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A Deontic Argumentation Framework
based on Deontic Defeasible Logic

Guido Governatori1, Antonino Rotolo2, and Régis Riveret1

1 Data61, CSIRO, Australia
2 CIRSFID, University of Bologna, Italy

Abstract. Deontic Defeasible Logic (DDL) is a simple and computationally ef-
ficient approach for the representation of normative reasoning. Traditionally de-
feasible logics are defined proof theoretically based on the proof conditions for
the logic. In this paper we present an argumentation system that corresponds to
a variant of DDL. The resulting machinery is able to grasp in a natural way in-
tuitions behind deontic reasoning with conditional norms featuring obligations,
prohibitions, and (strong or weak) permissions.

Keywords: Argumentation ·Deontic Argumentation ·Deontic Defeasible Logic.

1 Introduction

Computational models of argument address defeasible claims raised on the basis of
partial, uncertain and possibly conflicting pieces of information. Argumentation is per-
vasive in artificial intelligence, with many application domains [2].

Normative systems, and in particular legal systems, constitute a rich test bed and a
major application domain for formal models of argument [13]. There, models of argu-
ment have applications ranging from case-based reasoning [14] to strategic studies in
legal interactions [16, 17].

When representing and reasoning upon norms, deontic concepts such as obligation,
prohibition and permission play a crucial role; and there exist some studies of deontic
reasoning with formal models of argument, and a few argument-based models focus on
(conditional) norms, deontic operators and their interplay [3, 4].

Besides these undertakings in deontic argumentation, many deontic formalisms
have been previously designed [6]. Amongst formalisms with practical applications,
DDL has been perhaps the most developed to represent and reason upon norms [8–10].
Moreover and interestingly, Defeasible Logic (DL) has possible interpretations in terms
of arguments [7, 15, 12], but its deontic variants have received little or no consideration
to construct argument-based frameworks for deontic reasoning. In this paper, we con-
sider constructs from DDL to build a deontic argumentation system.

Contribution Following the approach in DDL, we offer a rich formalism able to
express relevant aspects of deontic reasoning, such as contrary-to-duty obligations and
preferences about permissions. The deontic argumentation framework is described in
the remainder of the paper.
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2 Deontic Argumentation System

This section presents the deontic argumentation system. We first specify its language,
then arguments are constructed. Eventually, the justification and rejection of arguments
are defined.

2.1 Language

The following definitions provide the building blocks of our formalism:
– literals and modalities ;
– preference operators for obligations and permissions.
– constitutive and deontic rules.

The attention is restricted to a simple propositional language with atomic negation
and supplemented with a set of deontic operators {O,P} where O indicates an obliga-
tion, and P a permission.

Definition 1. A literal is a plain literal iff it is an atomic proposition p or the negation
of an atomic proposition, i.e., ¬p. A literal is a deontic literal iff it has either the form
Ol or Pl or ¬Ol or ¬Pl where l is a plain literal. A literal is either a plain literal or a
deontic literal.

Notation 1 Given a set of literals L, the set of plain literals in L is denoted as LitL
and the set of modal literals as ModLitL. However, in the remainder, the set of literals
may be left implicit, and we may omit the subscript L.

We introduce two preference operators, ⊗ for obligations and � for permissions.
These operators are used to build chains of preferences, called ⊗- and �-expressions.
Intuitively, an ⊗-expression such as l1 ⊗ l2 ⊗ . . .⊗ ln indicates that the obligation that
l1 is preferred to the one that l2, which is preferred to l3 etc.

Definition 2. Let � ∈ {⊗,�}. An �-expression is defined as follows:
1. every literal l ∈ Lit is an �-expression;
2. if A is an �-expression and c1, . . . , ck ∈ Lit, then A � c1 � · · · � ck is an �-

expression;
3. nothing else is an �-expression.

Notation 2 Given a set of literals L, the set of �-expressions defined by L is denoted
Pref�,L or simply Pref� if L is left implicit.

Definition 3. Let Lbl be a set of arbitrary labels. A set of rules Rul is a well-formed
set of rules over a set of literals L iff:

Rul ⊆ (RulOd ∪ RulOd ∪ Rulcd) ∪ (RulOdft ∪ Rulcdft)

such that

RulOd = {r : a1, . . . , an ⇒O b | r ∈ Lbl, {a1, . . . , an} ⊆ Lit ∪ModLit, b ∈ Pref⊗}
RulPd = {r : a1, . . . , an ⇒P b | r ∈ Lbl, {a1, . . . , an} ⊆ Lit ∪ModLit, b ∈ Pref�}
Rulcd = {r : a1, . . . , an ⇒c b | r ∈ Lbl, {a1, . . . , an} ⊆ Lit, b ∈ Lit}
RulOdft = {r : a1, . . . , an  O b | r ∈ Lbl, {a1, . . . , an} ⊆ Lit ∪ModLit, b ∈ Lit}
Rulcdft = {r : a1, . . . , an  c b | r ∈ Lbl, {a1, . . . , an} ⊆ Lit, b ∈ Lit}.
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Rules with an arrow⇒ are defeasible rules, while rules with an arrow are so-called
defeaters which are essentially used to specify exceptions to defeasible rules. A defea-
sible rule can be used to support its consequent, whereas a defeater does not support its
consequent.

Notation 3 The set of antecedents of a rule r is denoted A(r), and C(r) denotes its
consequent. Other abbreviations are, for example, RulO = RulOd ∪ RulOdft, and Rul [b]
to denote the set of rules whose consequent is b, and Ruld[b] the set of defeasible rules
whose consequent is b.

Consequents of rules can be incompatible, and such incompatibilities are captured
though complementary literals.

Notation 4 The complementary of a literal q is denoted by ∼q; if q is a positive literal
p, then ∼q is ¬p, and if q is a negative literal ¬p, then ∼q is p.

Definition 4. Let l ∈ Lit∪ModLit denote a literal. A set of literals is a set of comple-
mentary literals of l, denoted Compl(l), iff:
– if l = p ∈ Lit then Compl(l) = {∼l};
– Compl(Ol) = {¬Ol,O∼l,¬Pl,P∼l}, Compl(¬Ol) = {Ol,¬Pl}, Compl(Pl) =
{O∼l,¬Pl}, Compl(¬Pl) = {¬O∼l,Pl,¬P∼l}.

As usual, we can define a superiority relation between rules to determine their rel-
ative strength in case of conflict. As shown in [1], we can disregard the superiority
relation in the discussion, since modular transformations exist that empty this relation
while maintaining the same conclusions in the language [8]. This result holds both for
ambiguity blocking and ambiguity propagating DL [7]. It also applies to deontic ex-
tensions of DL (including the one with ⊗ and � operators), by means of the notion of
inferiorly defeated rules [11].

2.2 Arguments and attacks

Defining the notion of argument in the current context is not obvious. The complexity
mainly resides in the richness of the language (especially the presence of the operators
⊗ and�) and in the constructive nature of the introduction of modalities. The derivation
of a modal literal such as Ob depends on the constructive provability of b using rules
such as a1, . . . , an ⇒O b, and the derivation of ¬Ob depends on showing that there is
no proof for Ob. We propose thus the following definition of arguments.

Definition 5. An argument A for a conclusion p generated from a set of rules Rul is
a (possibly infinite) tree where
1. the root node is labelled by literal p;
2. any node is labelled by either a literal h ∈ Lit ∪ModLit or no literals;
and such that:
1. if the node labelled by h has children h1, . . . , hn (n > 0), then all arcs connecting

h1, . . . hn to h are labelled by exactly one rule r ∈ Rul with A(r) = {b1, . . . , bn}
such that h1 = b1, . . . , hn = bn, and either
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(a) if r ∈ RulOd and C(r) = c1 ⊗ · · · ⊗ cm then h = Ock (1 ≤ k ≤ m);
(b) if r ∈ RulPd and C(r) = c1 � · · · � cm then h = Pck (1 ≤ k ≤ m);
(c) if r ∈ Rulcd then h = C(r);
(d) if r ∈ RulOdft then h = p = ¬OC(r) is the root of the argument;
(e) if r ∈ Rulcdft then h = p = C(r) is the root of the argument;

2. if the node labelled by h has no children (i.e. h is a leaf node), then either
(a) h is labelled by no literals;
(b) h = ¬�l (� ∈ Mod);
(c) h = Pl.

The interpretation of item (d) is as follows. First of all, notice that we have to do
with a case where a defeater is considered. A defeater for O with head p does not
positively prove anything, but it can attack any obligation rule a1, . . . an ⇒O ¬p sup-
porting ¬p (i.e., proving O¬p). Conceptually, this means that the defeater can be a
reason for stating that p is not obligatory, i.e., that ¬Op is the case. Notice, also, that
such a defeater—as any defeater here, and as done in standard argumentation semantics
for DL [7]—can only label arcs leading to a root. In the modal case, this makes the
interaction among arguments simple, as the concept of derivation for a negative modal
literal depends on the relation between the argument considered and other arguments
attacking the former one. Hence—as we will see—that ¬Op is justified depends on the
absence of successful arguments whose conclusion is O¬p.

Remark 1. Item (b) of the last condition where the modality � is a permission P cap-
tures the case where the conclusion l as strong permission—i.e. a permission derived
from a rule with⇒P—is defeated (as we will see later). If the modality � is an obliga-
tion O, then it captures the case where a weak permission is put forward. Similarly, the
last item (c) of condition (2) captures the case where a weak permission is assumed. In
both cases, such a weak permission is not directly expressed in a specific deontic rule
and cannot be constructively reflected in the tree-structure. In this sense, such nodes can
only be leaf nodes.

Example 1. Suppose we have the following rule set:

{r1 : ⇒O c1 ⊗ c2, r2 : Oc1,¬Op⇒P q}.

Then, we can build an argument as in Figure 1.

Pq

Oc1

r1

r2

¬Op

r2

Fig. 1. An argument.

�
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We may employ some auxiliary terminology.
– A supportive argument is a finite argument in which no defeaters are used.
– An argument is positive iff no defeater is used in it.
– A constitutive argument is an argument where all rules are constitutive rules.
– Any literal/modal literal labelling any node of an argument A is a conclusion of A.

Definition 6. Let A denote any argument with height j ≥ 1 for any literal p.3 The top
subargument of A, denoted At, is the top subargument of A with height 1. Let us use
R(At) to denote the rule associated with the arcs arriving at the root of At.

On the basis of arguments, we provide the core notion of the approach —argument
agglomeration set— which gathers all arguments that are strictly needed to accept an
argument. Such agglomeration set caters for two cases:
– when nodes are labelled by rule conclusions, in case of ⊗- or �-expressions in the

head of rules such as a ⊗ b and p � q, the fact that Ob or Pq label nodes means that
a and O¬p have been concluded;

– when leaf nodes are labelled modal literals such as ¬Op we fall in the case discussed
in Remark 1; even here, conditions external to the single argument at stake must be
checked, which is required to verify that such an argument is justified.

Definition 7. Let A ∈ Args be an argument such that for every node h of A labelled
by a modal literal ¬Ol, ¬Pl, Ol or Pl, the arcs leading to h are labelled by
– (for literals such as Ol) r : b1, . . . , bn ⇒ c1 ⊗ · · · ⊗ cm and l = ck (1 ≤ k ≤ m),

and
– (for literals such as Pl) r : b1, . . . , bn ⇒ d1 � · · · � dm and l = dk (1 ≤ k ≤ m).
An argument agglomeration set Aggl(A) ⊆ Args w.r.t. A is a smallest set of arguments
such that A ∈ Aggl(A) and:
– for each (leaf) node labelled ¬Ol or ¬Pl,
• there is an argument B ∈ Aggl(A) whose conclusion is p ∈ Compl(Ol);
• Aggl(B) ⊆ Aggl(A);

– for each node labelled cj (1 ≤ j < k),
• there is an argument C ∈ Aggl(A) whose conclusion is ¬cj ∈ Compl(cj);
• Aggl(C) ⊆ Aggl(A);

– for each node labelled dj (1 ≤ j < k),
• there is an argument D ∈ Aggl(A) whose conclusion is q ∈ Compl(Pdj);
• Aggl(D) ⊆ Aggl(A).

Remark 2. The agglomeration set of any argument A gathers all arguments that are
strictly needed to accept the construction of A. Thus, the agglomeration set of A can be
viewed as a single argument where special arcs connect nodes in A labelled by modal
literals obtained by rules supporting �-expressions.

Example 2. Suppose the following rules:
{ r1 : ⇒c ¬c1, r3 : ⇒O c1 ⊗ c2,
r2 :  O ¬p, r4 : Oc2,¬Op⇒P d1 � d2 }.

Then, we can build the following arguments4:
3 As usual, the height of an argument is the number of edges on the longest path between the

root and a leaf node.
4 Arrows indicate the type of rule used.
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A : ⇒ Oc2,¬Op⇒ Pd1, B : ⇒ ¬c1, C :  O ¬p

which agglomerate as illustrated in Figure 2.

Pd1

Oc2

r3

¬c1

r1

r4

¬Op

¬Op

r2

r4

Fig. 2. An argument agglomeration set, where the dotted arc represent the relation between argu-
ments in the agglomeration.

�

Eventually, arguments supporting complementary literals attack each other.

Definition 8. An argument A attacks an argument B iff
1. there exists a node of B labelled by m, and
2. there exists a node of A labelled by l ∈ Compl(m).
A set of arguments S attacks an argument B iff there is an argument A in S that attacks
B.

2.3 Justified and rejected arguments

The justification of arguments has been thoroughly studied in the literature, and multiple
semantics have been proposed. As we are dealing with DL, we resort to the argumenta-
tion semantics for variants of DL as presented in [7].

The usual definition of accepted arguments is slightly adapted to embrace argument
agglomeration sets.

Definition 9. An argument A is an accepted argument w.r.t a set of arguments S iff A
is finite, and every argument attacking any argument in any Aggl(A) is attacked by S.

From accepted arguments, and similarly as [5], we can define justified arguments
using a ‘characteristic function’.

Definition 10. Let Args be a set of arguments. The deontic justification characteristic
function of Args is a function Ji : pow(Args)→ pow(Args) such that:
– J0 = ∅, and
– Ji+1 = {A ∈ Args | A is accepted w.r.t. Ji}.
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Definition 11. Let Args be a set of arguments. The set of justified arguments of Args
is JArgs =

⋃∞
i=1 Ji.

Definition 12. Let Args be a set of arguments. A literal is a justified literal if it is a
conclusion of a supportive argument in JArgs .

Once justified arguments and literals are established, rejected arguments and literals
can be determined. We first define rejected arguments with respect to a generic set of
arguments which is then instantiated as a set of justified arguments.

Definition 13. An argument A is a rejected argument by a set of arguments S iff either
1. a proper subargument B of A is in S, or
2. B is attacked by a finite argument.

Definition 14. Let T be a set of arguments. The deontic rejection characteristic func-
tion of Args is a function Ri(T ) : pow(Args)→ pow(Args) such that
– R0(T ) = ∅, and
– Ri+1(T ) = {A ∈ Args | A is rejected by Ri(T ) and T}.

Definition 15. The set of rejected arguments w.r.t. T is RArgs =
⋃∞

i=1 Ri(T ). An
argument is rejected if it is rejected w.r.t. JArgs .

From justified and rejected arguments with respect to justified arguments, we define
rejected literals.

Definition 16. A literal l is a rejected literal by T iff there is no supportive argument
for l in Args − RArgs(T ). A literal l is rejected if it is rejected by JArgs .

In reference to the above definition, we can note that the set of justified argu-
ments JArgs is included in Args − RArgs(JArgs). Furthermore, some arguments in
Args −RArgs(T ) may be neither justified nor rejected. Consequently, a literal may be
neither justified nor rejected. In this case, we may say that the status of the literal is
undetermined.

Example 3. Let us suppose two arguments A and B attacking each other. Argument A
supports literal a, while argument B supports literal ¬a. The set of justified arguments
is empty, and thus the set of rejected arguments is empty. Consequently, literals a and
¬a are neither justified nor rejected. Their status is undetermined. �

3 Conclusion

A deontic rule-based argumentation framework has been devised to capture normative
knowledge and reasoning upon it. To do so, we have been inspired by works in DDL
and extended the argumentation machinery developed in [7].

The main source of difficulties resided in the introduction of modal and deontic-
preference operators. In particular, the introduction of modalities required to signifi-
cantly modify the concept of argument and the basic system of [7]. Indeed, the deriva-
tion of a modal literal such as Ob depends on the constructive provability of b using
rules such as a1, . . . , an ⇒O b, and the derivation of ¬Ob requires that there is no
proof for Ob. We have thus devised argument agglomeration sets which, to the best of
our knowledge, have no counterparts in the argumentation literature.
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