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Abstract: This paper introduces the design of a fully-compliant Spherical Joint (SJ), obtained by the
in-parallel connection of two identical open chains each composed of three equal circular flexible
beams, having coincident centers of curvature and mutually orthogonal axes of minimum rotational
stiffness. Thanks to its particular topology, the SJ provides a fully isotropic behavior, the two chains
being placed in space so as to be symmetric with respect to the beams’ center of curvature. At first,
the overall system compliance matrix is derived by means of an analytical procedure, in order to
obtain a parametric formulation of the SJ behavior within the small deflection range. Then, after finite
element validation of the analytical model, an optimization study of the beam geometry is developed,
with the aim of maximizing the ratio between the SJ primary to secondary compliance factors.
At last, the potential advantages and drawbacks of the proposed design are discussed by numerically
evaluating the joint performance in terms of parasitic motions within the large deflection range
(namely, when large external loads are applied to the envisaged center of spherical motion).

Keywords: compliant mechanisms/actuators; spherical joint; circular flexible beams; compliance
matrix; finite element analysis; design graphs

1. Introduction

A Compliant Mechanism (CM) may be defined as a single- or multi-piece flexible device that can
provide both the mobility of a traditional rigid-link mechanism and the stiffness of a conventional
structure [1,2]. However, since CMs are designed and manufactured in order to transfer specific
motions and forces via the deflection of elastic segments, the structural deformation along some
selected directions is actually considered a desirable feature. In practice, CMs represent an elegant
solution for designers that are willing to replace rigid links connected through traditional kinematic
pairs (e.g., pins, cams and sliders) with deformable members. Surely, traditional joints can supply
nearly infinite compliance along a given set of axes and rather large stiffness along any other direction.
Nonetheless, some unavoidable issues when using these types of kinematic pairs are, for instance,
clearance and friction, which may critically affect the accuracy and dynamic behaviour of any device
requiring high speed, precision and efficiency [3–5]. In all these cases, a CM-based design may lead to
performance improvements due to the absence of contacts between rigid surfaces and the consequent
reduction of wear, need for lubrication and backlash, thus potentially improving the mechanism
precision [6]. Other possible CM advantages are the capability to store elastic energy, which can be
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beneficial in those mechanical devices (such as robotic compliant actuators [7–9]) that need to be
equipped with return springs [10,11], and the reduced number of parts (ideally, monolithic solutions
can be conceived and prototyped [12,13]). This latter property is also closely connected to potentials for
weight and assembly-cost reductions. In particular, CMs may be envisaged as a promising paradigm
to enable the Design For No-Assembly concept and, according to [14], they become ideal candidates
for the development of high-precision manipulators when driven by high-resolution positioning
actuators (such as piezoelectric or electromagnetic motors [15–17]). Nonetheless, aside these numerous
advantages, a series of challenging issues must be considered, namely: (a) continuous rotational
motions cannot be achieved by means of flexible members; (b) in many applications, CM resistance
to fatigue must be carefully addressed; (c) the analysis and design of CMs is more complex when
compared to traditional mechanisms; (d) differently from rigid-link mechanisms, CMs may actually be
subjected to non negligible deformations also along undesired directions. In particular, briefly recalling
some basic notation previously proposed in [18], flexible segments composing a generic CM may be
conceived to allow for one or more primary displacement, namely a Degree of Freedom (DoF) along a
desired reference direction, when subjected to a primary load acting along the same direction. The term
primary compliance is actually used to indicate the ratio between any primary displacement and its
related primary load. Therefore, flexible members that are conceived to provide multiple DoF will be
characterized by high primary compliance factors related to each desired DoF. As an example, let one
consider straight slender beams with cylindrical cross section, which have been previously employed
in place of spherical rigid pairs [19]. Parasitic effects (or secondary displacements [20–22]) are rotations
or translations (due to presence of axis drift or unforeseen external loads), which are undesirable
and shall be minimized whenever possible. Within the small deflection range, parasitic effects can
be quantified by means of secondary compliance factors (namely, those terms in the compliance matrix
that are not regarded as principal compliances). In the literature, as widely known (see e.g., [23,24]),
a given CM topology is said to provide a selectively compliant behavior if it maintains large primary
compliance factors but small secondary compliances.

From what concerns other basic terminology, also adopted in [25], generic CMs may be classified
into three categories: flexure-based CMs, flexible beam-based CMs and fully compliant elastic continua.
Flexure-based CMs, also called lumped CM, are deformable structures whose elastic deflections
are localized in "small regions", usually referred to as flexural hinge (or simply flexures). In their
most common embodiment design, flexures are obtained by machining one or two cutouts in a
constant-width material, making it possible to obtain (if desired) monolithic solutions. Usually,
these small-length deformable segments mimic the behavior of a revolute joint and can be characterized
by profiles of several shapes. For instance, compliance equations for corner-filleted, parabolic and
elliptical flexural hinges are provided in [26–28], whereas a generalized model for various hinge
profiles is reported in [29]. Although several flexures may be easily arranged so as to design spatial
CMs, their behavior is mostly optimized in order to generate a single DoF, so that the accuracy
of rotation is considered as a performance metric and displacements of the flexure midpoint are
considered as parasitic effects [30,31]. As for the other CM typologies, flexible beam-based CM and
fully compliant elastic continua both belong to the class of distributed CMs, where the structure
mobility is achieved via a deformation that is evenly distributed over major areas of the structure
itself. The first term is employed whenever the CM is designed using slender beam-like segments
(which are investigated also in classical books such as [32]), whereas the second term describes
CMs providing distributed compliance along complex shapes (also possibly including shell or plate
elements), which are specifically designed and optimized to undergo a desired deformation upon the
application of known external loads. Distributed CMs may be preferred over lumped CMs since a
localized deformation on the flexure region may induce rather high stress concentrations, thus limiting
the CM load-bearing capacity, fatigue resistance and motion range. On the other hand, a distributed
compliance increases the issues related to parastic effects, which should be carefully taken into account
for design purposes.



Actuators 2018, 7, 20 3 of 18

In the present work, attention is focused on a particular class of beam-based CM, namely the
so-called spherical CMs [33], in which all the points of an end-link are ideally constrained to move on
concentric spherical surfaces that are fixed with respect to a ground link, with the spheres’ centroid
being defined as the center of spherical motion. As for previous attempts to provide this type of motion
via compliant structures, a bistable spherical CM has been presented in [34], where a pseudo-rigid
body model has been used to analyze seven versions of the device, each comprising joints of different
length. In a similar direction, a spherical lamina-emergent CM has been proposed in [35], the main
purpose being to obtain a compliant mechanical device fabricated from planar materials, although
providing motions out of the fabrication plane. In addition, as a possible application of spherical CMs,
a compliant Cardan joint has been proposed in [36], whereas possible CM topologies providing an
homokinetic coupling (e.g., double Hook’s joint CM) have been reviewed in [37].

In any case, most of the previous literature reports about spherical CMs that have been realized via
the connection of flexures ideally behaving as revolute joints (i.e., conceived for planar applications) or
straight beams with circular cross section employed in place of a spherical kinematic pair. On the other
hand, as previously shown in [38], Circular Flexible Beams (CFBs) with rectangular cross-section and
featuring lower rotational rigidity along the radial direction, may be better suited for realizing spherical
motions. For instance, a comparative evaluation of the parasitc effects for a spherical CM composed
by the in-serires connection of either three CFBs or three straight-beam flexures has been reported
in [39]. Building on the results of such previous work, this paper proposes a novel architecture for a
SJ composed by the in-parallel connection of two identical CFB-based serial chains, each composed
of three equal CFBs. Overall, the SJ is designed so that: (1) the curvature centers of the CFBs are all
coincident with the desired center of spherical motion; (2) the two CFB-based serial chains are located
in space so that each flexure comprises an identical counterpart, symmetrically placed with respect to
the plane perpendicular to the axis of principal compliance of the considered flexure. A possible SJ
embodiment design is reported in Figure 1, whereas Figures 2 and 3 depict the geometric parameters
of both a single CFB and a single serial chain formed by three identical CFBs. Besides the introduction
of this SJ design, the main contributions of the present paper are as follows:

• Analytical computation of the SJ compliance matrix and its subsequent diagonalization via
Euclidean transformations;

• Validation of the analytical model via Finite Element Analysis (FEA) within the small deflection hypothesis;
• Extension of the numerical results in the large deflection range, results being provided via a set of

normalized design graphs that allow to clearly spot the optimal CFB geometric parameter for a
reduced SJ parasitic behavior.

Benefits of the proposed architecture include the capability to provide an isotropic behavior
(when small external moments are applied to the output link, see Figure 3), which may be of practical
use in precision compliant actuators where the absence of unforeseen external loads can be guaranteed.
In addition, also considering applications requiring larger motions [40], the SJ may be employed in
contact-aided CMs [41,42], thus mitigating the unavoidable translations of the joint center. The rest
of the paper is organized as follows: Section 2 briefly presents background theory concerning the
computation of compliance and stiffness matrices for flexure-based systems and recalls the results
concerning the CFB depicted in Figure 2; Section 3 reports about the analytical model of the proposed
SJ, along with the procedure for the compliance matrix diagonalization; Section 4 provides both the
FEA validation of the small deflection model and the numerical computations of the SJ behavior in the
large deflection range. At last, Section 5 draws the concluding remarks.
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Figure 1. CAD model of a possible embodiment design of the fully-compliant spherical joint composed
of two spherical serial chains: isometric views, (a,b), from different angles.
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Figure 2. Circular Flexible Beam geometric parameters (k = 0, 1, 2).
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2. Analytical Design of Flexible Beam-Based Systems: Background Theory

As is known (see e.g., [43–45]), the small deflection behavior of either a single slender beam
or a flexure-based system in the proximity of an unloaded configuration can be described in terms
of a stiffness matrix or, equivalently, of a compliance matrix, whose definitions are hereafter briefly
recalled. Let us first underline that, in the following, the left superscript of a vector or a matrix will
denote the coordinate frame in which its components are expressed, whereas T will denote a vector
(or matrix) transpose. Let us then consider a single slender beam (such as the CFB schematized
in Figure 2), connecting a fixed rigid link A to a movable rigid link B and loaded by an external
wrench, pw = [pf pm]T , acting on a point Op of link B. This external wrench is composed of a force
vector, pf = [p fx

p fy
p fz]T , and a torque vector, pm = [pmx

pmy
pmz]T , whose components are

expressed with respect to a generic end link coordinate frame Sp (with axes xp, yp, zp and origin
at point Op). The corresponding small displacement, representing the link B deflection due to the
applied load, can be expressed via the vector ps = [pu pθθθ]T , which is composed of an infinitesimal
translation, pu = [pux

puy
puz]T , and an infinitesimal rotation, pθθθ = [pθx

pθy
pθz]T , measured in the

same coordinate frame Sp. The relations between pw and ps can be expressed as:

pw =

[ pf
pmmm

]
=

[ pK f u
pK f θ

pKmu
pKmθ

]
·
[ pu

pθθθ

]
= pK · ps, where pK f u = pKT

f u, pKmθ = pKT
mθ , pKmu = pKT

f θ , (1a)

ps =

[ pu
pθθθ

]
=

[ pCu f
pCum

pCθ f
pCθm

]
·
[ pf

pm

]
= pC · pw, where pCu f =

pCT
u f , pCθm = pCT

θm, pCum = pCT
θ f . (1b)

The symbols pK and pC = pK−1 respectively denote the beam 6× 6 stiffness and compliance
matrices, both comprising entries of non uniform physical dimensions. In fact, note that pK f u, pKmu,
pK f θ , pKmθ are 3× 3 matrices composed of entries with dimensions [N/m], [N], [N/rad], [Nm/rad] and,
similarly, pCu f , pCum, pCθ f , pCθm are 3× 3 matrices composed of entries with dimensions [m/N], [1/N],
[rad/N], [rad/Nm].

Let us now consider a fully-compliant mechanism composed of both in-parallel and in-series
combinations of n flexible members, each being described by a stiffness (or compliance) matrix
referred to a set of n coordinate frames Sp, for p = 1 . . . n. As shown in e.g., [43], once expressed in
a common reference frame (such as, for instance, S0), stiffness matrices can be added to represent
parallel combinations, whereas compliance matrices can be added to represent series combinations.
Specifically, the overall stiffness of a collection of n in-parallel connected flexible beams or, respectively,
the overall compliance of n in-series connected beams can be found as:

0K =
n

∑
p=1

0Tp · pK · 0TT
p , where 0Tp =

 0Rp 0
0 r̃p · 0Rp

0Rp

 (for in-parallel connections), (2a)

0C =
n

∑
p=1

0T−T
p · pC · 0T−1

p =
n

∑
p=1

pTT
0 · pC · pT0 (for in-series connections). (2b)

The symbols 0Tp and 0Rp respectively denote the 6× 6 adjoint matrix and the 3× 3 rotation matrix
of frame Sp with respect to frame S0, whereas 0 r̃p denotes the skew symmetric matrix of the position
vector 0rp, which locates the origin of frame Sp with respect to frame S0. Each term in the sum, namely
0Tp · pK · 0TT

p (or, respectively, pTT
0 · pC · pT0) simply relates each matrix previously computed in the

generic frame Sp to the new frame S0. Note that mixed combinations of parallel and series generalized
spring-like elements require similar groups to be combined first then inverted as necessary to complete
the combination. For spherical CMs like those considered here and depicted in Figures 1–3, made by
the connection of CFBs with coincident centers coinciding with the desired center of spherical motion,
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O0, a suitable frame is the one having origin at O0 and with axes suitably defined in order to obtain
(if possible) a diagonal compliant matrix [46], hereafter referred to as dC. In this particular frame,
the matrix dC for an ideal spherical CM, expected to provide a purely spherical motion, should present
finite (usually, as large as possible) lower-right diagonal terms (namely, Cθxmx , Cθymy , Cθzmz ), all the
other terms being null. In case of practical (non-ideal) spherical CMs, a measure of the magnitude of
all the other non-zero matrix entries can be used to assess the spherical CM behavior for what concerns
undesired parasitic effects.

Compliance Matrix of a Single CFB

The CFB compliance matrix, previously obtained in [38] and recalled hereafter for the sake of
clarity, when evaluated with respect to a reference frame S0 centered at O0 and with axes x0, y0, z0

(i.e., parallel to those of primary compliance of each flexure, See Figure 3) takes the following form:

kC =



Cx fx 0 0 0 0 Cxmz

0 Cy fy 0 0 0 0

0 0 Cz fz Czmx 0 0

0 0 Cθx fz Cθxmx 0 0

0 0 0 0 Cθymy 0

Cθz fx 0 0 0 0 Cθzmz


, (3)

where:
Cx fx =

R[(θ+Sθ)(AR2+In)]
2EAIn

Cy fy = − R[(Sθ−θ)(AR2+In)]
2EAIn

Cxmz = Cθz fx = 2R2Sθ/2
EIn

Cz fz =
R3θ
GJ

Czmx = Cθx fz =
−2R2Sθ/2

GJ Cθxmx =
R[GJ(θ−Sθ)+EIm(θ+Sθ)]

2EGJIm

Cθymy = − R[ESθ−θ)Im−GJ(θ+Sθ)]
2EGJIm

Cθzmz =
Rθ
EIn

having defined Sχ = sin(χ), Cχ = cos(χ) for a generic variable χ, whereas R, θ, w, t, A = wt,
Im = 1/12wt3, In = 1/12tw3, J = wt3[1/3− 0.21tw−1(1− 1/12t4w−4)], E, ν, and G = 1/2E(1 + ν)−1 are,
respectively, the CFB radius and subtended angle, the beam width, thickness, cross section area, area
moments of inertia and torsional constant of the cross section, Young’s modulus, Poisson’s ratio, and
shear modulus of the employed material. The torsional constant, J, has been obtained using the
membrane analogy proposed in [47].

3. Compliance Matrix of the Compliant Spherical Joint

The compliant SJ studied in this paper is obtained by the in-parallel connection of two spherical
serial chains (each formed by three CFBs), and can provide three rotational DoF between an input
shaft (fixed) and an output shaft, as depicted in Figure 4a. Let us denote as Chain#1 (Figure 4b) and
Chain#2 (Figure 4c), the upper and lower chains, respectively. As previously recalled, the compliance
matrix of each serial chain can be simply obtained by summing up the compliance matrices of each
beam, once all beam matrices are related to the common reference frame S0. Therefore, following the
procedure explained in Section 2 and resorting to the methodology reported in [38], the compliance
matrix of Chain#1 (Figure 4b) and Chain#2 (Figure 4c), respectively, take the forms:

0CChain#1 =



a 0 0 0 b c
0 a 0 c 0 b
0 0 a b c 0
0 c b d 0 0
b 0 c 0 d 0
c b 0 0 0 d


, (4)
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0CChain#2 =



a 0 0 0 −b −c
0 a 0 −c 0 −b
0 0 a −b −c 0
0 −c −b d 0 0
−b 0 −c 0 d 0
−c −b 0 0 0 d


, (5)

where:

a =
Rθ (InGJ+GJR2 A+R2EAIn)

EAInGJ b = −2R2Sθ/2
GJ c = 2R2Sθ/2

EIn
d =

Rθ (In EIm+InGJ+GJIm)
GJEIm In

. (6)
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Figure 4. Compliant spherical joint (a) composed of two compliant serial chains, namely Chain#1 (b)
and Chain#2 (c).

As one can notice, the compliance matrices of the chains are only a function of four independent
factors, denoted as a, b, c and d.

A similar procedure can be adopted to obtain the overall SJ compliance matrix, considering the
fact that, for parallel combinations, stiffness matrices of the chains should be summed up in the same
reference frame. In this case, the following equation holds:

0K =
2

∑
i=1

0Ti · iK · 0TT
i = 0CChain#1

−1
+ 0CChain#2

−1
. (7)
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The SJ compliance matrix, 0C, will then be obtained by inverting its stiffness matrix, 0K, such that:

0C = 0K
−1

=



A B B 0 0 0
B A B 0 0 0
B B A 0 0 0
0 0 0 C D D
0 0 0 D C D
0 0 0 D D C


, where

A = 1
2

da−c2−b2

d B = − 1
2

bc
d

C = 1
2

da−c2−b2

a D = − 1
2

bc
a

(8)

recalling a, b, c and d from Equation (6). Now, the matrix 0C may be diagonalized using a rigid
body transformation. This procedure will simplify the optimization of the CFB geometric parameters,
in order to maximize the SJ primary to secondary compliance factors. Let us denote with Sd a coordinate
frame having an origin located on point O0, in which the SJ compliance matrix takes a diagonal form.
The frame Sd is placed, with respect to frame S0, so that its orientation is represented by three Euler
angles, α, β, γ, to be found, whereas its translation is trivially represented by three null parameters,
namely xd = yd = zd = 0. In this case, the diagonalized SJ compliance matrix, dC, can be retrieved
resorting to the following equation:

dC = 0TT
d ·

0C · 0Td, where 0Td =

 0Rd 0

0 0Rd

 and 0Rd =


CαCβ −SαCγ + CαSβSγ SαSγ + CαSβCγ

SαCβ CαCγ + SαSβSγ −CαSγ + SαSβCγ

−Sβ CβSγ CβCγ

. (9)

By imposing null non-diagonal terms of dC in Equation (9) and solving the three rotation angles,
α, β, γ, the values α = π/4, β = arctan(

√
2) and γ = 0 are obtained, so that the matrix 0Rd is given by:

0Rd =

 ντ −ν τ

ντ ν τ

− ντ
2 0 τ

, where ν = 1
2

√
2

τ = 1
3

√
3.

(10)

Resorting to Equations (9) and (10), the diagonalized SJ compliance matrix takes the
following form:

dC =



−B + A 0 0 0 0 0
0 −B + A 0 0 0 0
0 0 2B + A 0 0 0
0 0 0 −D + C 0 0
0 0 0 0 −D + C 0
0 0 0 0 0 2D + C


. (11)

Recalling Equations (6) and (8), it can be noticed that the parameters B and D are both positive in
value, thus, 2B + A > −B + A and 2D + C > −D + C, which implies that the terms dC33=dCz fz and
dC66 = dCθzmz are, respectively, the largest secondary and primary compliance factors. In other words,
to maximize the joint primary to secondary compliance factors and increase the joint spherical motion
generation capabilities, the following ratio should be minimized:

r =
dC33
dC44

=
2B + A
−D + C

=

(
−2 bc + da− c2 − b2) a
d (bc + da− c2 − b2)

. (12)

In order to perform a scale-independent parametric study, the curvature radius R of the CFBs is
used as the characteristic size to obtain the dimensionless ratio r∗ = r/R2 that only depends on the
flexure shape factors w/t, w/R and θ. After performing parametric evaluations, within the limits of
the slender beam approximation, the results show that r∗ is almost independent of the relative width,
w/R, so that its variation can be represented as a function of beam relative length (namely, θ) and
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the cross-section aspect ratio (w/t) only. Exemplary numerical results are respectively depicted in
Figure 5a,b. In these pictures, the black inclined straight lines (for given R/t ratios) are included in
order to indicate the space of the geometric parameters that satisfy the slender beam approximation,
the admissible geometries being those lying on the bottom-right side of the line. In particular, Figure 5a
underlines the negligible influence of w/R on the parameter r∗ for the case w/t = 10 (similar results
also hold for different values of the cross-section aspect ratio w/t). In parallel, Figure 5b reports about
the influence of w/t and θ on the same parameter. Overall, the results indicate that r∗ can be minimized
by selecting the largest feasible values for w/t and θ for which the flexible members can be considered
as a slender beam.
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Figure 5. The influence of geometric parameters on the dimensionless ratio r∗: (a) influence of varying
w/R and θ for w/t = 10, (b) influence of varying of w/t and θ. The inclined straight lines represent
the limit space of admissible geometries employing the slender beam approximation.

4. Numerical Example and Model Validation

4.1. Finite Element Analysis with a Small Deflection Hypothesis

The SJ compliance matrix computed via the analytical approach described in the previous
section has been validated through three dimensional (3D) Finite Element Analysis (FEA) performed
with the commercial software COMSOL 5.3. The considered flexure geometries are: w = 10 mm,
t = 1 mm, R = 65 mm and θ = π/2. The flexures are made from a metal material characterized by
a Young’s modulus E = 200 GPa and a Poisson’s ratio ν = 0.33. The Solid Stress-Strain application
mode of the COMSOL Structural Mechanics Module has been used for the simulations. The global
displacements in the xd, yd and zd directions are the dependent variables in this application mode.
The 3D solid model of the hinge is discretized using the automatic meshing routine available in the
software. After a mesh convergence analysis, the final employed mesh is depicted in Figure 6a and
consists of 15,572 tetrahedral elements and 30,310 nodes. Linear Elastic Material Model accounting
for small deformations is chosen to ensure a linear relationship between stresses and deformations.
FEA simulations are executed by individually loading the joint center in frame Sd along the xd, yd
and zd axes and by solving for the corresponding free-end deflections. The compliance factors are
then computed as the ratios between each applied force or moment and the corresponding free-end
displacements and rotations. Table 1 compares the results obtained via the analytical model described
in the previous section and FEA. The comparison shows a close agreement between the two methods,
thus validating the equations previously provided.
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Table 1. Compliance factors for the spherical joint and comparison between analytical and FEA results

Compliance factors dCx fx =d Cy fy [mN−1] dCz fz [mN−1] dCθxmx =d Cθymy [m
−1 N−1] dCθzmz [m

−1 N−1]

Analytic 6.1980 × 10−4 6.3279 × 10−4 0.3505 0.3579

FEA 5.7876 × 10−4 5.8937 × 10−6 0.3428 0.3504

Percentage error (%) 6.6 6.8 2.2 2.1

Fixed end

Fixed end

dw

(a) .

Fixed end

Fixed end

(b)

Figure 6. Finite Element Analysis of the spherical joint: (a) model mesh and boundary conditions, (b)
deformed shape under the application of large loads (i.e., Myd = 2 Nm, Fxd = 20 N).

4.2. Finite Element Analysis with Large Deformation Hypothesis

A nonlinear FEA is further performed on the same SJ model to evaluate the joint behavior
considering the large deflection hypothesis. This study is developed to assess the SJ properties when it
is intended to undergo large motions and, in particular, rotations up to 45 degrees. Hence, the joint is
loaded by large forces and moments, and the relationship between the loads and the deformations is
not linear any longer. The nonlinear solver interface of COMSOL accounting for large deformations
and geometric nonlinearities has been employed for the simulations. Mesh convergence analysis has
been performed to guarantee minimum errors in iterative convergence computations of the software.
The simulations have been executed by loading the joint center in frame Sd, along the xd, yd and zd
axes, and by solving for the corresponding free-end deflections. In order to obtain rotations up to
45 degrees, the joint has been loaded by moments with magnitude in the range od 0 to 2 Nm, with
an incremental step size of “0.1 Nm”, and forces with magnitude in the range of 0 to 20 N, with an
incremental step size of “1 N”. In particular, a single force/moment combination along either the xd,
yd or zd axes, is considered for each simulation to simply assess the joint motion along each individual
axis. The total displacement of the joint center, δ (representing a parasitic motion or, in other words,
a measure of the precision of rotation) has then been calculated to compare the results for different
loading scenarios. In order to perform a scale-independent study, the curvature radius R of the CFBs
is used as the characteristic size to obtain the dimensionless total displacement δ∗ = δ/R, which
turns useful for comparison purposes. Ideally, resorting to Equation (11), when the SJ is loaded by a
pure moment along an individual axis of frame Sd, the joint should only provide a rotational motion
along the same axis with no deformations along the other axes. However, in the large deflections
regime, the SJ also exhibits undesired motions along the other axes. The angle-axis representation
of three-dimensional rotations [48] is here used to quantify these parasitic rotations. For any spatial
rotation, there exists a unique axis, Γ, about which the overall motion of the end link with respect to



Actuators 2018, 7, 20 11 of 18

its original frame can be defined by a single angle, φ. The following expressions hold for these axis
and angle:

φ = cos−1(
r11 + r22 + r33 − 1

2
), (13)

Γ =
1

2 sin φ

r32 − r23

r13 − r31

r21 − r12

, (14)

where rij are the components of the rotation matrix, dRs, between the joint deformed frame (hereafter
referred to as frame Ss) and its original frame (frame Sd):

dRs =

r11 r12 r13

r21 r22 r23

r31 r32 r33

. (15)

Resorting to Equations (13) and (15), the angle φ and the axis Γ are computed for each simulation
step in order to evaluate the orientation of the SJ center when it is loaded by different force/moment
combinations. Let us underline that φ represents the desired SJ rotation. In parallel, it is also desirable
to assess parasitic rotations, defined by a second angle ψ, which represents the angle between the axis
Γ and the axis on which the external moment is applied. The ratio ψ/φ is then used as a reference
metric to compare parasitic rotations for each loading case.

Starting from the relation between parasitic displacements and desired rotations, simulations
indicate that the total displacement of the joint center is mostly dependent on applied forces, whereas
its rotation mainly depends on applied moments. In particular, Figure 7 demonstrates the variation
of δ∗ and φ for different loading cases in frame Sd. For instance, Figure 7a reports the variation of
parameter δ∗ when a constant external moment, Myd = 2 Nm, is applied along the yd axis, whereas
either forces Fxd , Fyd , Fzd (in the range from 0 to 20 N) are applied on the respective axes. The same
curves are also reported in Figure 7b, which however depicts all the possible loading-case combinations,
namely, Mxd , Myd , Mzd ∈ [0, 2] Nm and Fxd , Fyd , Fzd varying from 0 to 20 N. Since, for each moment
load, 21 simulations have been performed (i.e., moments increasing from 0 to 2 Nm with increments
of 0.1 Nm, as previously said), Figure 7b depicts the overlay of 63 curves in total. As one can notice,
the dimensionless total displacement of the joint center increases almost linearly with increasing forces.
A minimum δ∗ measure is achieved for Myd = 0 Nm and a varying force, Fzd , applied along the zd axis.
A maximum δ∗ measure is achieved for Myd = 2 Nm and a varying force, Fxd , applied along the xd
axis. In parallel, Figure 7c represents the quasi-linear dependency of the joint desired rotation φ as
function of applied moments, namely Mxd , Myd , Mzd varying from 0 to 2 Nm and parametric forces
Fxd , Fyd , Fzd ∈ [0, 20] N, increasing with increments of 1 N (i.e., 63 curves in total). The minimum φ

measure is obtained for Fzd = 0 Nm and a varying moment, Myd , applied along the yd axis, whereas
the maximum φ measure is obtained for Fxd = 20 N and a varying moment, Mxd applied along the
xd axis. According to Figure 7b,c, there exists three extreme load cases scenarios for what concerns
the measures δ∗ and φ: (a) a combination of Myd and Fxd (case of maximum parasitic displacement);
(b) a combination of Mxd and Fxd (case of maximum desired rotation); (c) a combination of Myd and Fzd

(case of minimum desired rotation and minimum parastic displacement). For the sake of clarity, it is
recalled that all loads are applied to point Oo that is envisaged as the SJ center of spherical motion.
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Figure 7. The variation of total parasitic displacement and desired rotation for different loading cases:
(a) dimensionless total displacement variation for Myd = 2Nm and applied force (either Fxd , Fyd , or
Fzd ); (b) dimensionless total displacement variation for different loading cases in terms of applied force;
(c) rotation variation for different loading cases in terms of applied moment.

For these three extreme loading cases, more detailed contour plots are represented in Figures 8–10.
In particular, the contour plots of the dimensionless parasitic displacement δ∗ in terms of moment
and force are shown in Figure 8 for the three mentioned loading cases. As stated before, δ∗ is mostly
dependent on force variations (in fact, the curves are nearly horizontal), although a minor dependency
on the applied moments can also be noticed. The relationship between δ∗ and the applied moments
is mostly dependent on the direction of the applied loads in frame Sd and how the SJ is deformed.
For instance, for application of moment Myd and force Fxd , as reported in Figure 8a, δ∗ increases
by increasing Myd . On the other hand, this relationship is inverse for the application of the same
moment Myd , when the joint is contemporarily loaded by a force Fzd , as shown in Figure 8b. A similar
interpretation can be underlined for the SJ desired rotation with respect to the applied forces by
comparing the rotation contour plots (namely parameter φ) depicted in Figure 9. In fact, in this case,
the isolines are almost vertical. At last, the contour plots of the ratio ψ/φ, representing a measure
of parasitic rotations, are illustrated in Figure 10. This picture clearly highlights that, for relatively
high moment loads in any direction, a value of ψ/φ less than 0.25 can be achieved. This latter value
increases whenever the moment loads decrease and the force loads increase (upper left corner of the
plots). Finally, contour plots for all the other loading cases are reported in Appendix A, for the sake
of completeness.
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(c)

Figure 8. Contour plots of δ∗ for three extreme loading cases: (a) moment Myd and force Fxd ; (b) moment
Myd and force Fzd ; (c) moment Mxd and force Fxd .
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Figure 9. Contour plots of φ for three extreme loading cases: (a) moment Myd and force Fxd ; (b) moment
Myd and force for Fzd ; (c) moment Mxd and force Fxd .
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Figure 10. Contour plots of ψ/φ for three extreme loading cases: (a) moment Myd and force Fxd ;
(b) moment Myd and force Fzd ; (c) moment Mxd and force Fxd .

5. Conclusions

The design of a compliant joint, suitable for realizing approximatively spherical motions and
featuring two open chains connected in parallel, has been introduced and analyzed. Each chain is
composed by the in-series connection of three identical circular flexible beams with coincident centers
of curvature and mutually orthogonal axes of maximum rotational compliance. First, the closed form
compliance equations of the proposed spherical joint have been presented as a function of the beam
dimensions and employed material. It has been shown that, within the small deformation range,
the joint can provide an isotropic behavior, its compliance matrix being diagonal. Then, a parametric
study has been conducted based on the equations obtained from the theoretical approach, in order to
optimize the beam geometric parameters allowing to maximize the primary to secondary compliance
factors. Finite element analysis has been subsequently performed, both within the small deflection
hypothesis (in order to validate the results obtained from the theoretical approach), and for large
deflection hypothesis (in order to evaluate the joint behavior when it is intended to undergo large
rotations subjected to large loads). Thanks to its isotropism (in absence of external loads other than
the primary moments), this joint design seems interesting for implementing high-precision spherical
mechanisms and robotic actuated devices formed therewith. Naturally, due to the chosen topology,
the joint center may be affected by undesired translations. Nonetheless, this latter issue may be
mitigated by implementing the concept of contact-aided compliant mechanism (i.e., by introducing
contact surfaces that mitigate the presence of parasitic motions). Future developments include
manufacturing and testing of a physical joint prototype in either plastic or metal materials.
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Appendix A. Supplementary Plots
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(f)

Figure A1. Contour plots of δ∗ for all the loading cases: (a) moment, Mxd , and force, Fyd ; (b) moment,
Mxd , and force, Fzd ; (c) moment, Myd , and force, Fyd ; (d) moment, Mzd , and force, Fxd ; (e) moment, Mzd ,
and force, Fyd ; (f) moment, Mzd , and force, Fzd .
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Figure A2. Cont.
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(f)

Figure A2. Contour plots of φ for all the loading cases: (a) moment, Mxd , and force, Fyd ; (b) moment,
Mxd , and force, Fzd ; (c) moment, Myd , and force, Fyd ; (d) moment, Mzd , and force, Fxd ; (e) moment, Mzd ,
and force, Fyd ; (f) moment, Mzd , and force, Fzd .
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Figure A3. Contour plots of ψ/φ for all the loading cases: (a) moment, Mxd , and force, Fyd ; (b) moment,
Mxd , and force, Fzd ; (c) moment, Myd , and force, Fyd ; (d) moment, Mzd , and force, Fxd ; (e) moment, Mzd ,
and force, Fyd ; (f) moment, Mzd , and force, Fzd .
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