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Stratigraphic patterns of last occurrences (LOs) of fossil taxa potentially

fingerprint mass extinctions and delineate rates and geometries of those

events. Although empirical studies of mass extinctions recognize that random

sampling causes LOs to occur earlier than the time of extinction (Signor–

Lipps effect), sequence stratigraphic controls on the position of LOs are rarely

considered. By tracing stratigraphic ranges of extant mollusc species preserved

in the Holocene succession of the Po coastal plain (Italy), we demonstrated that,

if mass extinction took place today, complex but entirely false extinction pat-

terns would be recorded regionally due to shifts in local community

composition and non-random variation in the abundance of skeletal remains,

both controlled by relative sea-level changes. Consequently, rather than follow-

ing an apparent gradual pattern expected from the Signor–Lipps effect, LOs

concentrated within intervals of stratigraphic condensation and strong facies

shifts mimicking sudden extinction pulses. Methods assuming uniform recov-

ery potential of fossils falsely supported stepwise extinction patterns among

studied species and systematically underestimated their stratigraphic ranges.

Such effects of stratigraphic architecture, co-produced by ecological, sedimen-

tary and taphonomic processes, can easily confound interpretations of the

timing, duration and selectivity of mass extinction events. Our results highlight

the necessity of accounting for palaeoenvironmental and sequence stratigraphic

context when inferring extinction dynamics from the fossil record.
1. Introduction
Stratigraphic distributions of last occurrences (LOs) of fossil taxa in sedimentary

successions have been used to quantify onsets, durations and intensities of mass

extinctions (e.g. [1–4]), track geographical and environmental variation in

extinction rates [4–6], and relate those rates to concurrent changes in geochem-

ical and sedimentological proxies [2,4,5]. This type of palaeontological data has

been thus crucial for high-resolution reconstructions of the temporal and eco-

logical dynamics of mass extinction events and identification of their extrinsic

drivers. Nevertheless, the observed stratigraphic position of the LO of a species

typically predates its actual time of extinction [7]. In addition, as demonstrated

by Signor & Lipps [8], artificial truncation of the observed stratigraphic range of

a taxon can simply arise from a random sampling process, which can make

abrupt extinction events appear gradual in the fossil record. To correct for
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this ‘Signor–Lipps effect’ [9], the timing and pattern of

extinctions have been commonly estimated from stratigraphic

data by assuming that fossil occurrences are essentially

random and controlled primarily by sampling [7].

However, the focus on random sampling effects alone does

not fully account for the complexity of the geological record

and non-random nature of stratigraphic patterns [10]. Most

outcrop- and core-based extinction studies implicitly assume

that the positions of LOs logged at a given location provide

an accurate chronology of extirpation or extinction events,

especially so, if corrected for the Signor–Lipps effect. However,

the local distribution of LOs is not only affected by sampling

intensity, but also by systematic changes in facies and sediment

accumulation rates that occur in response to regional or global

drivers such as tectonic subsidence and eustatic change [11].

Consequently, a local stratigraphic expression of temporal

variation in extinction rates is superimposed on ecological

responses to lateral shifts of habitats through time, manifested

in geological sections as vertical changes in composition and

diversity of fossil assemblages. These changes can appear as

sudden pulses in faunal turnover due to abrupt facies shifts,

as well as due to non-deposition, stratigraphic condensation

and erosion, often coincident with facies boundaries.

Numerical simulations that integrate eco-evolutionary

and sequence stratigraphic models support those predictions:

eco-stratigraphic processes can produce clusters of LOs con-

centrated at specific stratigraphic horizons such as flooding

surfaces, surfaces of forced regression and sequence boundaries

[10,12–15]. Such surfaces are typically associated with deposi-

tional hiatuses, stratigraphic condensation and non-Waltherian

facies shifts [11,16]. Moreover, depositional architecture

influences the stratigraphic distribution, taphonomic character-

istics and temporal resolution of fossil concentrations [17–20],

thus constraining the quantity and quality of palaeontological

data retrievable from any given horizon.

The sequence stratigraphic control on fossil occurrences is

worrisome because the fossil record of many prominent

extinction events coincides with major sequence stratigraphic

surfaces, suggesting that interpretations of these events may

be partly, or even entirely, confounded by the stratigraphic

architecture [10,21–23]. On the other hand, because trends

in biodiversity and stratigraphic architecture may both be

driven by common causative processes such as sea-level

and climatic changes [24], it is difficult to distinguish clusters

of LOs caused by elevated extinction rates from those gener-

ated by stratigraphic processes [10]. To avoid these

uncertainties, we employ here the Holocene fossil record of

living species to test the impact of the stratigraphic architec-

ture on our ability to reconstruct the timing and tempo of

past extinction events.

We evaluate how faithfully stratigraphic ranges of extant

Adriatic molluscs are recorded in a series of cores that were

drilled through a 40-metre-thick package of genetically

related alluvial, coastal and shallow-marine strata of the Po

Plain (northwest Italy). If the time when a given taxon was

in existence was always accurately reflected by its strati-

graphic range observed in local sections, LOs of extant

species should coincide with the top of the succession. How-

ever, such a perfect record is implausible [8,25]. Here we test

if the observed stratigraphic distribution of LOs can be

explained by a random sampling alone (i.e. the Signor–

Lipps effect), or is more consistent with combined effects of

sampling and systematic variation in fossil occurrence rates
as predicted by the sequence stratigraphic model. Our

approach can also be directly linked to mass extinction studies

by following a simple thought experiment [25]: imagine that a

catastrophic event has just wiped out all shallow marine and

brackish molluscan fauna of the Adriatic Sea. The extinction

horizon would then correspond to the modern sedimentary

surface preserved in the rock record by subsequent sedimen-

tation. We ask if this hypothetical extinction event could be

correctly reconstructed from cores drilled across the Po Plain.

By tracing the stratigraphic occurrences of extant species with

known ecological preferences, in the context of the established

regional depositional and sequence stratigraphic frameworks

[26], we can directly assess the imprint of facies control, strati-

graphic architecture and sampling on the stratigraphic

distribution of LOs.
2. Material and methods
(a) Study area
The topmost 40-metre-thick succession of the Po coastal plain has

been interpreted to represent the Last Glacial Maximum depositional

sequence, which is currently accumulating in the Po Plain–Adriatic

Sea system [27]. In the study area, the lowstand systems tract is

primarily composed of fluvial and floodplain deposits of Late

Pleistocene age. Overlying transgressive systems tract (TST) and

highstand systems tract (HST) consist mainly of Holocene strata

forming a transgressive–regressive, wedge-shaped succession,

recently subdivided into a series of centennial units embedded

within eight millennial-scale depositional units (parasequences in

[26]; see ‘Geological setting’ in electronic supplementary material).

The Holocene molluscan assemblages were studied in four cores

for which environmental, sequence stratigraphic and chronostrati-

graphic interpretation have been previously established

[19,20,26,28]. These cores form an L-shaped transect 35 km long

that captures lateral variation in LO patterns along the depositional

dip and strike (electronic supplementary material, figure S1). Fossili-

ferous deposits preserving estuarine, deltaic and marine

assemblages occur up to the modern sedimentary surface in all

four cores.

(b) Dataset
A total of 229 bulk samples, each representing an approximately

10 cm core interval, were collected with an average vertical spacing

of 0.57 m (range 0.05–1.52 m). The standardized volume of

samples allows us to track changes in fossil abundance (i.e. the

density of identifiable fossils per unit of a core). See Kowalewski

et al. [29] for the details of sample processing. Specimens lacking

species-level identification and all terrestrial or exclusively fresh-

water species were excluded, resulting in the dataset

encompassing 119 species and 38 093 specimens (electronic sup-

plementary material, dataset S1). Stratigraphic ranges of species

observed in the cores were extended to the Late Pleistocene

based on their occurrence in the underlying marine strata of the

Last Interglacial (Marine Isotope Stage 5e [29]).

(c) Estimating bathymetric preferences of species
We focused on water depth because it is one of the major factors

controlling the distribution of marine benthic assemblages [15].

The independent estimates of the present-day bathymetric prefer-

ences of species were derived from the Italian Mollusc Census

Database of the Italian National Agency for New Technologies,

Energy and Sustainable Economic Development (ENEA; http://

www.santateresa.enea.it/wwwste/malaco/home.htm), a compi-

lation of benthic surveys along the Italian coast [30]. We only

http://www.santateresa.enea.it/wwwste/malaco/home.htm
http://www.santateresa.enea.it/wwwste/malaco/home.htm
http://www.santateresa.enea.it/wwwste/malaco/home.htm
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considered sampling stations located on the Adriatic Sea shelf.

The restricted dataset consisted of 403 samples collected from 0

to 124 m water depth and containing approximately 240 000

individuals of 439 species in total.

The bathymetric preference of a species was estimated as the

mean water depths across all sampling stations at which that

species was found, weighted by the number of specimens at

each of those stations. Because brackish habitats tend to be

underrepresented in the ENEA database, this procedure may over-

estimate water depths of species reaching peak abundance in

brackish conditions. The counts of both live and dead individuals

were combined to assure that the calculated parameters reflect an

environmental distribution of a species as would be observed in

the fossil record. Preferred water depth was estimated for 72 out

of 119 species (60.5%) recorded in the cores which were present

at five or more sampling stations in the ENEA database.
.B
285:20181191
(d) Analytical methods
We tested whether the time and pattern of extinctions can be

correctly estimated from the stratigraphic record under a simple

model of a random distribution of fossil occurrences and constant

sampling probability (uniform recovery potential) through time

[7,31]. As recently noted by Wang & Marshall [7], this class of prob-

abilistic methods continue to dominate palaeontological analyses,

including the most recent studies.

First, we used empirically calibrated resampling simulations to

assess if the stratigraphic patterns in LOs observed in the cores

deviate significantly from the patterns that would be expected

under uniform recovery potential of fossils. We designed two null

models. The first model assumes a random distribution of species

and uniform sampling intensity throughout the stratigraphic suc-

cession. The second model relaxes the latter condition by allowing

the sample size to vary according to the trends in fossil abundance

actually observed in the cores. See the electronic supplementary

material for the details of the resampling procedures.

Second, we applied several methods of testing for abrupt

versus stepwise or gradual extinction patterns: (i) a simple graphi-

cal approach based on the relationship between stratigraphic

abundance (proportion of samples in which a given species was

observed) and position of LO [25], (ii) a likelihood-ratio test for

the simultaneous extinction of all species [32], and (iii) a two-

step algorithm estimating the number of extinction pulses [33]

(see the electronic supplementary material for details). We evalua-

ted the ability of those methods to correctly identify the single

simultaneous extinction event in each of the studied cores.

Finally, to test how accounting for systematic variation in fossil

occurrence rates affects estimates of extinction times, we compared

the performance of two methods for calculating confidence inter-

vals (CIs) on the position of stratigraphic range endpoints. The

classical method of Strauss & Sadler [34] assumes uniform recov-

ery potential of fossils, while its generalization [35] allows

recovery potential to vary with stratigraphic position according

to a predefined recovery function. Following procedures of Hol-

land [36], we estimated sample-level collection probabilities for

each species using multivariate ordination (see the electronic sup-

plementary material). For species with at least four occurrences in

a given core, we calculated 50% and 95% CIs using both methods

and compared the proportion of taxa for which the estimated

range endpoint fell below the topmost sample in the core (the

extinction horizon in our hypothetical scenario). All analyses

were performed in R [37].
3. Results
Out of 119 extant species recorded in the cores, only six (5%)

reach the top of the sedimentary succession (i.e. our
hypothetical extinction horizon). Thus, taken at face value,

the observed stratigraphic ranges would provide a strongly

distorted record of the timing and pattern of extinctions

(figure 1). Moreover, LOs do not follow a simple gradual

pattern predicted by the Signor–Lipps effect [8,25]. Instead,

LOs form distinct clusters, the number and stratigraphic

position of which depend on the location of the core along

the depositional profile (figures 1 and 2a).

In the two proximal cores, a major peak at 7–9.5 m core

depth precedes the cluster of LOs corresponding to the

hypothetical extinction horizon at the top of the cores (figures 1

and 2a). The older cluster occurs below the shift from lagoonal

to swamp facies association and above a series of closely

spaced centennial-scale flooding surfaces within the earliest

HST (parasequence 4). In the core 205-S5, another cluster of

LOs is located in the middle part of the TST (16–18 m; parase-

quence 2), which also consists of a set of centennial-scale units

deposited in back-barrier settings. The same interval in core

204-S7, located further updip, records swamp and floodplain

deposits mostly devoid of macrofossils (figure 1).

In the downdip cores, LOs are strongly clustered around

the maximum flooding surface (MFS; figures 1 and 2a). This

interval includes a metre-thick, highly fossiliferous transgres-

sive sand sheet, recording a millennial-scale condensation,

and, in its lower part, ecologically mixed (reworked) faunal

assemblages [19,20]. The unit is capped by a thin veneer of

offshore clays and silts recording the maximum water depths

within the studied succession [26,38], followed by a thick

package of sparsely fossiliferous prodelta muds. Above them,

a smaller peak in LOs is located around the centennial-

scale flooding surface within the HST (8.5–10.5 and 15.5–

18 m in core 205-S9 and 205-S14, respectively; parasequence

7). This cluster precedes the onset of a progradation of the

southern Po delta lobes (Spina and Volano) and deposition of

coarser-grained delta front facies.

Combining fossil occurrences across the cores reduces the

magnitude of range truncation: for 30 out of 64 species

recorded in more than one core, the positions of their LOs

shifted upward to a younger parasequence (electronic sup-

plementary material, figure S2). However, even for data

merged across all four cores, only 16 species (13%) reach the

youngest parasequence 8, and 67 species (56%) do not range

beyond the condensed interval around the MFS. Capturing

the full extent of their stratigraphic ranges would require

sampling of sections located even further downdip recording

more offshore environments.

Given that all sampled species are still living in the region,

truncations of their stratigraphic ranges must reflect incom-

plete sampling or change in the local habitat (i.e. facies

shifts). Facies control on the stratigraphic distribution of LOs

can be assessed using bathymetric preferences of individual

species derived from independent surveys of recent benthic

fauna. While shallow-water and brackish-tolerant species are

recorded up to the very top of the cores, LOs of taxa preferring

more offshore conditions are concentrated in the late TST and

earliest HST (figure 2b). The disappearance of deeper-water

species from the upper part of the sequence can be linked to

the onset of a fast regional progradation during the HST (para-

sequences 7–8). In the two distal cores, this progradation led to

deposition of a thick, shallowing-upward deltaic wedge [26]

(electronic supplementary material, figure S1). The same

shallowing trend is manifested in the two proximal cores by

a reduction of marine influence in back-barrier settings.
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row) parts of the Po coastal plain. Species are ordered according to their last occurrence below the hypothetical extinction horizon corresponding to the modern
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Systematic changes in fossil abundance represent another

factor controlling the stratigraphic distribution of species.

Because the volume of sediment sampled from each core

interval was held constant, changes in shell density directly

affect the number of specimens available for study and thus

the likelihood of recording rare taxa. As a result, LOs of

rare species should cluster in shell-rich horizons, where

they are more likely to be sampled. Indeed, the position of

LO clusters follows peaks in fossil abundance (figure 3a,d;

electronic supplementary material, figures S3a,d ).

The observed stratigraphic patterns in LOs depart signifi-

cantly from the null model assuming both facies-independent

distribution of species and uniform sampling intensity (model

1 in figure 3; electronic supplementary material, figure S3).

Under those conditions, the probability of recording a given

species depends only on its total abundance and remains con-

stant throughout a core. In this model, the random truncation

of stratigraphic ranges and differential sampling of rare versus

common species lead to the classical Signor–Lipps pattern of

downward smearing of LOs, stratigraphically manifested as a

gradual decline in species diversity. By contrast, simulations

incorporating vertical changes in fossil abundance always pro-

duce stepwise LOs patterns (model 2 in figure 3; electronic

supplementary material, figure S3) and correctly predict the

position and magnitude of many, though not all, LO clusters

observed in the proximal cores. This suggests that some of

the clusters of LOs can simply reflect a stratigraphic distri-

bution of fossil-rich deposits. However, the distribution of

LOs observed in the two distal cores is incongruent with the

predictions of model 2. Variation in fossil abundance is thus

insufficient to explain the position of LO clusters in these
cores underscoring the importance of facies control on the

distribution of LOs.

Model 1 in our simulations corresponds to the assumption

of uniform preservation and recovery of fossils that underlies

many probabilistic methods for estimating the actual time or

pattern of extinctions from fossil occurrences [7,31]. Such

methods do not account for sequence stratigraphic control on

LO patterns. The relationship between stratigraphic abundance

and position of LOs [25] suggests two extinction pulses

(electronic supplementary material, figure S4). False stepwise

extinction patterns are also favoured by the maximum-

likelihood estimates for the number of extinction pulses [33]

(electronic supplementary material, figure S5), while the

likelihood-ratio test [32] incorrectly rejects the hypothesis

of simultaneous extinction of all species in three out of

the four cores ( p ¼ 0.17 for core 205-S5 and p , 0.001 for the

remaining cores). Because all species are extant, the CIs on

their stratigraphic range endpoints should extend to the

modern sedimentary surface. However, the classical method

[34] based on the assumption of random fossil occurrence,

systematically underestimates the extent of species ranges

(electronic supplementary material, figure S6). Incorporation

of facies-dependent occurrence probabilities derived from

multivariate ordination [35,36] (electronic supplementary

material, figures S8 and S9) reduces the bias in the estimates

of extinction time (electronic supplementary material, figure

S7). While the classical 95% CIs do not reach the top of the suc-

cession for 44%, 55%, 74% and 79% of species in core 205-S5,

204-S7, 205-S14 and 205-S9, application of the ordination-

based CIs reduces these numbers to 0%, 12%, 52% and 23%

of species, respectively.



no. last occurrences no. last occurrencesno. last occurrencesno. last occurrences
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

204-S7 205-S5 205-S9 205-S14

preferred water depth (m) preferred water depth (m) preferred water depth (m)
0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30

preferred water depth (m)

73
.2

 m

204-S7 205-S5 205-S9 205-S14

st
ra

tig
ra

ph
ic

 p
os

iti
on

 (
m

)

35

30

25

20

15

10

5

0

35

30

25

20

15

10

5

0

T
ST

T
ST

H
ST

H
ST

H
ST

FS
ST

L
ST

T
ST

L
ST

FS
ST

L
ST

T
ST

H
ST

L
ST

st
ra

tig
ra

ph
ic

 p
os

iti
on

 (
m

)

65
.6

 m

T
ST

H
ST

FS
ST

L
ST

T
ST

T
ST

T
ST

H
ST

H
ST

H
ST

FS
ST

L
ST

L
ST

L
ST

(b)

(a)

Figure 2. Clustering of LOs around the MFS (green line) associated with the disappearance of species preferring more offshore habitats. (a) The number of LOs
observed at each sampled horizon. Grey rectangles delineate the stratigraphic interval isochronous with the strongly condensed portion of the two distal cores (the
upper part of parasequence 2 to parasequence 6, see electronic supplementary material, figures S1 and S2). (b) Preferred water depth of mollusc species versus the
stratigraphic position of their last occurrence. Water depths above the upper limit of the offshore transition zone (10 m) are marked in grey. Black points represent
species reaching high abundance in brackish conditions. Arrows indicate outliers with much greater preferred water depth compared to the rest of the fauna. Note
that several points representing different species can overlap. See figure 1 for the key to sequence stratigraphic units and parasequences.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

285:20181191

5

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

17
 M

ay
 2

02
2 
4. Discussion
Non-random truncation of stratigraphic ranges of extant

species observed in the Holocene strata of the Po Plain reveals

pervasive effects of stratigraphic architecture on the distri-

bution of LOs preserved in the fossil record. LOs of taxa tend

to concentrate within intervals of stratigraphic condensation

and strong facies shifts associated with flooding surfaces in

the TST and lower HST (figures 1 and 2a). Literal reading of

these patterns would falsely suggest a multiphase extinction

event: a regionally synchronous interval of highly elevated

extinction rates around the time of maximum marine ingres-

sion followed by smaller extinction pulses (figure 2a).

Moreover, the relationship between the stratigraphic position

of LOs and ecological affinities of species (figure 2b), if con-

sidered without a reference to the vertical facies changes,

could be mistaken as a signature of habitat-selective extinction:

early extinction of offshore taxa followed by a more protracted,

stepwise decline of shallow-water and brackish fauna.

Such sequence stratigraphic control on the distribution of

LOs, easy to identify in the Holocene strata, can severely

hamper interpretations of more ancient records, especially

when outcrop area is restricted to a narrow portion of a deposi-

tional profile, temporal resolution is low, and ecology of extinct

taxa poorly known [10,21,22]. Because the nature and intensity

of stratigraphic controls depend on the location along a
depositional profile, sequence architecture and tectonic setting

[10,15,39], as well as on ecological and taphonomic character-

istics of taxa [23,39–41], a variety of patterns in LOs can arise

depending on the local context and taxonomic group under

study. Indeed, contrasting interpretations of the number and

timing of extinction pulses during the End-Permian mass extinc-

tion have been suggested to reflect different degrees to which

sampling, facies control and stratigraphic incompleteness

affect fossil occurrence patterns in individual sections [42].

The observed stratigraphic positions of LO clusters are

consistent with the predictions of numerical simulations

that modelled fossil occurrences as a function of bathymetry-

dependent distribution of taxa and sequence stratigraphic

architecture [10]. This agreement indicates that the effects of

stratigraphic controls can be deduced from basic ecological

and sequence stratigraphic principles, even when the models

and empirical systems are only partly compatible. Whereas

the numerical models simulated deposition over 106–107

years [10,12,14,39], the investigated succession represents

only the last approximately 12 000 years. However, when

considered in terms of the spatial extent, thickness of the

strata, stratigraphic architecture and amplitude of the eustatic

sea-level change, the studied succession is comparable to

higher-order depositional sequences formed over much

longer time scales. Consequently, the Quaternary fossil record

of the Po Plain can serve as a good analogue for the field- or
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core-based mass extinction studies. Likewise, the discrepancy

between the time interval covered by this study and typical

species duration in molluscs (106–107 years) does not affect

the results. Owing to its short temporal scale, the studied Holo-

cene system is not affected by background extinctions, explicitly

incorporated in the numerical models. Therefore, the observed

clustering of LOs is produced solely by non-random truncation

of stratigraphic ranges below a single mass extinction event (the

modern sediment surface in our study). According to the

models [10,12,13], the same types of sequence stratigraphic

surfaces, at which these clusters were recorded, are expected

to accumulate LOs of taxa even when extinction rate is constant

through time. Consequently, the stratigraphic record of a mass

extinction should be distorted even more severely in sedimen-

tary successions spanning longer time scales, because LOs of

the actual victims of a mass extinction would be clustered

together with LOs of species that went extinct prior or after

the event [10].

The stratigraphic distribution of species in Po Plain cores is

controlled by both changes in depositional environments and

vertical trends in fossil density. The first factor determines

the composition of fossil assemblages that can be sampled at

any given horizon, the second factor constrains the available

sample size. Changes in environmental conditions and in

fossil density are both driven by responses of sedimentary
systems to relative sea-level changes and are thus closely corre-

lated: stratigraphic intervals marked by strong facies shifts and

faunal turnover represent horizons where net sedimentation

rates are reduced and skeletal accumulations are more likely

to form [17,18,20]. Clustering of LOs at these horizons results

from the combined effects of (i) direct environmental control

on species distribution and hard part production rates,

and (ii) taphonomic and sedimentary processes underlying

formation and preservation of fossil concentrations.

Shell-rich beds should on average capture a greater share of

the regional species pool relative to shell-poor strata, even if

regional diversity remains stable through time and sample

size is held constant. This inflation in sample-level richness is

expected due to effects of higher time-averaging [43,44], posi-

tive feedback between bioclast accumulation and local

epibenthic diversity [45,46] and enhanced preservation poten-

tial of skeletal elements [47]. This interplay between facies

control and sampling bias is illustrated by the prominent

peak in LOs bracketing the MFS in the two distal cores

(figure 2a). Owing to environmental condensation [19,20],

LOs of both offshore and shallow-water species are clustered

together in this interval (figure 2b). The disappearance of off-

shore species results from the subsequent shallowing, while

the concentration of LOs of shallow-water forms reflects

over-sampling of rare species due to high fossil densities.
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Our null models suggest that even in a highly unlikely scen-

ario of identical environmental preferences of all species, non-

random stratigraphic distribution of skeletal concentrations

can produce clusters of LOs that mimic sudden or stepwise

extinction patterns (model 2 in figure 3). Thus, distinct patterns

in LOs can result solely from changes in fossil abundance

produced by stratigraphic variation in sedimentation rates,

fossil preservation and habitat-dependent hard part pro-

duction rates, all of which can be controlled by stratigraphic

architecture. In other words, rather than being uniform and

randomly distributed, the effects of sampling are closely tied

to the stratigraphic architecture and covary with patterns

caused by facies changes. More intensive collecting effort con-

centrated only around the postulated extinction horizon is thus

unlikely to mitigate the problem.

In contrast to our results, Meldahl [25] observed the classic

gradual pattern of LOs produced by the Signor–Lipps effect in

cores taken from a tidal channel in Bahia la Choya, northern

Gulf of California. However, the 70-cm-long cores used in

that study captured a single facies association and remained

fossiliferous throughout their length. Our numerical simu-

lations (model 1 in figure 3) show that gradual backward

smearing of LOs below the extinction horizon would occur

only under assumptions of (i) continuous and uniform

sampling, and (ii) facies-independent distribution of species

or constant environment through time. Such ideal conditions,

translating to uniform recovery potential of fossil, are unrealis-

tic in sedimentary successions deposited over time scales

relevant for mass extinction studies [11]. Yet methods based

on this simplifying assumption are still widely used to infer

timing of extinctions from stratigraphic data [7]. Such methods

fail to correctly reconstruct the actual extinction pattern

among investigated mollusc species (electronic supplementary

material, figures S4–S6), demonstrating that accounting for

random sampling alone is not enough to avoid the effects of

stratigraphic controls on LOs.

Systematic changes in occurrence rates and sampling

probabilities of fossil are the rule rather than exception

[13,48]. As a result, reliance on statistical procedures that

account for the incomplete fossil record by assuming a

uniform recovery potential of fossils can lead to incorrect

inferences on the timing and mode of mass extinction

events. Methods that relax this unrealistic assumption

(e.g. [49,50]) or incorporate independent information on

facies-specific occurrence rates and/or sampling effort

[35,36,51] may provide more reliable estimates of extinction

times, as demonstrated by our results (electronic supplemen-

tary material, figure S7). However, datasets restricted to

individual outcrops or local composite sections are unlikely

to fully capture an environmental and stratigraphic distri-

bution of a taxon (electronic supplementary material, figure

S2), while extrapolation of locally observed patterns to

regional or global scales is problematic [23]. Combining

data from multiple sections spanning different basins and

depositional environments may reduce the effects of facies

and sampling [42]. Such analyses cannot rely on biostrati-

graphic correlations, as important index fossil groups are

not immune to the effects of stratigraphic architecture [22,23].

Overcoming sequence stratigraphic controls on fossil occur-

rence, although challenging, is not impossible [15,23,52,53].

Several strategies for distinguishing extinction-generated

pulses of LOs from those produced by stratigraphic architecture

have been suggested [10]: (i) clusters of LOs not associated with
sequence stratigraphic surfaces are likely to reflect elevated

extinction rates; (ii) data from depositionally updip or downdip

sections can verify if a locally observed LOs correspond to the

actual extinctions rather than facies-related disappearances;

and (iii) fossil assemblages from environmentally equivalent

strata located below and above a postulated extinction pulse

can be compared to test if the extinction rates across this interval

exceed background extinction rates. Also, multivariate analyses

can be used to compare the magnitude of faunal turnover across

the postulated event to the variation in assemblage composition

that is expected from changes in depositional environments or

stacking patterns [23]. Novel quantitative approaches for esti-

mating environmental affinity of fossil taxa [53,54] should

further increase our ability to disentangle consequences of

mass extinction events from ecological responses to lateral

habitat migration.
5. Conclusion
Stratigraphic distribution of extant species demonstrates that

interactions between ecological preferences of organisms and

processes of sediment accumulation produce systematic

changes in occurrence rates and sampling probabilities of

taxa along a sedimentary succession. The resulting non-

random truncation of stratigraphic ranges leads to clustering

of LOs at specific sequence stratigraphic positions distorting

the relative chronology of species extinctions. Such patterns

can easily confound interpretations of the timing, duration

and ecological selectivity of mass extinction events. Impor-

tantly, the effects of these eco-stratigraphic processes cannot

be removed by methods that correct the Signor–Lipps

effect under a model of uniform preservation and recovery

of fossils.

Research strategies that account for the effects of strati-

graphic architecture are data-intensive and rely on placing

fossil occurrences in a rigorous palaeoenvironmental and

sequence stratigraphic framework. They also typically require

integration of data across multiple sections or sedimentary

basin, thus often sacrificing temporal and spatial resolution.

These challenges imposed by the nature of the stratigraphic

record must be acknowledged and addressed before high-

resolution reconstructions of past extinction dynamics are

attempted. However, more conservative interpretations of

the stratigraphic distribution of fossil taxa will maximize the

accuracy of palaeobiological interpretations and reduce

the risk of using false extinction patterns to formulate and

test eco-evolutionary hypotheses.
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