density scenarios (crowd), as well as the interactions occurring

among pedestrians. The potential of the SFM, and in general of models based on social forces,

in providing realistic representations of crowd behaviors has been widely acknowledged [18–

20]. Due to this, the original formulation of the SFM has been successively refined in the litera-

ture. For example, in [21] the authors propose an alternate version considering both relative

positions and velocities, which works particularly well for low density cases. Relative velocities

between pedestrians are instead considered in [22], while [23] uses pedestrians’ absolute veloc-

ities to govern the user head-on interactions. The relative positions and velocities provide also

a way to account for the stop situation, which cannot be modeled by the original model [24,

25]. For example, [24] proposes three different SFM models for agents that are standing still.

The models describe the possibility of the agent to avoid incoming humans by coding a step

forward/backward behavior, the ability to recover its desired position as well as changing it

according to the environmental situation. The idea of relative velocities is further extended in

[26], where the estimate of the “time to collision” is included in the SFM formulation for repul-

sive forces. Some versions of the SFM take explicitly into account the prediction of possible

collisions, as in [27], where the time to collision is used for lane-like avoidance, or in [28],

where an additional force term is added to the original SFM as a function of the body and face

poses.

To the best of the authors’ knowledge, the different versions of the SFM have not explicitly

modeled the dynamics of the pedestrians’ heading so far. In the literature contributions previ-

ously reviewed, a person is supposed to be able to move freely in any direction at any time. On

the contrary, empirical evidence shows that, most of the time, pedestrians tend to move for-

ward, i.e. their velocity vector is most often aligned with their heading, due to the biomechan-

ics of humans. This phenomenon has been observed by several studies [29–31], which come to

the conclusion that a nonholonomic model may be more appropriate to describe human
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motion in many cases. For instance, unicycle-like models, widely used in the mobile robotics

field, are able to accurately reproduce goal-oriented locomotion of an individual moving in

free space [29]. Moreover, the adoption of such models in [30] allow the authors to give a nice

interpretation of the mechanism underlying the formation of human trajectories (namely, the

minimization of the time derivative of the path curvature).

In this paper, we introduce the Headed Social Force Model (HSFM) in order to enhance

the traditional SFM by explicitly accounting for the pedestrians’ heading. To this end, we

describe the motion of each individual by means of a dynamic model similar to that adopted

in [32] for generating biologically-inspired robot trajectories. The contribution of the paper

is twofold. First, we propose a new method for generating the forces and torques driving the

dynamics of each pedestrian, with the purpose of maximizing the realism of the resulting tra-

jectories. In doing so, several conflicting objectives have to be taken into account. In low

density scenarios, the pedestrians’ motion should be as smooth as possible, consistently with

what is empirically observed [33]. In these circumstances, lateral motions should be avoided

because individuals walk ahead most of the time. On the contrary, in crowded or cluttered

environments, the interaction among pedestrians, as well as between pedestrians and the

environment, is stronger and determines most of the pedestrians’ trajectories. The proposed

solution consists in computing the model inputs as suitable functions of the force terms

adopted in the traditional SFM. The second contribution of the paper is the introduction of

an additional force in order to reproduce the behavior of people intentionally walking

together as a single group (e.g., friends or colleagues). This is achieved by defining a desired

region (depending on both the position and the heading of the pedestrians) within which the

group is expected to lie as a result of the social ties among group members. The new force

term is designed to drive the individuals back into the region whenever they leave it. This

allows the model to rule out trajectories which do not facilitate social interaction, such as

pedestrians arranged in a single line or spread over large areas. It is shown that the introduc-

tion of the preference towards nonholonomic motions in the proposed model does not com-

promise its ability to reproduce individuals moving in groups. Overall, considering the

pedestrians’ heading enhances the fidelity of the model in two ways. Whenever nonholo-

nomic motion patterns naturally arise, the generated trajectories resemble more closely

those empirically observed. Typical examples include people walking in open spaces or

reaching close targets. More generally, accounting explicitly for the pedestrians’ heading

helps to increase the regularity of the trajectories, resulting in fewer abrupt changes of direc-

tion and a reduced number of collisions. The performance of the HSFM is evaluated via

numerical simulation under very different operating conditions, and a sensitivity analysis of

the model behavior with respect to variations in the model parameters is presented. As a

byproduct, guidelines for the selection of the parameter values are obtained.

The paper is structured as follows. The proposed model is presented in the next section.

Then, numerical results illustrating the model behavior in three different scenarios are pre-

sented and discussed. Finally, some conclusions are drawn.

The Headed Social Force Model

Humans walk ahead most of the time, and their motion can be well approximated by nonholo-

nomic models [29]. There are some circumstances, though, in which sideward motions violat-

ing nonholonomic constraints, are commonly observed (e.g., avoiding unexpected obstacles,

negotiating a narrow passage or navigating in highly crowded places). In these cases, a holo-
nomic model is preferable (with a slight abuse of terminology, here we denote by “holonomic

model” any model not subject to nonholonomic constraints, thus including unconstrained
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models). In order to account for such a variability, in the HSFM each individual is modeled by

means of a dynamic system like that presented in [32], which is able to reproduce both holo-

nomic and nonholonomic motion patterns by suitably designing the system inputs (i.e., the

forces and torques driving the dynamics of the pedestrians’ position and heading). In the

HSFM, such inputs are designed as suitable functions of the social forces acting on each indi-

vidual, computed according to the traditional SFM. Let

f i ¼ f0

i þ fei ð1Þ

denote the total force acting on individual i according to the SFM. The term f0

i is the force

attracting the pedestrian towards her target, such as a waypoint, whereas f ei accounts for repul-

sive and interaction forces among individuals, and between individuals and the environment.

In a sense, f0

i models long-term objectives, such as travelling a prescribed path, whereas the

force terms in f ei account for short-term corrective actions, such as maneuvers needed to avoid

nearby obstacles or pedestrians. Then, in the HSFM, the motion of pedestrians is generated as

follows.

• The forces u fi and uoi driving the translational dynamics are computed by projecting fi and fei
along the forward direction of motion (identified by the pedestrian’s heading) and the

orthogonal direction of motion, respectively (see Fig 1).

• The torque driving the rotational dynamics is proportional to the projection of the term f0
i

along the orthogonal direction of motion.

• An additional force term is added in order to ensure group cohesion when simulating people

moving together. This is achieved by: i) defining a rectangular region, centered at the group

centroid, within which the group members are expected to lie, and ii) exerting a force push-

ing the pedestrians back into that region whenever they get out of it.

In both the translational and the rotational dynamics, damping terms are included in

order to weaken oscillations and obtain smoother trajectories. Only the force f ei is assumed

to affect lateral moves, because they are mainly caused by the interactions with other pedes-

trians or the environment. On the other hand, body rotations are generated by the lateral

component of the force f0

i , which is in charge of driving the pedestrian towards the goal. The

rationale behind this choice is that a person will tend to turn faster towards the target, the

more she is attracted by the target itself. The idea of the group cohesion force is inspired by

the approach proposed in [34] for modeling small groups of pedestrians (from two to four

individuals) walking together and subject to social interaction constraints. In this paper,

such an approach is adapted to the proposed dynamic model which accounts for pedestrians’

heading. In particular, the force term is designed in order to reproduce the formation of

larger groups, including many individuals moving together (e.g., like a group of tourists fol-

lowing a guide).

The proposed HSFM enriches the traditional SFM with a more complex human locomotion

model which is well suited to represent human trajectories complying with nonholonomic

constraints, as typically occurs in large spaces occupied by a limited number of pedestrians. At

the same time, the HSFM preserves the power of the SFM in realistically reproducing the flow

of a large number of people moving in densely populated environments. A unique feature of

the proposed model lies in its ability to adapt to the external conditions, by smoothly switching

between holonomic and nonholonomic motion patterns depending on a number of factors,

including the pedestrian density, the pedestrians’ goal and the clutter of the environment.

Walking Ahead: The Headed Social Force Model
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Notably, this behavior is achieved without the need of changing online any of the model

parameters, but as a natural reaction and adaptation to the external conditions. In the next sec-

tion, we will show some examples of trajectories generated according to the HSFM in order to

highlight: i) the different behavior with respect to the SFM in specific circumstances; ii) the

preservation of the nice features possessed by the SFM; iii) the ability of reproducing the

motion of group of people walking together. In the remaining of this section, the details of the

proposed model are presented.

Dynamic Model

Consider a system of n pedestrians moving in a 2D environment. Following the modeling

approach of the Social Force Model [6, 17], the i-th individual, i = 1, . . ., n, is assimilated to a

particle with mass mi, whose position and velocity, expressed in a global reference frame, are

denoted by ri = [xi, yi]> and vi ¼ ½ _xi; _yi�
>

, respectively. The equations of motion are

_r i ¼ vi;

_v i ¼
1

mi
ui;

Fig 1. Force decomposition in the Headed Social Force Model. The force ufi , acting along the forward

direction, is the projection (along the same direction) of the total force fi resulting from the traditional SFM. The

force uoi , acting along the orthogonal direction, is the projection (along the same direction) of the fei force

alone.

doi:10.1371/journal.pone.0169734.g001
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where ui represents the social force driving the i-th particle. In order to include the pedestrians’

heading into the model, it is convenient to attach a body frame to each individual, i.e. a refer-

ence frame centered at the pedestrian’s position and whose x-axis is aligned with the pedestri-

an’s forward direction of motion. Let qi = [θi, ωi]
> be the vector containing the heading θi

(angle between the x-axis of the body frame and that of the global reference frame) and the

angular velocity oi ¼
_y i of the i-th pedestrian. Denote by vB

i ¼ ½v
f
i ; voi �

>
the velocity vector

expressed in the body frame. The components v f
i and voi of vector vB

i correspond to the projec-

tion of the velocity vector vi along the forward direction and the orthogonal direction, respec-

tively. Clearly, vi ¼ RðyiÞv
B
i where the rotation matrix R(θi) is defined as

RðyiÞ ¼
cos ðyiÞ � sin ðyiÞ

sin ðyiÞ cos ðyiÞ

" #

¼
: r f

i roi
� �

:

Then, similarly to [32], the human locomotion model can be written as

_r i ¼ RðyiÞv
B
i ; ð2Þ

_v
B
i ¼

1

mi
uB
i ; ð3Þ

_q i ¼ Aqi þ biu
y

i ; ð4Þ

where

A ¼
0 1

0 0

" #

; bi ¼

0

1

Ii

2

6
4

3

7
5; ð5Þ

and Ii denotes the moment of inertia of pedestrian i. In models (2)–(4), the inputs are

uB
i ¼ ½u

f
i ; uoi �

>
, whose entries are the forces acting along the forward direction and the orthog-

onal direction, respectively, as well as the torque uy
i about the vertical axis. Notice that such a

model is indeed unconstrained. However, if voi ð0Þ ¼ 0 and uoi ðtÞ ¼ 0, for all t, the dynamic

unicycle model is recovered. In general, whenever voi ¼ 0, the model features a nonholonomic

behavior, the velocity vector being aligned with the pedestrian’s heading.

The key idea of the HSFM is to compute the model inputs uf
i , uoi and uy

i on the basis of the

forces resulting from the traditional SFM. To this purpose, the total force fi that acts on the i-
th pedestrian according to [17] is decomposed as in Eq (1). The first term

f0

i ¼ mi
vd
i � vi

ti
ð6Þ

accounts for the pedestrian’s desire to move with a given velocity vector vd
i . In Eq (6), the char-

acteristic time τi> 0 is a parameter determining the rate of change of the velocity vector. The

second force term

f ei ¼ fpi þ fwi ð7Þ

accounts for the pedestrians’ interaction. The terms fpi and fwi represent the repulsive forces

exerted on individual i by the other pedestrians and by possible obstacles present in the envi-

ronment (e.g., walls), respectively. The expressions of fpi and fwi are reported for completeness

at the end of this section. The inputs of the HSFM are computed from f0

i and f ei as follows.

Walking Ahead: The Headed Social Force Model
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Force Input

The input vector uB
i includes the forces acting along the pedestrian’s forward direction and the

orthogonal direction. Given the total social force fi, a natural choice for computing uf
i is to

project fi along the forward direction. In order to avoid sideward motions if not strictly

needed, the component uoi is computed by projecting the interaction force f ei (possibly scaled),

along the orthogonal direction. Finally, in order to drive to zero the sideward velocity voi when

the sideward force is zero, a damping term proportional to voi is added to uoi . Hence, the model

inputs uf
i and uoi are computed as

uf
i ¼ ð f

0

i þ f
e
i Þ
>
r
f
i ; ð8Þ

uoi ¼ koð f ei Þ
>
roi � kdvoi ; ð9Þ

where ko> 0 and kd> 0.

Torque Input

The input uy
i represents the torque about the vertical axis which drives the dynamics of the

pedestrian’s heading. This term is designed on the basis of the force f0

i defined in Eq (6).

Denote by f 0

i and y
0

i the magnitude and the phase in the global reference frame of f0

i . Notice

that both quantities are in general time-varying. The input uy
i is computed as

uy
i ¼ � k

yðyi � y
0

i Þ � kooi: ð10Þ

The parameters kθ and kω are designed in order to achieve suitable dynamics of the heading.

It can be easily verified that, with uy
i defined as in Eq (10), the orientation error ~y i¼

:
yi � y

0

i

evolves according to the dynamic model

€~y i þ
ko

Ii
_~y i þ

ky

Ii
~y i ¼ �

ko

Ii
_y0

i �
€y0

i : ð11Þ

A possible design procedure is to select the values of kθ and kω on the basis of the desired

poles λ1 and λ2 of the dynamic system Eq (11). In this work, real poles are considered, so that

λ2 = αλ1 < 0, for some α> 1. In turn, the dominant pole λ1 is selected as a function of f 0

i

l1 ¼ �

ffiffiffiffiffiffiffiffiffi
kl f 0

i

a

r

;

where kλ> 0 is used to tune the dominant time constant of system Eq (11). The corresponding

expressions of kθ and kω are then

ky ¼ Iikl f 0

i ; ko ¼ Iið1þ aÞ

ffiffiffiffiffiffiffiffiffi
kl f 0

i

a

r

: ð12Þ

Choosing the poles λ1 and λ2 as functions of f 0

i allows one to modulate the responsiveness

of the system with the intensity of the driving force. The underlying idea is that the more

authoritative the f0

i , the faster the change in the pedestrian’s heading. In this way, the heading

convergence rate is proportional to f 0

i .

Walking Ahead: The Headed Social Force Model
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Group Cohesion

In order to model a group of people moving together, the force input Eqs (8) and (9) can be

modified by adding an additional term, which forces the pedestrians to lie within a given box.

Let c ¼ 1

n

Pn
j¼1

ri be the centroid of the group, and define pi = c − ri. The model inputs uf
i and

uoi are computed as

uf
i ¼ ð f

0

i þ f
e
i Þ
>
r
f
i þ kg1hðpi; r

f
i ; d f Þ; ð13Þ

uoi ¼ koð f ei Þ
>
roi � kdvoi þ kg2hðpi; r

o
i ; d

oÞ; ð14Þ

where kg1 > 0, kg2 > 0 and

hðx; y; zÞ ¼
1 if jx>yj > z

0 otherwise:

(

ð15Þ

The parameters df> 0 and do> 0 denote the semilength of the box sides.

SFM Force expressions

The expressions of fpi and fwi in Eq (7) are taken from [17]. Let the radius of the i-th pedestrian

be denoted by ri. Moreover, let us define

rij ¼ ri þ rj;

dij ¼k ri � rj k;
ð16Þ

nij ¼
ri � rj

k ri � rj k
¼
:
½nijð1Þ;nijð2Þ�

0
; ð17Þ

tij ¼ ½� nijð2Þ;nijð1Þ�
0
; ð18Þ

DvðtÞij ¼ ðvj � viÞ
0
tij: ð19Þ

• The term fpi , modeling the repulsive effects of other pedestrians on individual i, is given by

fpi ¼
P

j; j6¼if
p
ij. The force exerted by pedestrian j on pedestrian i is

f
p
ij ¼ Aieðrij � dijÞ=Bi þ k1gðrij � dijÞ

h i
nij

þk2gðrij � dijÞDv
ðtÞ
ij tij;

ð20Þ

where g(x) = max{0, x} and Ai, Bi, k1 and k2 are constant parameters. Notice that fij is com-

posed by three terms. The first one, Aie
ðrij� dijÞ=Binij, represents the repulsive term, while k1

g(rij − dij)nij and k2gðrij � dijÞDv
ðtÞ
ij tij represent the compression and friction forces,

respectively, and come into play only if dij< rij.

Walking Ahead: The Headed Social Force Model
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• The term fwi , modeling the repulsive effects of obstacles or boundaries such as walls on indi-

vidual i, is given by fwi ¼
P

wfwiw. The force exerted by wall w on pedestrian i is

f
w
iw ¼ Awe

ðri � diwÞ=Bw þ k1gðri � diwÞ
� �

niw

� k2gðri � diwÞDv
ðtÞ
iw tiw:

ð21Þ

The expression of fwiw is is pretty similar to that of the repulsive force between pedestrians

fpij. Quantities diw, niw, tiw and DvðtÞiw are defined according to Eqs (16)–(19), by replacing rj

with the coordinates of the closest point of wall w to pedestrian i and setting vj = 0.

Results and Discussion

In this section, the results of a number of numerical simulations are reported, in order to high-

light the characteristic features of the proposed model. Three different scenarios are consid-

ered. In Scenario I, we simulate two simple case studies, involving a single pedestrian, aimed at

showing the high fidelity of the HSFM in reproducing the trajectories of pedestrians moving

in free space according to a nonholonomic behavior. In Scenario II, we consider three different

experiments, involving a number of pedestrians ranging from 20 to 200. The purpose is to

illustrate the ability of the HSFM to automatically adapt the generated trajectories to the exter-

nal context, smoothly relaxing the nonholonomic constraints as the pedestrian density

increases or unexpected obstacles come into play. In Scenario III, we consider a more articu-

lated case study, by simulating a group of 10 people visiting a museum together. The focus of

this study is to show how the group force introduced in the HSFM originates trajectories pre-

serving the cohesion of the group. The section ends with a discussion on the role played by the

parameters of the HSFM. An extensive simulation campaign is performed in order to analyze

the effect of parameter variations on the generated trajectories, thus providing useful guide-

lines for the tuning of the model.

In all the simulations presented hereafter, the reference velocity vector vd
i , which is used by

the SFM to compute the force f0

i (see Eq (6)), is generated as vd
i ¼ vdedi . The desired speed vd is

assumed constant over each simulation run. The unit vector edi , which identifies the desired

direction of motion, is computed from a sequence of way-points encoding the desired pedes-

trian path, similarly to [6]. The following values of the HSFM parameters have been used. The

radius ri and the mass mi of each pedestrian have been randomly generated in the intervals

[0.25 m, 0.35 m] and [60 kg, 90 kg], respectively, assuming uniform distributions. The inertia

moment Ii in Eq (5) is computed as Ii ¼ 1

2
mir2

i , i.e., the pedestrian is assimilated to a cylinder

rotating about its main axis. The following parameters entering in the computation of the

model inputs Eqs (8)–(12) and (13)–(15) have been used in all the simulations (unless differ-

ently stated): ko = 1, kd = 500 kg � s−1, α = 3, kλ = 0.3 N−1s−2, df = 2 m, do = 1 m and kg1 ¼ kg2 ¼
200 N. The values of the parameters used in the SFM, taken from [17], are: τi = 0.5s, Ai = Aw =

2 � 103N, Bi = Bw = 0.08m, k1 ¼ 1:2 � 105 kg s� 2, k2 ¼ 2:4 � 105 kg m� 1s� 1. Videos of the simula-

tions are available at http://control.dii.unisi.it/MobileRoboticsPage.

Scenario I: The Nonholonomic Behavior

Empirical evidence shows that when a single pedestrian is moving in an open space, she tends

to move as a unicycle [29]. To evaluate how well the HSFM can reproduce such a nonholo-

nomic behavior, we consider two use cases.

Walking Ahead: The Headed Social Force Model
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In the first example, a single pedestrian walks between two points A and B, alternately. In

this case, the trajectory resulting from the SFM is quite unnatural, as the path boils down to a

segment (red line in Fig 2). This phenomenon is due to the SFM neglecting the information

about the pedestrian’s heading, so that forward or backward motions are equivalent. On the

contrary, the trajectory generated by the HSFM is more realistic thanks to the existence of a

preferred direction of motion (blue line in Fig 2). Although the HSFM allows a pedestrian to

have her velocity vector not aligned with her heading, the model input tends to drive the

orthogonal component of the velocity to zero if no lateral forces are present, thus generating

an “almost nonholonomic” behavior. It can be observed that in the resulting path, the pedes-

trian approaches the turning point preparing to invert her orientation with a sort of U-turn, as

it happens in practice.

In the same setting, consider the case in which a pedestrian has to move from A to B, start-

ing with four different values of the initial heading θ(0) (see Fig 3). When θ(0) = π, the goal

point B lies behind the pedestrian’s back. In this case, the HSFM makes the pedestrian first

take a step back to turn towards the goal, and then move forward to reach the target. Clearly,

the SFM trajectory lies on a segment once again, since the heading is neglected.

The previous examples confirm that, in the considered scenario, the HSFM gives rise to a

more realistic behavior, endowing the pedestrians with the ability of moving in a nonholo-

nomic way when they are expected to do so, as experimentally verified in [29, 30].

Scenario II: The Adaptive Behavior

In this scenario, we consider three examples. In the first one, 20 pedestrians walking in a 7.5m-

wide corridor have to pass through a 2m-wide door (see Fig 4). In the second example, two

groups of pedestrians are walking in opposite directions in a 5m-wide corridor (see Fig 5). In

the third example, we simulate passengers boarding on a metro train, similarly to what has

been done in [35] to analyze pedestrian counter flow through a bottleneck.

For comparison purposes, the following indicators are considered:

Fig 2. Scenario I, alternate motion between two points. A single pedestrian has to move back and forth between A and B, starting

from A, with a desired speed vd = 1.5 ms−1: SFM (red) and HSFM (blue).

doi:10.1371/journal.pone.0169734.g002
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Fig 3. Scenario I, starting with different orientations. A single pedestrian has to move from A to B, starting with

different headings (denoted by the small black dot), at a desired speed vd = 1.5 ms−1: SFM (red) and HSFM (blue).

doi:10.1371/journal.pone.0169734.g003
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• the average exit frequency of pedestrians �F , i.e. the average number of pedestrians that pass

through the door per time unit (first and third examples);

• the average square of the magnitude of the jerk of the trajectories

�J ¼
1

n

Xn

i¼1

1

T

Z T

0

jjjiðtÞjj
2dt; ð22Þ

where n denotes the total number of pedestrians and ji is the jerk vector of the i-th trajectory,

(i.e., the third-order derivative of the position).

The first indicator has been selected as a measure of the macroscopic behavior of the mod-

els. The second indicator is used to evaluate both the regularity and the realism of the resulting

trajectories. As a matter of fact, it is commonly acknowledged that the motions performed by

humans tend to be smooth and to minimize the jerk, as first experimentally verified for hand

movements in [36], and extended to the trajectories of walking pedestrians later on in [33].

The obtained results can be summarized as follows.

Pedestrians in a corridor. In order to compare the trajectories generated by the SFM and

the HSFM, a Monte Carlo analysis has been performed. Starting from random initial positions

and headings of the pedestrians (with zero initial velocity), 100 runs of the SFM and the HSFM

have been simulated for 20 s. Concerning the exit frequency, both models give similar results,

Fig 4. Scenario II, Pedestrians in a corridor. A group of 20 pedestrians walking in the same direction in a 7.5m-wide corridor

at a desired speed vd = 1.5 ms−1. Three snapshots of a simulation run of the HSFM, taken at different time instants t.

doi:10.1371/journal.pone.0169734.g004
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with average values �FHSFM ¼ 2:70 s−1 and �FSFM ¼ 2:75 s−1. Overall the two models seem to

reproduce the same macroscopic behavior. However, significant differences can be appreciated

by looking at the regularity of the resulting trajectories. The average square of the magnitude

of the jerk is very different in the two cases, with average values during the door crossing (time

range [6, 10] seconds) of �J HSFM ¼ 4:1 � 10� 4 m2s−6 and �J SFM ¼ 5:3 � 10� 3 m2s−6. These figures

capture the different qualitative behaviors that can be observed by looking at the resulting tra-

jectories. When compared to the HSFM, in the proximity of the door, the SFM tends to gener-

ate vibrations, sudden changes of direction and even “bounces” among pedestrians or between

pedestrians and walls.

Two groups walking in opposite directions. Also in this case, results are averaged over

100 simulation runs. In this example, the huge difference in the values of index �J
(�JHSFM ¼ 4:3 � 10� 3 m2s−6 for the HSFM vs. �J SFM ¼ 2:3 � 10� 2 m2s−6 for the SFM) is mostly due

to the very different trajectories over the time range [6, 10] seconds, when the two groups

Fig 5. Scenario II, Two groups walking in opposite directions. Two groups of 10 pedestrians each walking in

opposite directions in a 5m-wide corridor at a desired speed vd = 1.5 ms−1. Three snapshots of a simulation run of

the HSFM, taken at different time instants t.

doi:10.1371/journal.pone.0169734.g005
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interact to negotiate the traversing of the corridor. In this situation, the pedestrian motion gen-

erated by the HSFM is much more regular than that reproduced by the SFM, in which several

collisions among pedestrians belonging to different groups are experienced. The effect of

pedestrian density on the indicator �J has also been evaluated. Both �J HSFM and �J SFM have been

computed for groups of different cardinalities, ranging from 5 to 25 (see Fig 6). As expected, as

the density increases, the trajectories tend to be more irregular for both models. However, the

HSFM confirms its superiority irrespective of the number of pedestrians.

Pedestrian counter flow through a bottleneck. This example is taken from [35]. Two

groups made up of 25 pedestrians each, have to get on board a metro train through a 2m-wide

door. Simultaneously, 50 pedestrians are trying to get off the train through the same door (see

Fig 7). When simulating such a high density scenario, both the SFM and the HSFM produce a

deadlock effect, with the two groups pushing each other in front of the door. In [35], a revised

version of the SFM has been presented in order to improve the pedestrians’ efficiency of get-

ting through the bottleneck. The repulsive forces in the SFM have been modified by adding a

term which produces a repulsive force in the tangential direction, in order to let a pedestrian

slide laterally as she faces another person. These revised forces can be embedded directly in the

Fig 6. Scenario II, Values of �J for different pedestrian densities. Average jerk �JHSFM (blue) and �JSFM (red) for two

groups of N pedestrians each, with N ranging from 5 to 25, walking in opposite directions in a 5m-wide corridor, at a

desired speed vd = 1.5 ms−1.

doi:10.1371/journal.pone.0169734.g006
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HSFM, by using them in place of Eqs (20) and (21). The trajectories resulting from the modi-

fied versions of both the SFM and the HSFM have been compared. Similar results are obtained

in terms of exit frequency for the two models, with average values �FHSFM ¼ 3:16 s−1 and

�FSFM ¼ 3:15 s−1. However, the magnitude of the jerk is again different for the two models, with

�JHSFM ¼ 0:205 � 10� 1 m2s−6 and �J SFM ¼ 0:42 � 10� 1 m2s−6. This example highlights the versatil-

ity of the proposed approach. Other SFM alternative versions, devised for tackling specific sce-

narios, can be easily incorporated in the HSFM by replacing the original force terms with the

modified ones.

Overall, previous results show that at a microscopic level, the HSFM generates smoother

trajectories than the traditional SFM. At the same time, the macroscopic behavior of the whole

system, which is typically well approximated by the SFM, is fully preserved.

Scenario III: A Visit at the Museum

In this scenario we test the ability of the HSFM to reproduce pedestrians moving together. As

a case study, we consider the visit of a museum carried out by a group of 10 people. The con-

sidered environment is composed of two communicating rooms, each of which contains four

artworks on display. Three doors connect the rooms with the rest of the museum (see Figs 8

and 9). The objective of the group is to visit a selection of the pieces of the exhibition in a given

order, while avoiding collisions with obstacles and/or other individuals. Once the visitors

reach the selected artwork, they stop in front of it for a predefined amount of time, before

moving to the next point of interest.

We compare the results obtained using the HSFM with and without the group forces. In

Figs 8 and 9 four different snapshots of the trajectories from the two cases are shown. The

main difference lies in the way the group moves from one exhibition to the other. In the

absence of group cohesion forces, the group tends to elongate and the visitors form a line (see

Fig 8). This unrealistic behavior is avoided when group forces are included (see Fig 9). A mea-

sure of the group cohesion is given by the the average distance from the centroid of the group,

defined as

xðtÞ ¼
1

n

Xn

i

diðtÞ; ð23Þ

Fig 7. Scenario III, Pedestrian counter flow through a bottleneck. Simulation of a metro train boarding process [35]. Pedestrians in

red want to get off the train (towards the right), while pedestrians in green are trying to get on it (towards the left). Three snapshots taken

at different time instants.

doi:10.1371/journal.pone.0169734.g007
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where di(t) is the distance at time t of pedestrian i from the centroid of the group. This indica-

tor gives a measure of the dispersion of the pedestrians during their motion. The time evolu-

tion of ξ(t) is depicted in Fig 10, for both cases. Without group forces, the group radius

oscillates between small values (corresponding to the visitors standing still in front of an art-

work) and large values (when people switch from one artwork to the next one). Conversely,

the introduction of the group forces effectively keeps the group together, with a radius smaller

than 2 m.

Tuning of the Model

In this section, we study the role of the parameters of the HSFM on the resulting system behav-

ior. Specifically, we consider separately the parameters which affect the computation of: i) the

force input, ii) the torque input and iii) the group cohesion term.

Force input. The force driving the translational dynamics of the pedestrian depends on

two parameters, namely ko and kd. The first one is a gain that modulates the force acting on the

direction orthogonal to the pedestrian’s heading. The second one is a damping coefficient on

the speed along the same direction. As a case study representative of the HSFM behavior

under most circumstances, the same example, described in Scenario II, involving 20 pedestrian

crossing a door in a corridor, is considered (see Fig 4). In this analysis, no group cohesion

forces are included. Several simulations have been carried out for different combinations of

the parameter values. Fig 11 depicts a snapshot of the simulations taken when the individuals

Fig 8. Scenario III, A visit at the Museum. Snapshots of a simulation run of the HSFM without the inclusion

of group cohesion forces.

doi:10.1371/journal.pone.0169734.g008
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have almost completely crossed the door. By looking at the different configurations of the

pedestrians, the following phenomena can be observed. For a given kd, the platoon gets wider

as ko increases, since more authoritative lateral repulsive forces among pedestrians are exerted.

Parameter kd has an even greater impact on the width of the platoon. For a fixed ko, the larger

the value of kd, the faster the lateral speed is driven towards zero. As a result, with very high val-

ues of kd the pedestrians tend to arrange in a line. Besides the geometric distribution of the

individuals, both parameters have an effect on the smoothness of the generated trajectories. To

analyze this feature, 100 simulation runs have been performed, starting from random initial

conditions. In Fig 12, two indicators are shown as a function of kd, for different values of ko.
The first one is the average square of the magnitude of the jerk �J as defined in Eq (22), which

measures the regularity of the trajectories. The second one is defined as

D ¼
1

T

Z T

0

xðtÞdt;

where ξ(t) is given by Eq (23). It represents the mean distance of a pedestrian from the cen-

troid, averaged over the whole simulation run. The evolution of �J suggests that the trajectories

become more and more regular as ko decreases and kd increases. The tuning of parameter kd

has to take into account also the impact that it has on the geometry of the platoon, which in

Fig 12 is summarized by the indicator Δ. Too large values of kd imply a growth of the radius Δ,

which, in turns, reflects the tendency of the pedestrians to form a line. Hence, parameter kd

has to be tuned by trading-off these conflicting objectives. Values in a neighborhood of ko = 1

and kd = 500 kg � s−1 have been observed to ensure regular trajectories and a realistic geometry

Fig 9. Scenario III, A visit at the Museum. Snapshots of a simulation run of the HSFM with the inclusion of

group cohesion forces.

doi:10.1371/journal.pone.0169734.g009
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of the platoon [10, 37]. Moreover, this choice guarantees very low sensitivity of the indicators �J
and Δ to variations in the model parameters, which suggests robustness of the system behavior

within different scenarios.

Torque input. The torque controlling the heading dynamics is designed via pole place-

ment, so that the closed-loop system has a desired pair of real poles. In this approach, a major

role is played by the pole ratio α. The effect of α on the resulting trajectory is clearly visible in

Fig 13, for the simple case in which a pedestrian goes through four way-points forming a

square. Basically, the larger the α, the slower is the dynamics of the pedestrian’s heading,

which results in larger turning radius. Values of α in the range 3-5 seem appropriate for repro-

ducing a realistic path, the resulting curvature dynamics being neither too aggressive (i.e.,

α = 1) nor too loose (i.e., α = 10).

Group cohesion. The parameters defining the force term which aims at keeping together

people belonging to the same group, have a clear physical meaning. This makes their tuning

much easier than the previous ones. Parameters df and do are half of the side length of the

desired rectangular region along the forward and orthogonal direction, respectively. Parame-

ters kg1 and kg2 correspond to the intensity of the cohesion forces acting along the forward and

Fig 10. Mean distance from the group centroid over time. Evolution of ξwith cohesive forces (blue) and without cohesive forces (red).

doi:10.1371/journal.pone.0169734.g010
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orthogonal direction, respectively. In the simulations presented so far, the following values

have been selected: df = 2 m, do = 1 m and kg1 ¼ kg2 ¼ 200 N.

Conclusions

In this paper, the Headed Social Force Model has been presented. It enhances the traditional

Social Force Model with the inclusion of the pedestrians’ heading. A more complex model

Fig 11. Effect of ko and kd on the pedestrian trajectories. A snapshot of the simulation of 20 pedestrians walking in a corridor, for

different values of ko and kd [kg � s−1].

doi:10.1371/journal.pone.0169734.g011

Walking Ahead: The Headed Social Force Model

PLOS ONE | DOI:10.1371/journal.pone.0169734 January 11, 2017 19 / 23



of the human dynamics is adopted, whose inputs are computed as suitable functions of

the force terms resulting from the traditional Social Force Model. An optional force term

has been introduced in order to model pedestrians moving together as a group. Numerical

simulations show that considering the heading of the individuals improves the realism of

the resulting trajectories, in both low pedestrian density scenarios and crowded

environments.

The potential of the proposed model opens the door to several future developments. Valida-

tion of the human motion patterns predicted by the model on real-world experiments is the

subject of ongoing research. Besides assessing the ability of the HSFM to reproduce standard

pedestrian behaviors, real data will also be useful to estimate the most significant parameters of

the model. In this respect, an interesting topic deserving further investigation is to evaluate

how pedestrians’ individual properties (such as gender and age, environmental constraints or

social conventions) reflect on the values of the model parameters, in the spirit of the study pre-

sented in [38] on aircraft boarding models. Another relevant line of research concerns the gen-

eration of the velocities that the pedestrians have to track. The adoption of suitable control

Fig 12. Effect of ko and kd on trajectory regularity and distribution of the pedestrians. Average square of the magnitude of the jerk
�J and average distance Δ of a pedestrian from the group centroid for ko = 0.5 (dashed), ko = 1 (solid) and ko = 1.5 (dash-dotted).

doi:10.1371/journal.pone.0169734.g012
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schemes may be the first step towards the design of planning strategies to be employed, e.g.,

for building evacuation, crowd management or group steering.
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