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Abstract 14 

 15 

Potato purple top (PPT) disease has been reported worldwide, including Canada, United 16 

States, Mexico, Russia and Pakistan. During surveys carried out in a recent epidemic in 17 

Ecuador of potato purple top disease phytoplasmas were identified in symptomatic potatoes 18 

as well as in some tissue cultured potato shoots by PCR/RFLP analyses and by sequencing 19 

and phylogenetic clustering. The majority of the samples resulted positive to phytoplasmas 20 

enclosed in the ribosomal subgroup 16SrI-F, for the first time detected in potato and in the 21 

American continent. Further studies will allow verification of the transmission and further 22 

presence in Ecuador of this phytoplasma associated with a purple top disease of potatoes. 23 
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Introduction 29 

 30 

Potato purple top (PPT) disease has been reported worldwide, including Canada, 31 

United States, Mexico, Russia and Pakistan causing significant economic losses (Nasir 32 

2007, Lee et al. 2004, Santos-Cervantes et al. 2010. Several phytoplasmas from 16Sr 33 

groups and subgroups have been reported as agents associated with PPT (Lee et al. 2004, 34 

Santos-Cervantes et al. 2010, Caicedo et al. 2015). 35 

In 2013, in the northern potato production region of Ecuador, symptoms of potato 36 

purple topPPT appeared in the fields on scattered plants. Two years later the diseased plants 37 

resultedincidence was to be more than 80% in the Superchola variety fields, with losses 38 

reaching up 50% (INIAP, 2014, AGROCALIDAD 2015). Characteristic symptomatology 39 

of this disease such as yellow and purple coloration of the upper leaflets, apical leaf curling, 40 

axillary buds, aerial tubers and early senescence starts to appear after finishing flowering 41 

(Fig. 1). In 2015, ‘Candidatus Phytoplasma aurantifolia’ (16SrII group) was reported 42 

associated with potato purple top diseasePPT in Ecuador (Caicedo et al. 2015). Considering 43 

that the disease was present in several localities, a testingsurveys were was carried out from 44 

asymptomatic and symptomatic potato plants collected in the northern provinces of Carchi 45 
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and Pichincha provinces in the highlands in 2015 and 2016 to further confirm phytoplasma 46 

presence, identity and association with the disease. 47 

 48 

Materials and Methods 49 

 50 

Plant tissues were frozen at -80oC after collection and tissue selection from different 51 

localities and diverse portions of the plants; samples were collected at diverse altitudes and 52 

from both sSymptomatic (Fig. 1) and asymptomatic potato tissues wereas collected from 53 

different localities and from diverse portions of the plant (Table 1) and stored at -80oCs. 54 

Micropropagated material was also tested (Table 1). DNA was extracted using a CTAB 55 

method described by Ferreira and Grattapaglia (1998). The universal phytoplasma primer 56 

pair P1/P7 (Deng and Hiruki 1991; Schneider et al. 1995) was used to prime amplification 57 

ofamplify a 1.8 kb fragment of the ribosomal operon consisting of the 16S rRNA gene, the 58 

16S-23S spacer region and a portion of the 5' region of 23S rRNA gene. A 1: 30 dilution of 59 

theis PCR product was used as template for nested PCR with the primer pair R16(I)F1/R1 60 

which amplifies an internal DNA fragment of 1,100 bp in the 16S rRNA gene (Lee et al. 61 

1994). After the initial denaturation step atof 94°C for 1 min, PCR was performed for 35 62 

cycles which were conducted in an automated thermal cycler (Biometra, Germany) each at 63 

94°C for 1 min, 55°C for 2 min (50°C for nested PCR) and 72°C for 3 min, followed by a 64 

final extension step at 72°C for 7 min. Phytoplasma positive controls employed for the 65 

molecular analyses included DNA from phytoplasma strains maintained in periwinkle 66 

[Catharanthus roseus (L.) G. Don.] (Bertaccini, 2014): primula yellows from Germany 67 

(PRIVA, 16SrI-L); aster yellows from USA (AY, 16SrI-B); Achillea yellows from Italy 68 
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(ACH, 16SrI-C) and aster yellows from apricot from Spain (A-AY, 16SrI-F). Samples 69 

devoid of DNA template were added as negative controls for the direct and nested PCR 70 

reactions. PCR mixtures (25 μl) containing 20-60 ng of total DNA, 0.5 μM of each primer, 71 

0.025 U of Taq DNA polymerase (Sigma Aldrich), 1X PCR buffer containing 1.5 mM 72 

MgCl2 and 0.2 mM dNTPs. PCR products (6 μl) were electrophoresed through ion 1% 73 

agarose gel, stained with ethidium bromide and visualized with a UV transilluminator.  74 

RFLP analyses of amplified fragments were performed using 100–200 ng DNA per 75 

sample that was digested separately with the restriction enzymes Tru1I, RsaI and TaqI 76 

(Fermentas, Vilnius, Lithuania and New England Biolabs) according to the manufacturer’s 77 

instructions and the amplicon digested amplicon. The restriction products were then 78 

separated by electrophoresis through a 6.7% polyacrylamide gel, and stained and visualized 79 

as described above. Direct sequencing was carried out in both directions from selected 80 

positive samples with primers R16(I)F1/R1 after purification with a QIAquick PCR 81 

Purification Kit (QIAGEN, Valencia, CA). The sequences obtained were assembled by 82 

MEGA6 (Tamura et al. 2013) and employed for phylogenetic analysis. The evolutionary 83 

history was inferred by using the Maximum Likelihood method based on the Tamura-Nei 84 

substitution model (Tamura and Nei 1993). Initial tree(s) for the heuristic search were 85 

obtained automatically by applying Neighbor-Joining and BioNJ algorithms to a matrix of 86 

pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, 87 

and then selecting the topology with superior log likelihood value. Evolutionary analyses 88 

were conducted in MEGA6. 89 

Further PCR product analyses were carried out in PCR to verify the presence of 90 

‘Candidatus Liberibacter solanacearum’ (Lso) using primers OA2 and OI2c (Liefting et al. 91 

2008,; 2009) according to the methodology described by Crosslin et al. (2011) and 92 
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employing the Taq DNA polymerase recombinant (Termo Fischer Scientific). PCR 93 

products were visualized using agarose gel electrophoresis. Positive controls were obtained 94 

from Dr Joseph Munyaneza´s laboratory at USDA-ARS in WA, USA, which showed clear 95 

bands corresponding to the expected 1168-bp products (Liefting et al. 2009), with negative 96 

controls were as reported described above. Further verifications wasere performed with the 97 

same primers and under the same cycling conditions using 0.16 μl (1.25 units) Promega 98 

GoTaq G2 DNA polymerase (Promega) and using primers Lso TX 16/23 F/R under 99 

reported conditions which showed the expected 385 bp product in the control samples 100 

(Ravindran et al. 2011). 101 

 102 

Results 103 

 104 

The direct amplification of PCR for phytoplasma DNA did not result in any 105 

detectable positive reactionsdetection do not allow to obtain positive results from any of the 106 

potato samples, and while only the positive control DNAs from control strains resulted in 107 

the expected 1,800 bp amplicons. However, Tthe use of nested PCR with R16(I)F1/R1 108 

primers resulted in the expected 1,100 bp amplicons in the majority of the potato samples 109 

tested respectively from symptomatic field plants in field orand from shoots in 110 

micropropaged shootation. In some cases the nested PCR results were in contrast to the 111 

symptomology. In particular, symptomatic tissue from one aerial tuber, and one stolon from 112 

symptomatic plants and one micropropagated shoot resulted negativegave a negative result 113 

while asymptomatic tissue from a sprout, and petiol and one micropropagated shoot 114 



6 
 

resulted positive to phytoplasma presencegave a positive result (Table 1). The negative 115 

controls were always negative in both direct and nested PCR (data not shown). 116 

RFLP and sequence analysis verified that the Ecuadorian phytoplasmas from potato 117 

samples were similar to A-AY control sample from Spain (Lee et al. 1998). The RFLP 118 

analyses allow to verify that the profile with restriction enzymes Tru1I, RsaI and KpnI was 119 

identical to the one of A-AY employed as control (Fig. 2). Likewise, DNA The 120 

sequencingsequences of three amplicons from samples 7, 12 and 72 allow to obtain 1,025; 121 

1,015 and 1,030 bp respectively that were deposited in (GenBank under accession numbers 122 

MG272306, MG272307, MG272308, respectively). The phylogenetic analysis confirmed 123 

that the obtained sequences clustered with the A-AY strain (GenBank accession number 124 

X68338) (Fig. 3) confirming the RFLP results (Fig. 3). These results sugest that the 125 

phytoplasma identified in the potato samples was then classifiedis in the aster yellows 126 

cluster, and in particular in subgroup 16SrI-F. 127 

No bands were obtained in the testing for ‘Ca. L. solanacearum’ using all above 128 

reported primers and conditions from the tested samples, except for the positive controls 129 

(data not shown).  130 

 131 

Discussion 132 

 133 

The eEpidemiology of purple topPPT in Ecuadorian the fields seems to corresponds 134 

to a complex of new emergent pathogens such as phytoplasmas located in the plant phloem, 135 

spread by infected seed and insect-vectors and mainly detected through molecular analyses, 136 

such as phytoplasmas. Diseases caused by other pathogens like Rhizoctonia, which 137 
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produces sclerotia on tubers, rot and blight in the stems, and aerial tubers near the base of 138 

the plant (main factor that misleads farmers to identify the causal agent of purple top in 139 

potato plants in Ecuador), do no present the same behavior symptoms in the field as 140 

phytoplasma presence. At the high pointWhen the high pick of the purple top outbreak 141 

started in the Carchi province in March of 2015, symptoms were visualized in more than 142 

the 80% of the fields of the potato production area (AGROCALIDAD 2015). Theis rapid 143 

spread of the symptomatic plants does not correspond to the epidemiologicy behavior of 144 

other pathogens such as Rhizoctonia,. Although, Rhizoctonia was, which was in fact, 145 

isolated from some PPT symptomatic plants along with the viruses PVY, PVX and PRLV, 146 

and Fusarium cylindrocarpun, Pectobacterium sp. and Pseudomonas viridiflava (Castillo et 147 

al. 2017), the epidemiological behaviors and the symptoms correspond to infections 148 

associated with phytoplasmas presence. The epidemiologic behavior observedtransmission 149 

of PPT correspond tosuggests more similarity to  pathogens transmitted by insect vectors 150 

and/or spread by infected propagation materials andthan not to a spreading of a soil fungus 151 

like Rhizoctonia spreading, for example. A previous study detected the presence of 152 

‘Candidatus Phytoplasma aurantifolia’ (16SrII group) (Caicedo et al. 2015). and thisOur 153 

study allows to verify the presence of another phytoplasma enclosed in 16SrI-F subgroup. 154 

Phytoplasmas enclosed in this subgroup were has only been reported in Spain (strain 155 

ACLR-AY = A-AY) and in Germany (strain CVB) (Lee et al. 1998; Bertaccini, 2014) in 156 

apricot and periwinkle respectively. Our study is the first report of the 16SrI-F subgroup 157 

and it is now reported for the first time in potatoes.  158 

From literature plants with the same symptomatology resultedPast studies have 159 

shown that similar symptomatology has resulted in the detection of  harbouring both 160 

‘Candidatus Phytoplasma’ species and ‘Candidatus Liberibacter solanacearum’ in potatoes 161 
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(Gutiérrez et al. 2013) and in carrots (Satta et al. 2017). , however in this sampling, the 162 

latter was not detected. In countries as México and Spain (Canarias), it has been reported 163 

the presence of phytoplasmas together with ‘Ca. L. solanacearum’ in potatoes showing 164 

purple top. Nevertheless the results of the present survey indicate that ‘Ca. L. 165 

solanacearum’ is not present in Ecuador, yet. Nevertheless the results of the present survey 166 

indicate that ‘Ca. L. solanacearum’ is not currently present in Ecuador. More research is 167 

needed to verify if this phytoplasma is inducing the symptomatology observed in the field 168 

although strong association was observed in the present survey. A pathogen complex might 169 

be involved in producing purple top symptoms, and therefore further research on other 170 

possible prokaryotes together with presence of the insect vector or vectors that might 171 

bemay transmitting these pathogens in the field is necessary, along with a broader sampling 172 

in time and space. 173 
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Table 1. Nested PCR detectionResults of phytoplasma detection in potato samples from 246 

Ecuador showing purple top disease using primers R16(I)F1/R1 in nested PCR (in bold 247 

samples sequenced). 248 

ID Plant part Purple top Province 
Altitude  

(m asl)  

Primer 

16SrI 

3 Petiol Symptomatic Carchi 3070 positive 

7 Sproutsa Symptomatic Carchi 2991 positive 

30 Aerial tuber Symptomatic Carchi 3070 positive 

39 Underground tuber Symptomatic Carchi 3070 positive 

59 Aerial tuber Symptomatic Carchi 3070 positive 

60 Aerial tuber Symptomatic Carchi 3070 positive 

62 Aerial tuber Symptomatic Carchi 3070 negative 

64 Underground tuber Symptomatic Carchi 2991 positive 

67 Underground tuber Symptomatic Carchi 2991 positive 

72 Sproutsa Asymptomatic Carchi 2991 positive 

86 Aereal tuber Symptomatic Carchi 3070 positive 

12 In vitro planta Asymptomatic Laboratory 3050 positive 

127 In vitro plant Asymptomatic Laboratory 3050 negative 

80 Aereal tuber Symptomatic Pichincha 3050 positive 

88 Stolon Symptomatic Pichincha 3050 negative 

103 Flower petiol Symptomatic Pichincha 3050 positive 

105 Petiol Symptomatic Pichincha 3050 positive 

114 Petiol Asymptomatic Pichincha 2945 positive 

117 Petiol Symptomatic Pichincha 2945 positive 
a Sequenced samples 249 

  250 

Formattato: Apice 
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Figure. 3. Molecular Phylogenetic analysis usingby Maximum Likelihood method. 263 

http://purl.org/phylo/treebase/phylows/study/TB2:S21871 The tree with the highest log 264 

likelihood (-6080.8085) is shown. Bootstrap The percentage of trees in which the 265 

associated taxa clustered together is shown next to the branches, only values above 40 are 266 

shown. The tree is drawn to scale, with branch lengths measured in the number of 267 

substitutions per site. The analysis involved 46Forty-six closely related nucleotide 268 

sequences enclosing from the ‘Candidatus Phytoplasma’ species and aster yellows 269 

(16SrI)available and some strain in the aster yellows (16SrI) group. The sequences of 270 

phytoplasmas from potatoes from Ecuador obtained in this work are in bold. On the right of 271 

the branch the GenBank accession number of the strains employed and the ribosomal 272 

group/subgroup. Acholeplasma laidlawii was used as out group to root the tree.  273 


