CHEMISTRY A European Journal

Supporting Information

Silicon(IV) Corroles

Giuseppe Pomarico,^[a] Donato Monti,^[a] Martina Bischetti,^[a] Andrea Savoldelli,^[a] Frank R. Fronczek,^[b] Kevin M. Smith,^[b] Damiano Genovese,^[c] Luca Prodi,^[c] and Roberto Paolesse^{*[a]}

chem_201801246_sm_miscellaneous_information.pdf

Author Contributions

M.B. NMR Studies: Lead.

Table of Contents

Synthetic protocols of PluS NPs with non covalently embedded 1, 3 and 5	Table S1			
UV-vis spectra of 4 and 5	Figure S1			
¹ H NMR spectrum of 1 in CDCI ₃	Figure S2			
¹ H NMR spectrum of 1 in DMSO	Figure S3			
¹ H NMR spectrum of 1 in DMSO + Fluoride ions	Figure S4			
¹ H NMR Titration of 1 in DMSO with Fluoride ions: β -pyrrolic region	Figure S5			
¹ H NMR Titration of 1 in DMSO with Fluoride ions: axial –OH region				
FAB mass spectrum of 1	Figure S7			
¹ H NMR spectrum of 2 in CDCI ₃	Figure S8			
FAB mass spectrum of 2	Figure S9			
FAB mass spectrum of the products mixture after reaction of 2 with HCI.	Figure S10			
¹ H NMR spectrum of 3 in CDCI ₃	Figure S11			
¹⁹ F NMR spectrum of 3 in DMSO	Figure S12			
FAB mass spectrum of 3	Figure S13			
¹ H NMR spectrum of 4 in CDCI ₃	Figure S14			
FAB mass spectrum of 4	Figure S15			
¹ H NMR spectrum of 5 in DMSO	Figure S16			
FAB mass spectrum of 5	Figure S17			
UV-vis spectral variation of 1 upon F ⁻ titration	Figure S18			
UV-vis spectral variation of 1 in the Q region upon F ⁻ titration	Figure S19			
Comparison of the UV-vis spectral variations of 1 upon addition of F ⁻ (black line) and OH ⁻ (red dotted line)	Figure S20			
Absorption spectra of PluS NPs doped with corroles 1 and 2 in water	Figure S21			
Excitation spectra of PluS NPs doped with corroles 1 and 2 in water	Figure S22			
Time Resolved Emission Spectroscopy (TRES) of NP3L in bidimensional	Figure S23			
map				
Plot of decays of TRES	Figure S24			
Emission anisotropy of samples NP1L, NP1H, NP3L and NP3H	Figure S25			
Absorbance spectra before and 2 days after addition of NaF 50 mM to NP1L and NP2L	Figure S26			
Emission spectra before and 2 days after addition of NaF 50 mM to NP1L and NP2L	Figure S27			

Table S1. Synthetic protocols	of PluS NPs with non covalentl	y embedded 1, 3 and 5

Sample	Pluronic F127 (mg)	TEOS (μmol)	Si-corrole	Nominal doping ratio (vs. mol TEOS)	Si-corrole (µmol)	Si-corrole (mg)
NP1L	100	800	1 -Low%	0.1%	0.73	0.45
NP1H	100	800	1 -High%	0.25%	2.00	1.25
NP3L	100	800	3 -Low%	0.1%	0.48	0.4
NP3H	100	800	3 -High%	0.25%	2.98	2.5
NP5L	100	800	5 -Low%	0.1%	0.39	0.5
NP5H	100	800	5 -High%	0.25%	1.8	2.3

Figure S1. UV-vis spectra of monomer 4 (red full line) and dimer 5 (green dashed line).

Figure S2. ¹H NMR spectrum of 1 in CDCl₃.

Figure S3. ¹H NMR spectrum of **1** in DMSO.

Figure S4. ¹H NMR spectrum of **1** in DMSO + Fluoride anion.

Figure S5. ¹H NMR Titration of **1** in DMSO with Fluoride ion: β -pyrrolic region.

Figure S6. ¹H NMR Titration of 1 in DMSO with Fluoride ion: axial –OH region

Figure S7. FAB mass spectrum of 1.

Figure S8. ¹H NMR spectrum of 2 in CDCl₃.

Figure S9. FAB mass spectrum of 2.

Figure S10. FAB mass spectrum of the products mixture after reaction of 2 with HCI.

Figure S11. ¹H NMR spectrum of 3 in CDCI₃

Figure S12. ¹⁹F NMR spectrum of 3 in DMSO

Figure S13. FAB mass spectrum of 3.

Figure S14. ¹H NMR spectrum of 4 in CDCl₃.

Figure S15. FAB mass spectrum of 4.

Figure S16. ¹H NMR spectrum of 5 in DMSO

Figure S17. FAB mass spectrum of 5.

Figure S18. UV-vis spectral variation of 1 upon F⁻ titration

Figure S19. UV-vis spectral variation of 1 in the Q region upon F⁻ titration

Figure S20. Comparison of the UV-vis spectral variations of **1** upon addition of F^- (black line) and OH^- (red dotted line)

Figure S21. Absorption spectra of PluS NPs doped with **1** and **2** in water (samples **NP1L**, **NP1H**, **NP2L** and **NP2H** in black, red, green and yellow solid lines respectively), expressed as molar extinction coefficients (left) and normalized (right).

Figure S22. Excitation spectra of PluS NPs doped with corroles 1 and 2 in water (samples NP1L, NP1H, NP2L and NP2H in black, red, green and yellow solid lines respectively).

Figure S23. Time Resolved Emission Spectroscopy (TRES) of **NP2L** in bidimensional map (counts vs wavelength vs time). Acquisitions are performed with fixed counts at maximum, in order to obtain TRES normalized vs wavelength. Counts are in log scale.

Figure S24. Plot of decays of TRES shown in previous figure

Figure S25. Emission anisotropy of samples NP1L, NP1H, NP3L and NP3H. Excitation wavelength 393 nm

Figure S26. Absorbance spectra of samples **NP1L** (left) and **NP2L** (right) before (red) and 2 days after addition of NaF 50 mM (black).

Figure S27. Emission spectra of samples **NP1L** and **NP2L** before (red and yellow) and 2 days after addition of NaF 50 mM (black and green).