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1 Theoretical background and protocols for

acquisition of simulation parameters

1.1 QM/MM calculations: geometry refinement and
electronic structure computations

Figure S1: High/Medium/Low layer paritioning of 4-thiouracil in the
QM/MM protocol. The High layer comprises the thiouracil, the Medium
layer comprises all waters in 3 Å distance of the QM region (encircled with
a dashed line). The rest of waters are included in the Low layer.

1.2 Non-adiabatic mixed quantum-classical dynamics
simulations at the CASPT2 level

Gradients were computed numerically through a two-point finite differentia-
tion formula using the COBRAMM’s parallel environment. To speed up the
numerical computations of the SS-RASPT2 gradients we made use of the fact
that the perturbative correction is applied independently on each root. Thus,
while at the reference point all states are corrected at SS-RASPT2 level, dur-
ing the computation of the gradient only the state that drives the nuclear
dynamics (i.e. the photoactive state) was taken into account. Care was
taken for possible state swapping at each displaced geometry in case of near-
degeneracy at the RASSCF level by following the nature of the wave func-
tion. The stability of the simulations was monitored through COBRAMM
routines. If

S1



a) an element the numerical gradient exceed a threshold (default 0.5)

b) the ratio of the lengths of the gradient vectors at two consecutive steps
(i.e. ||g(t)||/||g(t − dt)||) and, at the same time, the deviation of the
total energy from its value at the previous step (i.e. Etot(t)−Etot(t−dt))
exceed certain thresholds (defaults 1.3 and 0.5 kcal/mol, respectively)

c) a single point computation fails to converge

the gradient is discarded and the Velocity Verlet step is repeated at the last
stable geometry, first with a half step (in this case 0.5 fs) and, if the thresholds
are exceeded again, with a double step (in this case 2.0 fs). Following the
THS scheme the expression for the time-derivative coupling (TDC)

σij =
dR

dt
dij =

dR

dt

〈
Ψi(r, t)

∣∣ d
dR

Ψj(r, t)
〉

︸ ︷︷ ︸
NAC

=
〈
Ψi(r, t)

∣∣ d
dt

Ψj(r, t)
〉

︸ ︷︷ ︸
TDNAC

(1)

is approximated to finite differences and the change in the electronic wave
functions is resolved by computing overlap integrals between the adiabatic
wave functions at different time steps. COBRAMM generalizes the TDC
formulation of Barbatti (eq. 9 in ref. [Pit09]) to arbitrary time steps ∆t:

σij =
1

2∆told

(
1− 0.5∆told + ∆t

0.5∆told + 0.5∆t

)
(
〈
Ψi(t−∆t)

∣∣Ψj(t−∆t−∆told)
〉
−〈

Ψj(t−∆t)
∣∣Ψi(t−∆t−∆told)

〉
)+

1

2∆t

(
0.5∆told + ∆t

0.5∆told + 0.5∆t

)
(
〈
Ψi(t)

∣∣Ψj(t−∆t)
〉
−〈

Ψj(t)
∣∣Ψi(t−∆t)

〉
)

(2)

where ∆t and ∆t old are the time steps used to propagate the TDSE between
step i − 1 and i, as well as between step i − 2 and i − 1. Note that eq. 2
simplifies to eq. 9 in ref. [Pit09] when ∆told = ∆t. The individual terms are
obtained from wave function overlaps, which at present are computed at the
RASSCF level (i.e. using the RASSCF wavefunctions) through the RASSI
utility [Mal86] of Molcas and further scaled by the ratio of the SS-RASPT2
and RASSCF energy gaps (ECASSCF

j −ECASSCF
i )/(ESSPT2

j −ESSPT2
i )), which
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follows from the relation:

σij =
〈
Ψi(t)

SSPT2
∣∣ d
dt

Ψj(t)
SSPT2

〉
=
dR

dt

〈
Ψi(t)

SSPT2
∣∣ d
dR

Ψj(t)
SSPT2

〉
=

v · dSSPT2
ij = v ·

〈
Ψi(t)

SSPT2
∣∣∇RĤ

∣∣Ψj(t)
SSPT2

〉
ESSPT2
j − ESSPT2

i

≈

v ·
〈
Ψi(t)

CASSCF
∣∣∇RĤ

∣∣Ψj(t)
CASSCF

〉
ECASSCF
j − ECASSCF

i

·
ECASSCF
j − ECASSCF

i

ESSPT2
j − ESSPT2

i

=

v · dCASSCFij ·
ECASSCF
j − ECASSCF

i

ESSPT2
j − ESSPT2

i

(3)

In the chain following equality is assumed:〈
Ψi(t)

SSPT2
∣∣∇RĤ

∣∣Ψj(t)
SSPT2

〉
≈
〈
Ψi(t)

CASSCF
∣∣∇RĤ

∣∣Ψj(t)
CASSCF

〉
(4)

Effectively, when the SS-RASPT2 correction to the SA-CASSCF energies
decreases the energy gap between a pair of states the value of the time-
derivative coupling is increased uniformly. In the particular application, the
bright ππ∗ and dark nπ∗ states are always well separated at the RASSCF level
due to the difficulty of the RASSCF method to describe at the same footing
both states, with the nπ∗ state being lower in energy. Correspondingly, the
non-adiabatic coupling which controls the ππ∗ → nπ∗ decay is comparably
small. SS-RASPT2 lowers the energy of ππ∗ state so that it approaches
the nπ∗ state. The scaling factor introduced above assures that in such
cases the non-adiabatic coupling of the two states increases (linearly with the
decreasing energy gap) as the states are expected to mix when they become
near-degenerate. In addition, a wave function following algorithm allows to
identify state swapping (such as at crossings) at the SS-CASPT2 level. The
THS scheme allows to work with relatively large time steps (such as 1.0 fs)
even in the region of ππ∗/nπ∗ near-degeneracy and state swapping. Tully’s
fewest switches surface hopping algorithm is know to suffer from artificial
coherence effects. A decoherence correction, originally proposed by Truhlar
and co-workers [Zhu05] and realized by Persico et al. [Gra07] is used in the
present case as a countermeasure. Kinetic energy scaling (for total energy
conservation) after a hopping event is performed along the velocity vector.
The generally contracted basis set ANO-L adopting contractions 4s3p2d1f
on sulfur, 3s2p1d on carbon, oxygen and nitrogen and 2s1p on hydrogen was
utilized.
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1.3 Simulation protocol for non-linear spectroscopy

The pump probe (PP) signalW (3)(t2,Ω3) can be seen formally as the marginal
of the Fourier transform of the third-order signal S(3)(t1, t2, t3) [Muk95, Muk04,
Abr09, Ham11, Abr07].

W (3)(t2,Ω3) =

∫ ∞
−∞

dt1

∫ ∞
0

dt3 S
(3)(t1, t2, t3) eiΩ3t3δ(t1). (5)

In the following we will elaborate on the simulation protocol for S(3)(t1, t2, t3),
thus covering PP and two-dimensional (2D) nonlinear experiments. S(3)(t1, t2, t3)
is the convolution of the third order nonlinear response of the systemR(3)(t1, t2, t3)
due to the interaction with three incident laser pulses with wave vectors k1,
k2 and k3

S(3)(t1, t2, t3) =

∫ ∞
−∞

dt

∫ ∞
0

dt1

∫ ∞
0

dt2

∫ ∞
0

dt3 R
(3)(t1, t2, t3)×

E(r, t)E(r, t− t1)E(r, t− t1 − t2)E(r, t− t1 − t2 − t3)

(6)

with pulses E(r, t) = E(t)eikr−iωt with central frequency ω and complex en-
velope E(t). Assuming temporally well separated ultrashort laser pulses
(impulsive limit, i.e. the limit in which the pulse duration is less than a
single vibrational oscillation period) the nonlinear response of the system
R(3)(t1, t2, t3) becomes equivalent to the third-order signal S(3)(t1, t2, t3). In
section 1.3.7 the influence of the pulse duration on the spectra is demon-
strated.
R(3)(t1, t2, t3) can be written in terms of the perturbation of the system’s
density matrix by three external optical electric fields (the interaction with
the optical filed being described in the impulsive limit through the coordi-
nate dependent transition dipole moment operator µ̂ =

∑
ij µij

∣∣i〉〈j∣∣) and
the field-free evolution of the density matrix during the intervals t1, t2 and
t3 between the pulses:

R(3)(t1, t2, t3) = (i)3Tr [µ̂G(t3) [µ̂,G(t2) [µ̂,G(t1) [µ̂, ρ(0)]]]] (7)

giving rise to eight independent contributions (Liouville pathways). ρ(t)
is the time-dependent density matrix of the system, being in the ground
state (GS) at equilibrium before the interaction with the first pulse (i.e.
ρ(0) =

∣∣g〉〈g∣∣). For the electronic states i we consider the GS g, the mani-
fold of singly excited states (ESs) e, e′, accessible with the pump pulse (pair)
and the manifold of higher lying states f , accessible through the probe pulse.

G(t)ρ(t) = e−iĤtρ(0)eiĤt the retarded Green’s function, describes the field-
free system propagation governed by the vibronic Hamiltonian Ĥ. The non-
linear response R(3)(t1, t2, t3) depends on the spatial orientation of the wave
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vectors of the incident pulses, i.e. is emitted in a given phase-matched direc-
tion. By adjusting the experimental set up (boxcar arrangement, collinear
pump pulse arrangement) one can selectively detect sub-groups of Liouville

pathways. For example, the rephasing nonlinear response R
(3)
kI

(t1, t2, t3)

R
(3)
kI

(t1, t2, t3) =
∑

i=GSB,SE,ESA

R
(3)
kI,i

(t1, t2, t3) (8)

is emitted in the so called rephasing phase-matching direction (kI = −k1 +
k2 + k3) and includes three possible interaction sequences of the incident
electric fields with the system denoted as ground state bleach (GSB), ex-
cited state absorption (ESA) and stimulated emission (SE). Similarly, the
nonrephasing nonlinear response can be obtained in the phase-matching di-
rection kII = +k1 − k2 + k3. The pump-probe response can be obtained
either in the rephasing or in the nonrephasing directions which become iden-
tical when t1 = 0.

1.3.1 Cumulant expansion of Gaussian fluctuations and line shape
functions

Eq. 7 can be solved using second-order cumulant expansion within the frame-
work of linear coupling of the system’s energies to a Gaussian bath. This is
known as the cumulant expansion of Gaussian fluctuations (CGF). It allows
to calculate the shapes of electronic transition bands coupled to a bath for
fluctuations with arbitrary time scales by using the formalism of line shape
functions [Muk04, Abr07]. In the following we describe a bath with both
fast and slow modes, i.e. modes that adjust themselves quickly and such
that cause long-range memory effects. The Markovian approximation (mem-
orylessness) is applied to the fast modes. During t1 and t3, these cause homo-
geneous line broadening, while during t2 they induce population relaxation.
In the limit of decoupled populations and coherences (secular approximation
of the Green’s function) the population relaxation is described by the Pauli
master equation:

˙ρee(t) = −
∑
e′

Ke′e′,eeρe′e′(t) (9)

with K the rate matrix with elements Ke′e′,ee depicting the population trans-
fer rate from state e into state e′ which is taken to be independent of the
fluctuations of the slow modes. The solution of the differential equation is for-

mally given by the population Green’s function ρe′e′(t) =
∑
e

Ge′e′,ee(t)ρee(0)

and the elements of the matrix G act as time-dependent weighting factors
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in the population pathways describing ESA and SE (see eq. 10). The slow
bath modes are responsible for spectral diffusion during all three intervals
t1, t2, and t3, causing correlations during the three intervals. The secular
approximation allows to further partition the nonlinear response (eq. 8) into
population (e′ = e during delay time t2) and coherence contributions (e′ 6= e
during delay time t2). The population contributions then read:

R
(3)
kI,ESA,i = + i

∑
e′,e,f

µ2
fe′µ

2
ge Ge′e′,ee(t2)×

e
−i(εf − εe′)t3 + i(εe − εg)t1 + ϕESA,ife′e (t1, t1+t2, t1+t2+t3, 0)

R
(3)
kI,SE,i =− i

∑
e′,e

µ2
ge′µ

2
ge Ge′e′,ee(t2)×

e
−i(εe′ − εg)t3 + i(εe − εg)t1 + ϕSE,iege′ (0, t1+t2, t1+t2+t3, t1)

R
(3)
kI,GSB =− i

∑
e′,e

µ2
ge′µ

2
ge×

e−i(εe′ − εg)t3 + i(εe − εg)t1 + ϕGSBege′ (0, t1, t1+t2+t3, t1+t2).

(10)

The coherence contributions read:

R
(3)
kI,ESA,ii = + i

e′ 6=e∑
e′,e

∑
f

µfe′µfeµge′µge e
−i(εf − εe)t3×

e
−i(εe′ − εe)t2 + i(εe − εg)t1 + ϕESA,iife′e (t1, t1+t2, t1+t2+t3, 0)

R
(3)
kI,SE,ii =− i

e′ 6=e∑
e′,e

µ2
ge′µ

2
ge e
−i(ε′e − εg)t3×

e
−i(εe′ − εe)t2 + i(εe − εg)t1 + ϕSE,iie′ge (0, t1+t2, t1+t2+t3, t1)

.

(11)

As there is only a single GS, no coherence contribution is observed for the
GSB. In eqs. 10-11 εi (i ∈ {g, e, f}) is the electronic contribution to the
energy of the i-th ES (the energy of the GS εg = 0 is used as a reference).
ϕ(t4, t3, t2, t1) are phase functions that describe the coupling to the bath and,
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hence, give rise to the time-dependent spectral line shapes [Abr07, Abr09].

ϕESA,ife′e (t1, t1+t2, t1+t2+t3, 0) = δe′ef
(C),∗
efe (t1, t1+t2, t1+t2+t3, 0)

+ ξe′ef
(I),∗
fe′e′e(t3, t2, t1)

ϕSE,iege′ (0, t1+t2, t1+t2+t3, t1) = δe′ef
(C)
ege (0, t1+t2, t1+t2+t3, t1)

+ ξe′ef
(I),∗
e′ge′e(t3, t2, t1)

ϕGSBege′ (0, t1, t1+t2+t3, t1+t2) = δe′ef
(C)
ege′(0, t1, t1+t2+t3, t1+t2)

ϕESA,iife′e (t1, t1+t2, t1+t2+t3, 0) = f
(C),∗
e′fe (t1, t1+t2, t1+t2+t3, 0)

ϕSE,iiege′ (0, t1+t2, t1+t2+t3, t1) = f
(C)
e′ge(0, t1+t2, t1+t2+t3, t1)

(12)

where ξe′e = 1− δe′e. The phase functions of the population contributions to
the ESA and SE signals (ϕESA,i and ϕSE,i) have both a coherent (f

(C)
cba ) and

incoherent (f
(I)
cbe′e) part, the former comprising population-conserving Liou-

ville pathways, the latter population-transfer pathways with the Markovian
approximation for the fast modes. Both functions include correlations be-
tween t1, t2 and t3. The coherent function f

(C)
cba reads:

f
(C)
cba (τ4, τ3, τ2, τ1) =− gcc(τ43)− gbb(τ32)− gaa(τ21)

− gcb(τ42) + gcb(τ43) + gcb(τ32)

− gca(τ41) + gca(τ42) + gca(τ31)− gca(τ32)

− gba(τ31) + gba(τ32) + gba(τ21)

(13)

with τij = τi − τj. The incoherent function f
(I)
cbe′e reads:

f
(I)
cbe′e(t3, t2, t1) =− gee(t1)− gbb(t3)− g∗cc(t3)

− gbe(t1 + t2 + t3) + gbe(t1 + t2) + gbe(t2 + t3)− gbe(t2)

+ gce(t1 + t2 + t3)− gce(t1 + t2)− gce(t2 + t3) + gce(t2)

+ gcb(t3) + g∗bc(t3)

+ 2iIm[+gce′(t2 + t3)− gce′(t2)− gce′(t3)

− gbe′(t2 + t3) + gbe′(t2) + gbe′(t3)].

(14)

We note that the line shape functions gbe(t) and gce(t) vanish by construction
in the case of pump probe spectroscopy simulations in which the first two
light-matter interactions occur simultaneously (i.e. t1 = 0). In the following
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we use a simplified version of the incoherent function (eq. 14) which omits
most of the terms to give:

f
(I)
fe (t3, t1) = −gee(t1)− g∗ff (t3) (15)

which depends only on the line shape function gee(t1) of the initial state and
on the line shape functions g∗ff (t3) of the states coupled to the probe pulse.
Physically, the above expression describes signals associated with the trap-
ping of population in an excited state (i.e. e′, the triplet manifold in this
case) during the decay process on a time scale facilitating the dissipation of
excess vibrational energy in the environment (so called vibrational cooling).
In such case, the spectrum is dominated by the electronic structure of the
equilibrium geometry of the trapping state. Within this framework the dy-
namics during t3 can be calculated with the e′ Hamiltonian as reference, thus
effectively eliminating all terms depending on e′. Effectively, eq. 15 decouples
the vibrational dynamics in the triplet states from that in the afore populated
nπ∗ state. This is clearly an approximation to the actual dynamics in the
sub-ps regime, as energy dissipation has not occurred yet and the ESA line
shape potentially depends on dynamics in the triplet manifold. However, we
note that the line shape of the experimentally recorded ESA signal does not
show any intensity beat pattern, thus suggesting an incoherent inter-system
crossing mechanism and supporting work in the Markovian limit. The inco-
herent dynamics in the triplet manifold would lead to a signal broadening
which can be taken into consideration in a phenomenological fashion.

In the particular application to 4-thiouracil we simulate only the contri-
bution of the SE from the ππ∗ state to the overall signal at early times as
ground state bleach falls outside of the spectral window and ESA features
of the ππ∗ state are not considered at this point. The nπ∗ state shows nei-
ther SE, not ESA features. At later times the only spectral contribution
arises through ESA from the triplet manifold represented by the 3ππ∗ and
3nπ∗ states. Thus, the overall signal consists of the coherent function of eq.
12,SE,i and the (simplified) incoherent function of eq. 12,ESA,i.
gij(t) in eqs. 13-14 is the line shape function, which is an integral transfor-
mation of the autocorrelation function of bath fluctuations Cij(t) [Muk95,
Muk09]:

gij(t) =
1

2π

∫
Cij(ω)

ω2
[coth

(
~ω

2kBT

)
(1− cosωt) + i sinωt− iωt] dω. (16)

In the case when the system is coupled to a set of high-frequency (intramolec-
ular) modes and a continuum of low-frequency (intra- and intermolecular)
modes the spectral density can be partitioned into: a) a weakly undamped
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or underdamped contribution due to the slowly decaying correlation func-
tion due to high-frequency modes, responsible for vibrational progressions in
the spectra; b) an overdamped contribution due to the fast-decaying corre-
lation function associated with the low-frequency modes responsible for the
homogeneous broadening of the signals. The total line shape function then
contains two parts as well [Val16]. The semi-classical overdamped regime is
usually represented by the line shape function of the semi-classical Brownian
oscillator (OBO) in the high-temperature limit [Muk95, Li94, But12]:

gOBO
ij (t) =

λij
Λ

(
2kBT

~Λ
− i
)

(e−Λt + Λt− 1). (17)

In eq. 17 λij and Λ−1 are the system-bath coupling strength and the fluctu-
ation time scale, respectively.

Undamped vibrations are described through the line shape function of the
multidimensional uncoupled displaced harmonic oscillator (DHO)[Muk95]:

gDHO
ij (t) =

∑
k

ωkd̃ikd̃jk
2

[
coth

(
ωk

2kBT

)
(1− cos (ωkt)) + i sin(ωkt)

]
(18)

with ωk the frequency and d̃ik the displacement of the i-th electronic potential
along the k-th mass-weighted normal mode (Figure S2). The state-specific
displacements d̃ik determine the magnitude of diagonal correlation functions
Cii(t) and are related to spectroscopic parameters like the Huang-Rhys fac-
tors Sik or the reorganization energy λik through the following relations:

Sik =
d̃2
ikωk
2~

and λik =
d̃2
ikω

2
k

2~
. (19)

and can be used to compute the spectral densities either in the undamped
(C(u) or damped C(d) regimes [But12]:

Cu(w) =
∑
i

π Sik ω
2
k [δ(ω − ωk)] and Cd(w) =

∑
i

2
√

2 Sik ω
3
k ω γ

(ω2 − ω2
k)

2 + 2γ2ω2)

(20)
where γ is a damping factor. Cross-correlation functions Cij(t) depend on the
displacements d̃ik and d̃jk associated with two transitions. Because negative
displacements (with respect to the GS, Figure S2) are allowed, the corre-
sponding spectral densities Cij(w) that can be formulated following eqs. 19
and 20 can have negative contributions[Nem10] (see next section).
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Figure S2: Displaced harmonic oscillator model for a three level system.

1.3.2 Solving the Pauli master equation: population dynamics

The system under study presents only one state under the envelope of the
pump pulse (∼ 325 − 345 nm). This is the first bright singlet ππ∗ state of
4-thiouracil and the second excited state in the FC region. Utilizing the out-
come of the analysis of the potential energy surfaces and molecular dynamics
simulations we elaborated a sequential model that describes the population
decay following excitation of the ππ∗ state. Based on non-adiabatic mixed
quantum-classical molecular dynamics simulations at the SS-RASPT2/SA-
3-RASSCF(12, 9|2, 4) level we obtain a lifetime of the 1ππ∗ state of 67.5 fs
(see sec. 2.4) which is within the error range of the experimental lifetime
of 76 ± 16 fs. Global analysis of the experimental data gives a 225 ± 30 fs
time constant for the build up of the fingerprint ESA signal of the triplet
state, which is thus assigned to the lifetime of the intermediate dark 1nπ∗

state. The sequential model describing the dynamics in near-UV excited
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4-thiouracil is:
1ππ∗

k1ππ∗−−−→ 1nπ∗
k1nπ∗−−−→ 3ππ∗

Equation 21 shows the rate matrix corresponding to this model

K =
ρ3(π|n)π∗

ρ1nπ∗

ρ1ππ∗

 +k3(π|n)π∗ −k1nπ∗ 0
0 +k1nπ∗ −k1ππ∗

0 0 +k1ππ∗

 (21)

where the rates k1ππ∗ = 1/76 fs−1, k1nπ∗ = 1/225 fs−1 were taken as the
reciprocal lifetimes. The rate of the depopulation of the triplet manifold
k3(π|n)π∗ is set to k3(π|n)π∗ = 1/∞ fs−1. Solving the Pauli master equation
(eq. 9) we obtain following expressions for the population dynamics:

ρ1ππ∗(t) =e−k1ππ∗t

ρ1nπ∗(t) =
k1ππ∗

−k1ππ∗ + k1nπ∗
(e−k1ππ∗t − e−k1nπ∗t)

ρ3(π|n)π∗(t) =
−k1nπ∗

−k1ππ∗ + k1nπ∗
(e−k1ππ∗t − 1) +

k1ππ∗

−k1ππ∗ + k1nπ∗
(e−k1nπ∗t − 1)

(22)

The sequential model described above, shows the evolution of the population
between 0 and 600 fs delay time starting in the ππ∗ state (ρππ∗ = 1). The
population of the dark intermediate nπ∗ state ρnπ∗ shows a peak around
100 fs. After 600 fs ca. 90% of the population is the triplet manifold The
density-matrix element ρ1ππ∗(t) appears as time-dependent weighting factor

in front of the coherent part f
(C)
cba of the population contribution R

(3)
kI,SE,i

(eq. 10) and causes the exponential decay of the signals associated with the
ππ∗ state. Due to the vanishing transition dipole moment of the GS← nπ∗

transition and the lack of intense ESA signals in the probed spectral window
the 1nπ∗ state can be seen as a ”phantom” state which does not show in
the spectra. The density-matrix element ρ3(π|n)π∗(t) multiply the incoherent

part f
(I)
cbe′e of the population contributions and lead to the build-up of the

triplet associated signals at times close to 200 fs. We remind that there is no
incoherent contribution to the SE from the triplet manifold.
The S2(1ππ∗) −→ T2(3nπ∗) −→ T1(3ππ∗) channel, which accounts for up to
25% of the population, has been neglected in this simulation. This has no
effect on the spectral dynamics of the SE, which decays with the effective time
constant of 78 fs describing the population splitting in 1nπ∗ and 3nπ∗, but it
would affect slightly the dynamics of the triplet ESA as it would introduce at
early times (sub-100 fs) a weak ESA signal in the red around 625 nm coming
from the ultrafast population of the 3nπ∗ state from the 1ππ∗ state which
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Figure S3: Population dynamics in near-UV excited 4-thiouracil.

would then blue-shift in the 550 nm due to the decay of the 3nπ∗ state to
the energetically lower lying 3ππ∗ state.

1.3.3 Spectral densities through gradient projection and normal
mode analysis.

An expression for the displacements d̃ik can be obtained from the expression
for the energy gap ∆Eij(q̃k) between states i and j in the displaced Harmonic
oscillator model.

∆Eij(q̃) = εi − εj +
∑
k

(
1

2
ω2
k(d̃

2
ik − d̃2

jk)− ω2
k(d̃ik − d̃jk)q̃k

)
(23)

expressed in mass-weighted normal mode coordinates q̃. εi − εj is the adi-
abatic excitation energy between states i and j. When computed at the
equilibrium of state j the gradient of the energy of state i equates the gradi-
ent of the energy gap

∇q̃∆Eij(q̃) = ∇q̃Ei(q̃) = ∇QEi(Q) ∇q̃Q = P†M−
1
2fi (24)

where P is a matrix whose columns are the normal modes of the system
ξk expressed in normalized mass-weighted Cartesian coordinates Q, M is
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a diagonal matrix with the nuclear masses and fi is the Cartesian energy
gradient. Taking the derivative with respect to q̃ in eq. 23 and inserting the
expression derived in eq. 24 gives [Lee16, Fer12]

d̃i = −W−2P†M−
1
2fi + d̃j (25)

where d̃i and d̃j are k-dimensional arrays of the displacements along all
modes on states i and j.

An alternative to the gradient projection technique is the normal mode
analysis [Kur01]. Starting with the definition of the normal mode matrix
(eq. 24)

P† = M
1
2∇q̃Q (26)

one can express it in terms of finite differences as

P†∆q̃ = M
1
2 ∆Q (27)

Thereby, ∆q̃ becomes the array of displacements d̃i along the normal modes
of the system when the difference is taken with respect to the reference point
on state i. Rearranging gives the final working equation

d̃i = P−1M
1
2 ∆Q (28)

which allows to estimate how much every normal mode ξk has to be dis-
placed to connect two points in Cartesian coordinate space. In eq. 28 ∆Q
is the difference in Cartesian coordinates between two geometries. With the
normal mode analysis attention should be paid to global translational and
rotational degrees of freedom which have to be removed prior to computing
the difference in Cartesian coordinates. To this end we followed an iterative
procedure relying on the vectors of inertia in order to minimize the distance
in space between two geometries as outlined in ref. [Kur01b]. Furthermore,
it is paramount that both geometries used to compute ∆Q have been opti-
mized at the same level of theory in order to avoid spurious contributions to
the spectral densities.

1.3.4 Spectral densities of the singlet states 1ππ∗ and 1nπ∗.

Figure S4 shows the spectral densities of the lowest singlet states of 4-
thiouracil, the bright 1ππ∗ state (S4a) and the dark 1nπ∗ state (S4b) con-
structed following eq. 20 with a weak damping factor γ of 5 cm−1. This
spectral density of 1ππ∗ is eventually used to simulate the linear absorp-
tion (ocher in Figure S7) and the temporal evolution of the stimulated
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Figure S4: Spectral density of the lowest singlet states of 4-thiouracil. In (a)
the bright 1ππ∗ state, in (b) the dark 1nπ∗ state. Most prominent normal
modes are shown in (c). See also Table S1.
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emission in Figures 1C and 1D of the main text. The Huang Rhys fac-
tors Sik (subscript indicates the k-th normal mode of the i-th electronic
state) that enter in the formula were obtained using displacements d̃ik by
means of the normal mode analysis outlined in sec. 1.3.3. Specifically,
the difference in Cartesian coordinates between the ground state equilib-
rium geometry relaxed at the QM(MP2)/MM(AMBER) level and the re-
laxed geometry on each excited state (i.e. Minππ∗ or Minnπ∗), optimized at
the QM(MS-CASPT2/SA-3-CASSCF(12,9))/MM(AMBER) level of theory
with an active space composed of all valence π-orbitals (Figure S6), was pro-
jected on the ground state normal modes of the system computed at the
QM(MP2)/MM(AMBER) level. Thereby, Duschinsky rotations in the ex-
cited state were neglected. Coefficients are listed in Table S1. The spectral
density of the 1ππ∗ state is characterized three sets of normal modes. The
low-frequency range (< 1000 cm−1) exhibits three strong contributions, a ring
breathing mode with a frequency of 457 cm−1 and two hydrogen-out-of-plane
vibrations with frequencies 697 cm−1 and 783 cm−1.

We note the nice agreement of the frequencies of the two most intense
modes in with the 400 cm−1 and 680 cm−1 frequencies obtained after Fourier
transforming the experimental pump probe signal (see Figure S23). The mid-
frequency region (1000 − 1300 cm−1) comprises hydrogen in-plane bending
deformations with the 1106 cm−1, 1235 cm−1 and 1282 cm−1 being the dom-
inant modes. The 1282 cm−1 mode involves also a pronounced carbon-sulfur
stretching. The high-frequency region (> 1300 cm−1), on the other hand,
is dominated by two carbon-carbon and carbon-nitrogen stretching modes
with frequencies 1574 cm−1 and 1698 cm−1. The mid- and high-frequencies
remain unresolved experimentally as they fall outside of the resolution limit
of the utilized 16 fs long pulses. The spectral density of the 1nπ∗ state is
dominated by the same set of modes, with the 697 cm−1 and 1235 cm−1

modes gaining in magnitude, while the 783 cm−1, 1106 cm−1 and 1698 cm−1

modes decrease in magnitude.

1.3.5 Spectral densities of the bright excited states accessible from
the triplet states 3ππ∗ and 3ππ∗.

Figure S5 shows the spectral density of the higher lying bright triplet state
accessible (i.e. bright and within the probed 350-650 nm spectral range)
from the 3ππ∗ 3nπ∗ states, eventually populated after inter-system crossing
out of the singlet 1nπ∗ state. These spectral densities were used to simulate
the fingerprint excited state absorption signal of the triplet manifold around
525 nm (600 nm in the experiment, see Figures 1B and 1D). The spectral
densities were constructed using the same procedure outlined for obtaining
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the spectral density of the lowest singlet 1ππ∗ state. Thereby, the electronic
structure of the manifold of higher lying excited states was computed at
the 3ππ∗ and 3nπ∗ minima at the SS-CASPT2/SA-6-CASSCF(16,12) level
of theory (orbitals given in Figure S6) and gradients were calculated for the
roots with considerable oscillator strength. Two roots (root 4 and root 5)
were considered for 3ππ∗, one root (root 4) was considered for 3nπ∗. The
spectral densities are constructed using displacements d̃f relative to the cor-
responding minimum. All coefficients are listed in Table S2. Furthermore,
through state-averaging of up to 15 roots it was assured that there are no
further bright excited states that fall within the probed spectral window.

1.3.6 Parameters for the overdamped Brownian oscillator (OBO)
model

The parameters for the OBO model (eq. 17) were chosen so to reproduce
the bandwidth of the linear absorption spectrum at room temperature where
inhomogeneous broadening contribution was neglected. Best fit was obtained
for coupling strength λ = 400 cm−1 and time scale Λ = 1/50 fs−1. For
simplification, the same OBO parameters were used for all states.

1.3.7 Accounting for realistic pulses

Finite pulse duration is accounted for ad-hoc by convoluting the PP signal
W (3)(t2,Ω3) with a Gaussian function in the time domain

W (3)(t2,Ω3) =

∫ +∞

−∞
dτ W (3)(τ,Ω3) exp (−(τ − t2)2

2σ2
) (29)

A standard deviation σ = 8 fs was used (matching the experimental full-
width-half-maximum of 16 fs).

Figure S5: Spectral densities of the higher lying excited states accessible from
the triplet states 3ππ∗ (left and middle) and 3nπ∗ (right). See also Table S2.
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2 Simulation results

2.1 Electronic structure at representative geometries

Figure S6 summarizes the electronic structure of 4-thiouracil in aqueous so-
lution. The lowest ππ∗ transition is πS → π∗1 at 3.73 eV (332 nm) with
an oscillator strength 0.43 at the SS-CASPT2/SA-4-CASSCF(16,12) level,
followed by π2 → π∗1 absorbing at 4.39 eV (282 nm), exhibiting oscillator
strength of 0.04. One nπ∗ transition involving the sulfur lone pair appear
in the window above 300 nm, the nS → π∗1 absorbing at 2.82 eV (400 nm).
This transition is essentially dark. We note the large nS → π∗1/πS → π∗1 gap
of 0.90 eV.
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Figure S6: Vertical transition energies (E), oscillator strength (o.s.), leading configuration state functions (CSF)
and the associated weights (in brackets) of the lowest singlet and triplet states at all critical points of 4-thiouracil
obtained at the SS-CASPT2/SA-CASSCF(16,12) level. Active space orbitals shown to the right.

S
18



2.2 Linear absorption spectrum

Figure S7 left panel shows the LA spectra of 4-thiouracil obtained by semi-
classical sampling at room temperature at the SS-CASPT2 level of the-
ory. A minimal full valence-π CAS(10,8) (red line), as well as two active
spaces augmented by four and eight extra-valence virtual orbitals, denoted
as RAS(10, 8|2, 4) (green line) and RAS(10, 8|2, 8) (blue line) are compared
to the experimental spectrum (black line). The LA spectrum above 230 nm is
characterized by an intense band peaking at 330 nm and a weak band around
250 nm. At the SS-CASPT2 level we notice that the minimal CAS(10,8) red-
shifts the absorption band by ca. 20 nm (∼ 0.20 eV at this wavelength). The
addition of four and eight virtual orbitals corrects the red-shift to give an ex-
cellent agreement with the experimental absorption maximum. However, we
note that the simulated spectrum decay smoother at long wavelengths com-
pared to the experiment. Instead, and quite remarkably, the LA spectrum
constructed by means of cumulant expansion of Gaussian fluctuations (ocher,
see sec. 1.3.1) with line shape functions (sec. 1.3.4) within the DHO model
normal mode analysis (sec. 1.3.3) reproduces quantitatively the LA spec-
trum. Due to the involvement of low frequency mode (457 cm−1, 697 cm−1

and 783 cm−1) with large Huang-Rhys factors the spectrum shows no fine
vibrational structure (even at low temperature) and exhibits a weak depen-
dence on the system-bath coupling strength and fluctuation time scale (eq.
17).

Next, we focus on the individual contributions to the spectrum. To this
aim we expand the RAS(10, 8|2, 4), shown above to produce spectra in ex-
cellent agreement with the experimental data, by including the sulfur lone
pair thus obtaining a RAS(12, 9|2, 4) capable of resolving the relative posi-
tions of the bright and dark bands. Figure S7 right panel demonstrates that
the inclusion of the lone pair introduces a 5 nm red-shift in the SS-CASPT2
spectrum (compare solid (RAS(12, 9|2, 4)) and dotted (RAS(10, 8|2, 4) red
lines). The lowest absorption band emerges exclusively due to the πS → π∗1
transition (purple). The weak band around 250 nm has contributions from
two transitions, π2 → π∗1 (brown) and πS → π∗2 (cyan). The lowest nπ∗

transition nS → π∗1 in the system is found to overlap with red part of the
πS → π∗1 band, despite the 0.90 eV energy gap between both transitions at
the equilibrium geometry (Table in Figure S6). The accurate prediction of
the spectral position is important for the correct selection of samples for the
MD simulations. As seen in Figure S7 left panel, if one would rely on a full
π-valence AS for the simulations (red line in Figure S7, left) and would se-
lect snapshots between 320-340 nm (under the envelope of the experimental
pump pulse shown in brown in Figure S7, left) belonging to the high energy
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Figure S7: Left: Dependence of the LA spectrum of 4-thiouracil on the
size of the active space size. Experimental spectrum in aqueous solution
given as reference in black. Profile of the experimental pump pulse shown
in brown. LA spectrum obtained with the CGF method (sec. 1.3.1) with
line shape functions (sec. 1.3.4) constructed within the DHO model normal
mode analysis (sec. 1.3.3) shown in ocher. Right: Decomposition of the LA
spectrum, obtained at the SS-RASPT2/SA-6-RASSCF(12,9—2,4) level into
contributions from individual transitions.

region of the ππ∗-band. Instead, in reality, the pump pulse excites the center
of the band.

2.3 Trajectory plots

Figures S9-S12 show the evolution of the energies of the ground state (black),
first excited (S1, red), second excited (S2, green) and photoactive (cyan) sates,
as well as the total and kinetic energy (cyan) along the 30 trajectories run
in the course of this work. All trajectories were initiated in S2 which at
the Franck-Condon point is of ππ∗ nature and were run for up to 180 fs.
Remarkably, despite the 1 eV energy gap at the equilibrium geometry the
sampling of vibrational degrees of freedom decreases this energy considerably
(see Figure S8). Thus, while at equilibrium the energy gap is 1 eV, in the
spectral region [330:355nm] addressed by the pump pulse the average S2/S1

energy gap is about 0.5 eV.
In trajectories 4, 5, 6, 8, 10, 11, 14, 19, 20, 21, 24, 29, 30 the internal

conversion occurs within 20 to 40 fs, i.e. within one to two C−5-C6 oscilla-
tions. Few trajectories remaining on S2 until the end of the simulation (15,
17, 25). In contrast to 2-thiouracil, whose dynamics was recently studied in
gas-phase [Mai16], we do not observe sulfur-out-of-plane deformation in the
nπ∗ state. Instead, the system tends to preserve planarity. Furthermore, we
noticed that, nπ∗ → ππ∗ re-crossings do not occur once the population is
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Figure S8: Distribution of S2/S1 energy gaps at the beginning of the MD
simulations

entirely in the state with nπ∗ configuration. We also do not observe hops to
the ground state, the GS − nπ∗ gap being in the range of 50 kcal/mol and
never decreasing below 20 kcal/mol. The GS − nπ∗ gap decrease is favored
by hydrogen-out-of-plane deformations.
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Figure S9: Trajectories 1-6. Legend: GS (black), nπ∗ (red), ππ∗ (green),
photoactive state (cyan), total energy (cyan), kinetic energy (cyan).
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Figure S10: Trajectories 7-14. Legend: GS (black), nπ∗ (red), ππ∗ (green),
photoactive state (cyan), total energy (cyan), kinetic energy (cyan).
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Figure S11: Trajectories 15-22. Legend: GS (black), nπ∗ (red), ππ∗ (green),
photoactive state (cyan), total energy (cyan), kinetic energy (cyan).
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Figure S12: Trajectories 23-30. Legend: GS (black), nπ∗ (red), ππ∗ (green),
photoactive state (cyan), total energy (cyan), kinetic energy (cyan).
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2.4 Population dynamics

The population of the second excited state aS2(t) (quantum mechanical quan-
tity), shown in blue in Figure S13, was computed as follows:

aS2(t) =

∑
j

∣∣cj(t)∣∣2
Ntot

(30)

The fraction of trajectories NS2(t) in the second excited state (classical quan-
tity), shown in red in Figure S13, was computed as follows:

fS2(t) =
NS2(t)

Ntot

. (31)

It is the state with ππ∗ configuration (diabatic picture) and not always the
adiabatic S2 that is the source of the stimulated emission, whose ultrafast
decay in turn is used to extract the lifetime of the bright state. It has to
be considered that for certain geometrical deformations the energetic order
of ππ∗ and nπ∗ might change, i.e. the ππ∗ state might become the lowest
excited state. Thus, a second classical quantity, the fraction of trajectories
Nππ∗(t) in the state with ππ∗ configuration, shown in green in Figure S13, was
computed following eq. 31, whereas the number of trajectories in the state
with ππ∗ configuration was obtained by exploiting the large difference the
magnitude of the transition dipole moments of ππ∗ and nπ∗. The temporal
profile of the fraction fππ∗(t) was fitted with a mono-exponential function of
the form e−t/tππ∗ in order to obtain the lifetime of the bright state. The fit
is shown in black in Figure S13.

Figure S13: Legend: GS (black), nπ∗ (red), ππ∗ (green), photoactive state
(cyan), total energy (cyan), kinetic energy (cyan).
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2.5 Normal mode analysis

In this section we analyze the trajectories for coherent vibrational features.
To this aim we projected the geometrical deformations along each trajectory
(i.e. the difference in Cartesian coordinates between the geometry at time
t and the ground state equilibrium geometry) on the ground state normal
modes (thus neglecting Duschinsky rotations). In particular, we used eq. 28
with a time-dependent difference ∆Q(t) in the Cartesian coordinate space

qi(t) = P−1M
1
2 ∆Q(t) (32)

to obtain time-dependent displacement vector qi(t) containing the displace-
ments qik along each normal mode ξk. With qi(t) at hand we are able to
decompose the expression for the energy gap 23 and show the oscillatory
dynamics ∆Eijk(q̃(t)) along each mode ξk.

∆Eijk(q̃k(t)) =
1

2
ω2
kd̃

2
ik − ω2

kd̃ikq̃ik(t), (33)

with i ∈ {1ππ∗,1 nπ∗}. Thereby, when evaluating eq. 33, either the excited
state equilibrium displacements d̃ππ∗,k or d̃nπ∗k (with respect to the ground
state, sec. 1.3.4 and Table S1) are considered, depending on the state in which
the dynamics is evolving. For several modes we resolve coherent vibrations
which lead to a significant modulation of the energy gap (see Figures S14
and S15). We map them to the same normal modes dominating the spectral
density (see Figure S4). However, as the dynamics simulations is run in the
excited state the oscillation period differs slightly from the one in the ground
state. For example, the ring breathing dynamics, which has an oscillation
period of 73 fs in the ground state, corresponding to a frequency of 457
cm−1) and thus in agreement with Raman data (440 cm−1), is found to have
a period of ∼ 90 fs in the excited state, which corresponds to a frequency
of 370 cm−1, which in turn matches the 400 cm−1 mode obtained from the
PP spectra analysis. Two modes with ground state frequencies of 697 cm−1

and 784 cm−1 are responsible for the spectral dynamics with a 680 cm−1

frequency. It should be noted that in the excited state the two modes exhibit
frequencies of 710 cm−1) and 665 cm−1, respectively. They both describe
hydrogen out-of-plane deformations.

In the mid- and high-frequency window we encounter further coherent
oscillations associated associated with hydrogen in-plane bending and with
bond stretchings. In particular, coherence is retained most clearly for the
N2-C3 and C3-C4 stretchings. The C3-C4 stretching exhibits the most pro-
nounced modulation of the energy gap at early times (ca. 10 kcm−1), related
to the large displacement d̃ππ∗,25 of 0.28 Bohr

√
amu (Table S1). Both modes
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shows slightly prolonged oscillation periods (∼ 22−23 fs) with respect to the
ground state (∼ 20 fs), probably due to the reduced double bond character
in the excited state.

After decay to the S1(1nπ∗) state through the CI(1ππ∗/1nπ∗) the excess
energy, initially accumulated in eight modes dominating the spectral den-
sity of the S2 state (Figure S4) and shown in Figures S14 and S15) remains
mostly stored in the same vibrational modes after transfer to the 1nπ∗ state.
This is recognized by looking at the coherent oscillations of the relative dis-
placements qik for each mode k with respect to the GS equilibrium geometry
along the dynamics (i.e. large values of qik indicate strong deformation along
the k-th mode). We observe coherent oscillations along the breathing mode
(457 cm−1, Figure S16A) shows the hydrogen out-of-plane bending modes
(697 cm−1 and 784 cm−1 and the mid frequency hydrogen in-plane bending
mode (1106 cm−1, 1207 cm−1 and 1234 cm−1, Figure S16B), during the entire
duration of the molecular dynamics (i.e. up to 180 fs). Unlike the stimulated
emission signal, which decays on a sub-100 fs time scale the vibrational co-
herences do not disappear once the population is in the 1nπ∗ state as energy
redistribution takes longer than 200 fs. On the other hand, the high fre-
quency stretching modes (1574 cm−1 and 1698 cm−1, Figure S16C) exhibit a
faster damping and toward the end of the simulation show oscillations with
weak amplitude.

Interestingly, we observe the activation of low frequency out-of-plane
modes (70 cm−1 and 160 cm−1, Figure S16D) which break the ring planarity
by moving either N1 or N3 out-of-plane (by up to 20°) and distorting also the
adjacent hydrogen thus inducing a characteristic puckering. We remind that
the 70 cm−1 mode was excluded in the sampling as we observed breaking of
the quadratic approximation and sampling of strongly distorted geometries.
Yet, we find out that energy redistribution in this mode sets up within ca.
60 fs.

2.6 Planar and twisted regions of the S2 PES

Recently, Mart́ınez-Fernández at al. reported a joint experimental / theoret-
ical study on the closely related 5-methyl-4-thiouracil (4-thiothymine). The
pump (at 270 nm, 334 nm and 387 nm) - probe (400-700 nm range) spectra
with 200 fs temporal resolution were supplemented with potential energy sur-
face exploration at the CASSCF level (augmented with CASPT2 correction
at optimized geometries for accurate energetics) and semi-empirical (FOMO-
CI) molecular dynamics simulations covering 10 ps after excitation with the
pump pulse [Mar17]. Ring twisting is found to be essential for the ππ∗ state
decay. The authors report a twisted minimum S2T which promotes the decay
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Figure S14: Decomposition of the excited state dynamics in the contributions
of the individual active modes. Shown are energy gap fluctuations for the
dominant modes with large displacements d̃ik in the frequency range below
1000 cm−1.
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Figure S15: Decomposition of the excited state dynamics in the contributions
of the individual active modes. Shown are energy gap fluctuations for the
dominant modes with large displacements d̃ik in the frequency range above
1000 cm−1.
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Figure S16: Fluctuation of the relative displacement qik with respect to the
GS equilibrium along selected vibrational modes.
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with a 1.0 ps time constant, while the planar minimum S2P is found to trap
part of the population which decays with 3.6 ps.

Starting from a geometry distorted in a way similar to the structure of
S2T shown in Figure 1 of ref. [Mar17] we were able to locate an out-of-plane
conformation (see Figure S17) for 4-thiouracil. The minimum was located
at the MS-5-CASPT2/CASSCF(12,9)/ANO-L with contraction for C and N
[4s3p2d], for H [3s2p1d] and for S [5s4p3d2f] by minimizing the energy of the
third state. The geometry of S2T is characterized with a slightly distorted ring
planarity most suitably described by dihedrals C2N3C4C5 = 30°, N3C4C5C6 =
-33°and C2N3C4S = 197°. Furthermore, we note the strongly elongate C4C5
bond (1.47 Å at S2T vs. 1.38 Å at S2P ). As also reported in [Mar17] this
minimum is higher in energy compared to the planar minimum. Figure S17
depicts the energetics of the FC point and both minima on the S2 PES. Linear
interpolation between the points provides an idea about the PES profile. It
attracts attention that the twisted minimum is of the same energy as the FC
point, i.e. 0.35 eV above the planar minimum. Furthermore, we note the
negligible barrier connecting S2T to S2P . This makes S2T meta-stable, but we
do not exclude the possibility that it is an artifact of the method used. The
twisted minimum is characterized by a slightly smaller 1ππ∗/1nπ∗ energy gap
of 0.37 eV compared to 0.56 eV at S2P . Contrary to what is reported for
4-thiothymine in [Mar17] the conical intersection we find between 1ππ∗/1nπ∗

is planar (thus geometrically closer to S2P ) and energetically 0.2 eV above
S2P (thus below S2T ). The emission spectrum of the twisted geometry peaks
at 382 nm (S0-S1 energy gap at S2T is 3.25 eV).
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Figure S17: Linear interpolation between FC and both minima - planar
(P) and twisted (T) - on the PES of the S2(1ππ∗) state. Characteristic
coordinates are given.

We analyzed the trajectories focusing on the in-plane (bond stretch-
ing) and out-of-plane (ring puckering, sulfur pyramidalization) dynamics in
the system (Figure S18). From the plots of the N3C4C5C6 (-33°at S2T ),
C2N3C4C5 (30°at S2T ) and C2N3C4S (197°at S2T ) dihedrals it is evident that
4-thiouracil explores the region of near-planarity and does not reach values
of 30°out-of-plane deformation. Furthermore, we note that the bond lengths
exhibit oscillations with large amplitudes in the first 100 fs. The C5-C6

and C4-S exhibit pronounced elongation from 1.36 Å and 1.65 Å to 1.52 Å
and 1.90 Å, respectively, while the C4-C5 bond is shortened from 1.43 Å to
1.34 Å. These initial deformations which determine the first 20 fs of the S2

dynamics correspond to the deformations required to reach S2P . Thus, as
expected from the linear interpolation (Figure S17) the system exhibits ini-
tially a strong gradient toward S2P . No out-of-plane motion is activated in
the FC region. After the initial large oscillation amplitude the C4-C5 bond
is damped to 1.38 − 1.42 Å, while the C4-S bond shortens gradually in the
next 80 fs to 1.7 Å.

Next, we analyzed the geometries of the hopping events along the 30
trajectories. Thereby, we limited the analysis to 47 hopping events (some
trajectories exhibit more than one hopping event in the course of the simu-
lation) at which the 1ππ∗/1nπ∗ energy gap is less than 0.01 eV which can be
regarded as a conical intersection. The results are presented in Figure S19.
The conical intersections are characterized with significantly elongated C5-C6

and C4-S bond lengths and with a shortened C4-C5 bond length, with values
well beyond S2P equilibrium. The elongation of the C5-C6 bond was found
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in the PES exploration to be essential for reaching the conical intersection.
The hopping occurs at slightly distorted geometries showing predominantly
negative deformation of the N3C4C5C6 dihedral and predominantly positive
deformation of the C2N3C4C5. The same trend is encountered at S2T which
suggests that the conical intersection seam lies in the same direction (rela-
tive to S2P ) as the twisted minimum. Finally, the sulfur is found to fluctuate
±10°above the plane of the ring.

Based on the above analysis we are confident that, albeit present, the
twisted minimum S2P on the PES of the 1ππ∗ state is not involved in the
deactivation dynamics.
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Figure S18: Evolution of several representative coordinates averaged over 30
trajectories (red) with standard deviation (black).
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Figure S19: Values for several important coordinates at the hopping events.
47 structures were selected out of the 30 MD simulations with 1ππ∗/1nπ∗

energy gap of 0.1 eV.
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2.7 Parameters for the DHO model
Table S1. Parameters for constructing the spectral densities of the singlet
states 1ππ∗ and 1nπ∗ based on the normal mode analysis method (sec. 1.3.3).
The parameters of the 1ππ∗ are used to simulate the linear absorption spec-
trum and the stimulated emission in the pump probe spectra.

Normal mode 1ππ∗ 1nπ∗

� ω [cm−1] εae [cm−1] 28600b εae [cm−1] 20800

ω2 160 d̃2 0.34 d̃2 0.39

ω3 251 d̃3 0.16 d̃3 0.33

ω4 330 d̃4 0.19 d̃4 0.22

ω5 457 d̃5 0.42 d̃5 0.27

ω6 467 d̃6 0.09 d̃6 0.05

ω7 583 d̃7 0.18 d̃7 0.01

ω8 640 d̃8 0.06 d̃8 0.03

ω9 698 d̃9 0.29 d̃9 0.42

ω10 727 d̃10 0.20 d̃10 0.09

ω11 784 d̃11 0.30 d̃11 0.18

ω12 833 d̃12 0.11 d̃12 0.03

ω13 859 d̃13 0.02 d̃13 0.05

ω14 948 d̃14 0.06 d̃14 0.02

ω15 984 d̃15 0.06 d̃15 0.16

ω16 1024 d̃16 0.05 d̃16 0.07

ω17 1106 d̃17 0.23 d̃17 0.04

ω18 1207 d̃18 0.15 d̃18 0.13

ω19 1235 d̃19 0.16 d̃19 0.23

ω20 1282 d̃20 0.20 d̃20 0.22

ω21 1387 d̃21 0.12 d̃21 0.07

ω22 1451 d̃22 0.07 d̃22 0.07

ω23 1536 d̃23 0.05 d̃23 0.09

ω24 1575 d̃24 0.16 d̃24 0.18

ω25 1698 d̃25 0.28 d̃25 0.14

ω26 1801 d̃26 0.02 d̃26 0.02
a εe is the electronic contribution to the energy of the i-th ES (GS energy εg

is set to zero);
b spectrum origin (adiabatic transition energy) shifted to match the experi-

mental value;
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Table S2. Parameters for simulating the excited state absorption associated
with the triplet ππ∗ and nπ∗ states obtained with the gradient projection method
(sec. 1.3.3) using gradients of the bright excited states accessible from each state
at the SS-CASPT2/SA-5-RASSCF(12, 9|2, 4) and the ground state normal modes.

Normal mode bright states from 3ππ∗min bright states from 3nπ∗min

root 4a,d root 5b,d root 4c,d

� ω [cm−1] εee/f [cm−1] 40415 42830 εee/f [cm−1] 40070

ω2 160 d̃2 0.42 d̃2 1.47 d̃2 1.66

ω3 251 d̃3 0.63 d̃3 0.50 d̃3 0.32

ω4 330 d̃4 0.74 d̃4 0.23 d̃4 0.09

ω5 457 d̃5 0.22 d̃5 0.25 d̃5 0.17

ω6 467 d̃6 0.35 d̃6 0.20 d̃6 0.02

ω7 583 d̃7 0.03 d̃7 0.38 d̃7 0.47

ω8 640 d̃8 0.47 d̃8 0.23 d̃8 0.10

ω9 698 d̃9 0.11 d̃9 0.08 d̃9 0.02

ω10 727 d̃10 0.17 d̃10 0.10 d̃10 0.09

ω11 784 d̃11 0.03 d̃11 0.04 d̃11 0.08

ω12 833 d̃12 0.23 d̃12 0.04 d̃12 0.08

ω13 859 d̃13 0.25 d̃13 0.06 d̃13 0.04

ω14 948 d̃14 0.10 d̃14 0.17 d̃14 0.18

ω15 984 d̃15 0.21 d̃15 0.16 d̃15 0.14

ω16 1024 d̃16 0.02 d̃16 0.04 d̃16 0.07

ω17 1106 d̃17 0.09 d̃17 0.06 d̃17 0.14

ω18 1207 d̃18 0.02 d̃18 0.11 d̃18 0.11

ω19 1235 d̃19 0.07 d̃19 0.17 d̃19 0.13

ω20 1282 d̃20 0.20 d̃20 0.07 d̃20 0.01

ω21 1387 d̃21 0.05 d̃21 0.16 d̃21 0.14

ω22 1451 d̃22 0.07 d̃22 0.03 d̃22 0.00

ω23 1536 d̃23 0.14 d̃23 0.11 d̃23 0.09

ω24 1575 d̃24 0.21 d̃24 0.16 d̃24 0.13

ω25 1698 d̃25 0.06 d̃25 0.06 d̃25 0.07

ω26 1801 d̃26 0.05 d̃26 0.07 d̃26 0.10
a TDM: 0.570 -0.143 0.364;
b TDM: 0.243 -0.035 0.144;
c TDM: 0.508 -0.150 0.324;
d root labeling follows the energetic order at the corresponding minimum

3ππ∗min or 3nπ∗min, accounting for both the electronic contribution εf and the state-
specific reorganization energy (eq. 19);

eεe/f is the electronic contribution to the energy of the i-th ES (GS energy εg
is set to zero);
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3 Steady-State Spectroscopy

The steady-state absorption spectrum was measured at room temperature using a
V-570 Jasco spectrophotometer. It was background corrected by subtracting the
solvent spectrum measured at the same experimental conditions. The 4-thiouracil
solution with concentration of 6 mM results in an absorbance of 2 OD at the
central pump wavelength, as shown in Figure S20.

Figure S20: Linear absorption spectrum of 4-thiouracil in PBS.

4 Transient absorption spectroscopy

4.1 Transient absorption spectra

Figure S21 reports the transient spectra. A blueshift is observed for the redder
wavelengths (500-700 nm), while the blue part of the spectrum (350-500 nm) is
modulated by a complex oscillatory pattern (see also Figure S22).
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Figure S21: Transient absorption spectra in a) short and b) long timescales.

Figure S22: Temporal evolution of the wavelengths at which the maximum
of the SE (upper panel) and the minimum of the PA (below) bands occur.
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4.2 Global analysis

A global analysis of the data [Sto04] allows to obtain the time constants governing
the dynamics over the entire dataset. A preliminary step in global analysis is to
perform singular value decomposition (SVD) in order to find the number of linearly
independent vectors (decay constants) significantly different from the noise. In the
present work we found three dominant components and some others associated to
the coherent artefact. Then a nonlinear least squares fit is performed simulta-

neously on these transients with exponential functions Aie
− t
τi . For a given time

constant τi the decay associated spectrum (DAS) gives the wavelength dependent
amplitude associated with it. The analysis takes into account also the coherent
artefact, whose oscillatory time profile was modelled by a sequence of exponen-
tials, and the dispersion due to the chirp of the probe (modelled by a third-order
polynomial).

The meanings of the signs of the DAS, depending on whether they refer to
positive (PA) or negative (GSB/SE) bands, are:

� Positive ∆A (PA bands): negative DAS are associated to a rise of the signal
and positive DAS to a decay.

� Negative ∆A (SE bands): positive DAS related to a rise of the signal, whereas
negative DAS to a decay.
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4.3 Coherent oscillations

Figure S23: a) 2D Fourier transform of the residuals of the TAS measurement;
b) residuals at given wavelengths.

A two-dimensional (2D) Fourier transform of the residuals of the global fit was
performed to study the excited-state coherent oscillations (Figure S23a). To do
so, the chirp of the probe was corrected by fitting the dispersion function and
one-dimensional Fourier transform of the oscillatory components O(λpr, τ) was
performed for each probe wavelength λpr:

f(λpr, ω) =

∫
O(λpr, τ)exp(−iωτ)dτ (34)

We observe two modes at 680 and 400 cm−1. At a wavelength of 400 nm (peak
of the SE) the 680 cm−1 mode presents a minimum, whereas the 400 cm−1 mode
is enhanced. This behaviour is associated to the wavepacket motion around the
Minππ∗, which results on a phase flip in the oscillations (Figure S23b).
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4.4 Transient absorption in the UV range

TA measurements have been performed also probing in the UV range (250-360 nm).
In Figure S24 UV TA map is reported: we observe the GSB band centered at
335 nm and positive ESA signals in the deeper UV.

If we look at the dynamics in Figure (S25b), we note that GS signal shows
a recovery, providing important complementary dynamical information about the
population remaining in the excited states and returning to the ground state.

Figure S24: ∆A map of 4-thiouracil in PBS (pH 7.4) solution, probing in the
UV range.

Figure S25: (a)∆A spectra at selected pump-probe delays probing in the UV
range; (b) dynamics at different probe wavelengths.
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4.5 Dynamics at 600 nm for 2-thiouracil and 4-thiouracil

Figure S26 shows the transient absorption dynamics at 600 nm for the 2-thiouracil
and 4-thiouracil. The traces show a decay with time constants about 406 fs and
200 fs for the triplet formation of the 2-thiouracil and 4-thiouracil, respectively.

Figure S26: Dynamics at 600 nm. The red curves are for the 2-thiouracil
and the blue curves are for the 4-thiouracil. The dots are the experimental
data and the solid lines the exponential fits.
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5 Cartesian coordinates

Min S0
C 17.803042 18.030324 16.491376
N 18.661627 17.002731 16.231633
C 18.410827 16.057711 15.278065
C 17.318758 16.138658 14.477283
C 16.426965 17.250824 14.598700
N 16.752104 18.128950 15.609377
H 17.124179 15.377005 13.740260
S 15.077605 17.502492 13.673507
O 17.941570 18.789844 17.447464
H 19.124280 15.250151 15.226637
H 16.118840 18.911060 15.770608
H 19.485142 16.940630 16.830954

Min S1 (
1nπ∗)

C 17.784640 18.011172 16.486322
N 18.668585 17.016141 16.213425
C 18.484574 16.068783 15.209550
C 17.389047 16.182801 14.373806
C 16.504986 17.242518 14.553838
N 16.739160 18.141120 15.603012
H 17.203099 15.433819 13.619843
S 15.023214 17.471955 13.652527
O 17.896998 18.749115 17.470979
H 19.173312 15.242796 15.199138
H 16.123380 18.923950 15.791584
H 19.465438 16.972000 16.844443

Min S2 (
1ππ)

C 17.819666 18.024257 16.472557
N 18.684469 16.993881 16.229771
C 18.479440 15.995799 15.288763
C 17.301815 16.121072 14.466531
C 16.461367 17.212756 14.606097
N 16.770458 18.153784 15.593222
H 17.075381 15.365273 13.730795
S 15.016891 17.524932 13.696204
O 17.965927 18.780585 17.435097
H 19.175029 15.177161 15.265346
H 16.117659 18.909767 15.770729
H 19.490702 16.963273 16.855938
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CI (1nπ∗ / 1ππ)
C 17.754662 18.027106 16.484986
N 18.649314 16.947184 16.256347
C 18.523110 15.924850 15.400140
C 17.235141 16.055944 14.484947
C 16.406074 17.180292 14.608318
N 16.724656 18.133494 15.590900
H 17.031863 15.305557 13.726855
S 14.981968 17.540044 13.679208
O 17.971020 18.774311 17.455182
H 19.240262 15.109272 15.361675
H 16.041623 18.896007 15.732947
H 19.464633 16.988521 16.910987

Min 3ππ
C 17.813563 18.038280 16.436765
N 18.683893 17.011787 16.211145
C 18.457285 15.995849 15.291382
C 17.288988 16.051565 14.528489
C 16.447394 17.146140 14.635792
N 16.807423 18.185742 15.514693
H 17.030206 15.234027 13.876175
S 15.112441 17.380037 13.558597
O 17.925660 18.786451 17.410229
H 19.112478 15.145162 15.337345
H 16.139235 18.913371 15.736423
H 19.474134 16.969911 16.850822

Min 3nπ
C 17.800008 18.005642 16.453828
N 18.658631 16.964826 16.245068
C 18.420982 15.940559 15.334052
C 17.351701 16.077125 14.447552
C 16.504953 17.166243 14.552005
N 16.776238 18.127591 15.545192
H 17.183699 15.341071 13.677790
S 15.061022 17.457119 13.630422
O 17.924208 18.781810 17.403336
H 19.099186 15.105091 15.350798
H 16.095875 18.845702 15.759768
H 19.453900 16.930258 16.880131
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Min S3 (
1ππ)

C 17.797803 17.974836 16.390006
N 18.658770 16.960925 16.203744
C 18.429770 15.954244 15.271514
C 17.292185 16.026180 14.439782
C 16.438276 17.140824 14.516521
N 16.718080 18.051483 15.527778
H 17.089701 15.229105 13.741468
S 15.000640 17.606076 13.645676
O 17.919198 18.834523 17.292868
H 19.120880 15.129815 15.280814
H 16.100805 18.850014 15.684608
H 19.471592 16.941656 16.824403

CI (S3/S2)
C 17.797803 17.974836 16.390006
N 18.658770 16.960925 16.203744
C 18.429770 15.954244 15.271514
C 17.292185 16.026180 14.439782
C 16.438276 17.140824 14.516521
N 16.718080 18.051483 15.527778
H 17.089701 15.229105 13.741468
S 15.000640 17.606076 13.645676
O 17.919198 18.834523 17.292868
H 19.120880 15.129815 15.280814
H 16.100805 18.850014 15.684608
H 19.471592 16.941656 16.824403
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