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1 Introduction

The Batalin-Vilkovisky (BV) quantization scheme [1, 2] is to date the most powerful method

for quantizing general classical field theories characterized by possibly non involutive and

non freely acting gauge symmetry. It has found applications in ordinary gauge theory

as well as supergravity and string theory. Furthermore, since it proceeds in a functional

framework, it makes the powerful functional integration methods available. See ref. [3] for

a readable introduction to the subject.

In BV theory, ghost fields are added to the classical fields to make Becchi-Rouet-

Stora-Tyutin (BRST) symmetry manifest from the onset. Each field is then adjoined by

an antifield of opposite statistics. In this way, the total field space is structured as an odd

phase space, with fields and antifields playing the role of canonically conjugate coordinates

and momenta, respectively. Hamiltonian notions such as those of BV bracket, an odd
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analog of the Poisson bracket, and canonical map can in this way be formulated and used

while keeping manifest covariance and BRST invariance.

The introduction of the antifields doubles the field content. Gauge fixing roughly

speaking amounts to the restoration of the original field number and is achieved by re-

stricting to a suitable Lagrangian submanifold of the total field space. Independence of the

quantum theory from the choice of the submanifold requires the BV master action (MA)

to satisfy the BV quantum master equation (ME). This involves an odd second order dif-

ferential operator called BV Laplacian in addition to the BV bracket. Both the MA and

the Laplacian are affected by UV divergences which need to be suitably regularized and

renormalized. Violations of the ME result in gauge anomalies.

The BV quantization procedure, when properly implemented, ensure the existence of

well-defined propagators making the usual perturbative Feynman graph methods usable in

a manifestly BRST symmetric framework.

The invariant physical content of a quantum field theory is encoded in the partition

function with background sources. The renormalization group (RG) [4, 5] is a powerful

field theoretic construction aimed to probing such content below a certain energy scale,

though the content itself is insensitive to the presence of the scale, which serves as a mere

analysis device. There are a priori many ways of injecting a scale in a field theory and

correspondingly there are many versions of the RG equations (RGE). In this paper, we

shall concentrate on the so called exact RG [6, 7] (to be called simply RG in the following).

See ref. [8] for an updated review.

The theory of RG flow and effective action (EA) has been studied in a BV framework

both from a physical [9, 10] and a mathematical [11–15] point of view and in a variety of

guises. Recent mathematical studies close in spirit to our contribution are [16–18].

The study of the BV RG is of considerable interest for its applications to relevant theo-

retical problems. We mention here a few. In ref. [19], closed string field theory is quantized

using the BV algorithm and the BV MA is studied in depth. A family of consistent string

vertexes is obtained parametrized by a stub length working as an ultraviolet cutoff. A

renormalization group equation for string field theory is yielded in this way. In ref. [20],

Kodaira-Spencer theory of gravity [21] is quantized in the BV RG framework of ref. [11]

and the genus expansion of the B-model is related to the perturbative expansion of the

resulting quantum field theory. In ref. [22], using again the BV RG framework of ref. [11],

the holomorphic bosonic string is quantized.

1.1 Overview of the BV RG framework of this paper

The effectiveness of the BV RGE as a computational scheme and analysis method depends

on the form of the RG flow, which is a basic input datum of the RGE itself. However,

there is much that can be learned before committing oneself with a specific choice.

In this paper, we formulate a BV theory of the RG flow and RGE from a very general

perspective as a BV effective field theory (EFT) at a varying energy scale t. Our approach

is inspired by the seminal work by Costello [11], the indebtedness to which we fully ac-

knowledge, but it differs from it in key points to be discussed later. In an EFT setting, the

BV bracket (−,−)t and Laplacian ∆t depend on t. The BV MA St also depends on t and
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satisfies the BV quantum ME

∆tSt +
1

2
(St, St)t = 0. (1.1)

St can now be viewed as a BV EA. The RG flow of St must be such to preserve the

ME (1.1). The essentially only natural way this can come about is through a group ϕt,s of

BV canonical maps, whose pull-back action transforms isomorphically the BV bracket and

Laplacian at any scale s into those at another scale t. The ME remains satisfied identically

in t if the EA St flows as St = ϕt,s
∗Ss + rϕt,s, where rϕt,s = 1

2 ln Jϕt,s is the logarithmic

Jacobian of ϕt,s. Infinitesimally, then, St obeys an RGE of the form

dSt
dt

= ϕ•tSt + r•ϕt, (1.2)

in which the first and second term of the right hand side can be identified with the familiar

“classical” and “quantum” contributions to the RG flow. We justify this approach to the

RG by a biased revisitation of the BV quantization scheme in section 2, where the interplay

of the RG flow and gauge fixing is also discussed.

In section 3, relying only on the general properties shared by every RG flow, we explore

the possibility of using as energy scale space more general manifolds than just the real line

R. The fact that BV theory belongs to the realm of graded algebra and geometry indicates

that the scale space may be promoted to a graded manifold. We have found particularly

useful to employ the shifted tangent space T [1]R of R rather R alone for this role. We call

this RG set-up “extended” to distinguish it from the customary “basic” set-up. T [1]R is

coordinatized by a degree 0 parameter t, to be identified with the usual RG energy scale,

and a further degree 1 parameter θ. In the extend set-up, so, the BV bracket (−,−)tθ and

Laplacian ∆tθ depend on both t and θ. The BV MA Stθ also depends on t, θ and satisfies

the extended version of the BV ME,

∆tθStθ +
1

2
(Stθ, Stθ)tθ = 0. (1.3)

Stθ is the extended BV EA. In analogy to basic case, its RG flow is governed by a group

ϕtθ,sζ of canonical maps relating the BV bracket and Laplacian at any extended scale

s, ζ to those at another scale t, θ according to the law Stθ = ϕtθ,sζ
∗Ssζ + rϕtθ,sζ . At the

infinitesimal level, this entails a more structured RGE than (1.2). Expanding in powers of

the odd parameter θ, we have (−,−)tθ = (−,−)t ± θ(−,−)?t and ∆tθ = ∆t + θ∆?
t, where

(−,−)?t is a degree 0 graded symmetric bracket and ∆?
t is a degree 0 Laplacian. Further,

Stθ = St + θS?t, where St is to be identified with the usual BV EA and S?t is a degree −1

partner of it. Then, the extended RGE expresses S?t in terms of St and yields an RGE for

St of the form
dSt
dt

= ∆?
tSt +

1

2
(St, St)

?
t + ϕ̄•tSt + r̄•ϕt, (1.4)

where the last two terms in the right hand side are “seed” terms. In this way, we obtain a

version of the BV RGE of the distinctive form of Polchinski’s [6] by purely algebraic and

geometric means. By adjoining the RG scale with an odd partner, we have further revealed
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the existence of an intriguing sort of RG supersymmetry with potential implications for

perturbation theory.

Since presently we have no proof that the basic RG set-up can be embedded in the

extended one in general, it is important to work out non trivial models in which the

extended set-up is implemented. In section 4, working in the gl(1|1) degree −1 symplectic

framework originally developed by Costello in ref. [11], we illustrate a free model of BV

RG flow and EA in the extended set-up. We obtain explicit expressions for the free EA S0
t

and its odd partner S0?
t. We then investigate the associated perturbation theory, where

the full EA and partner thereof St, S
?
t can be expanded as

St = S0
t + It, S?t = S0?

t + I?t, (1.5)

It, I
?
t being interaction terms expressed as formal power series of ~. We recover the

ME and RGE of It originally obtained by Costello and obtain a further ME involving

simultaneously It, I
?
t. We also show that, through this latter, the RGE of It can be cast in

a form analogous to Polchinsi’s. Finally, we find that the odd interaction action partner I?t
describes perturbatively the deviation of the interacting RG flow from its free counterpart.

In the final section 5, we speculate on possible ramifications and applications of our

results in mathematical physics, geometry and topology.

The present paper aims to present the field theoretic foundations of our BV formulation

of RG theory. In a more mathematical oriented paper [23], we shall reformulate the results

obtained here in the framework of the abstract theory of BV algebras and manifolds.

1.2 Relation to Costello’s BV RG theory

In spite of evident formal similarities, there is a basic difference between the RG framework

propounded in the present paper and Costello’s [11]. Costello’s approach is Wilsonian in

nature [5]. In the familiar formulation of Wilson’s RG, the EFT at the energy scale t is

described by an EA St and functional integration is restricted to the finite dimensional

subspace Ft of field space F spanned by the field modes of energy up to t. The RG flow

is determined by the requirement that the partition function is independent from t. Since

flow to a lower energy scale involves a truncation of the functional integration domain Ft to

a proper subspace, the flow cannot be implemented by invertible field maps. The approach

set forth by us is instead Polchinskian [6]. In Polchinski’s RG framework, the EFT at the

energy scale t is described by an EA St as in Wilson’s case but functional integration is

extended to the full field space F . The restriction of integration to the field modes up

to the scale t is due to the special dependence of St on the energy scale t which through

the Boltzmann weight eSt causes an exponential damping of the contribution of the field

modes of energy above t in the functional integral. The RG flow is determined again by

the requirement that the partition function is independent from t, but proceeds through

invertible field maps [24–26]. (Above, we have ignored the complications related to gauge

symmetries and gauge fixing for the sake of the argument.)

Wilson and Polchinski RG are presumably related but it is difficult formulate this

relationship in precise terms. In a Polchinskian perturbative RG framework, the restriction
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to energy modes below the scale t is due as a rule to a modification of the standard kinetic

operator H of the free action S0
t into H/k(H/t), where k(x) is some rapidly decreasing

cut-off function, e. g. e−H/t. This suppresses the field modes of energy greater than t

through the Boltzmann weight eS
0
t . The Wilsonian perturbative RG framework would

roughly correspond to replace k(x) with a function taking the value 1 for x < 1 and 0 for

x > 1. Wilson and Polchinski RG are therefore akin but distinct. So, are Costello’s and

this paper’s BV RG formulations. This also impinges on the way beta functions are defined

in the two approaches, though this matter is not dealt with in this paper.

1.3 Strengths and weaknesses of the BV RG framework presented

The BV RG formulation proposed in the present study, relying heavily on functional in-

tegral manipulations, is expectedly difficult to put on a firm rigorous ground. E. g., the

quantum part of the RG equation is related to the Jacobian of an invertible field map

which as a rule requires regularization. Yet, in quantum field theory it is normally pos-

sible to cope with this kind of problems relying also on the indications provided by finite

dimensional analog models.

Our approach to the BV RG is based on BV geometry. Most studies on this subject

available in the literature, including A. Schwarz’s foundational work [27], assume a finite di-

mensional context. Even in this simplified form they retain however a considerable interest

for the clues and intuition they provide. This is the point of view taken in this article.

Most of what is stated in the following is therefore strictly true in finite dimensions. A

part of analysis is admittedly conjectural, although we feel that the assumptions we made

along the way are natural and neatly fit into the whole picture. The main challenge lying

ahead is testing the theory in non trivial field theoretic models dealing with the difficult

technical problems arising in infinite dimensions. We leave this work for the future.

Costello’s BV RG theory [11] is presently on a firm mathematical ground. With this

study, we certainly do not claim having built an alternative BV RG theory of compara-

ble strength and soundness, but only explore an alternative. The exact RG philosophy

we espouse is in fact widely used by quantum field theorists interested in concrete physi-

cal applications.

2 Renormalization group in Batalin-Vilkovisky theory

In this section, we shall first review briefly the foundations of BV theory from a geometric

perspective. This will also serve to set our terminology and notation. We shall then ex-

pound our BV formulation of RG theory, its interplay with gauge fixing and its implications

for perturbation theory. What is stated below is strictly true only in a finite dimensional

setting. In the infinite dimensional context of quantum field theory that interest us, our

treatment is merely formal. Most of the geometrical theory was developed in Schwarz’s

seminal work [27]. See refs. [28, 29] for a recent up to date review.
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2.1 Elements of BV geometry

In this subsection, we review briefly the basic notions of BV geometry highlighting those

points which will be relevant in the subsequent applications.

BV geometry is the theory of BV manifolds. A BV manifoldM is a Z-graded manifold

endowed with a degree −1 symplectic form ωM and a Berezinian µM, called BV form and

measure respectively, obeying a compatibility condition.

Canonically associated with the BV form ωM is a bilinear bracket (−,−)M : Fun(M)×
Fun(M)→ Fun(M), called BV bracket, as follows. For every function f ∈ Fun(M), there

is a unique vector field adMf ∈ Vect(M) such that

iadMfωM = df. (2.1)

Then, for any function pair f, g ∈ Fun(M), one has

(f, g)M = adMfg. (2.2)

(−,−)M is a Gerstenhaber bracket, that is it has degree 1, is shifted graded antisymmetric,

obeys the shifted graded Jacobi identity and acts as a shifted graded derivation on both

its arguments.

The BV measure µM induces a linear integration map
∫
M µM− : Fun(M) → C,

called BV integral.
∫
M µM− has degree dimvirtM, the sum of the degrees of the even

minus the sum of the degrees of the odd coordinates of M. There is a linear operator

divM : Vect(M) → Fun(M) associated with µM, called BV divergence. divM is the

degree 0 first order differential operator uniquely defined by the property that∫
M
µMXf = −

∫
M
µM divMXf. (2.3)

for any vector field X ∈ Vect(M) and function f ∈ Fun(M).

Combining the BV form and measure, one can construct the BV Laplacian, the linear

operator ∆M : Fun(M)→ Fun(M) given by

∆Mf =
(−1)|f |

2
divM adM f (2.4)

for f ∈ Fun(M). ∆M is a degree 1 second order differential operator. The compatibility

of the BV form ωM and measure µM consists in ∆M being nilpotent,

∆M
2 = 0. (2.5)

This is a non trivial constraint relating ωM and µM.

The BV Laplacian ∆M enjoys a number of relevant properties. ∆M encodes the BV

bracket (−,−)M as

(f, g)M = (−1)|f |(∆M(fg)−∆Mfg − (−1)|f |f∆Mg), (2.6)

– 6 –
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for f, g ∈ Fun(M). Furthermore, ∆M obeys standard integral identities such as the BV

Green identity ∫
M
µM(∆Mfg − (−1)|f |f∆Mg) = 0 (2.7)

and the BV Laplace identity ∫
M
µM∆Mf = 0, (2.8)

where f, g ∈ Fun(M) are any functions.

A Lagrangian submanifold L ofM, is a maximal submanifold ofM such that iL
∗ωM =

0, where iL is the natural injection. There exists a Berezinian µM|L1/2 on L which is a

tensor square root of the restriction of µM to L,

iL
∗µM = (µM|L1/2)⊗2. (2.9)

Using µM|L1/2, one builds a linear L –integration map
∫
L µM|L

1/2− : Fun(M) → C. A

BV version of Stokes’ theorem holds. For any function f ∈ Fun(M),∫
L
µM|L1/2∆Mf = 0. (2.10)

Further, if L and L′ are two Lagrangian submanifolds of M whose bodies are homologous

as cycles of the body of M, then∫
L′
µM|L1/2f =

∫
L
µM|L1/2f (2.11)

for any function f ∈ Fun(M) satisfying

∆Mf = 0. (2.12)

As the BV Laplacian ∆M is nilpotent by (2.5), the BV cohomology H∆M
∗(M) is defined.

By the BV Stokes’ theorem, the L integration map factors through a map
∫
L µM|L

1/2− :

H∆M
∗(M)→ C.

Let B be a fixed collection of BV manifolds which are diffeomorphic as Z-graded

manifolds. For instance, B may consist of BV manifolds which are equal as Z-graded

manifolds but have different BV forms and measures, the situation mostly considered in

this paper.

The natural invertible maps φ : M′ → M of two BV manifolds M,M′ ∈ B are the

canonical ones, that is those with the property that φ∗ωM = ωM′ . They preserve the BV

bracket, so that

φ∗(f, g)M = (φ∗f, φ∗g)M′ (2.13)

for all functions f, g ∈ Fun(M).

The BV integral has the usual covariance properties. If φ : M′ → M is a canonical

map of two BV manifoldsM,M′ ∈ B, then there is a nowhere vanishing degree 0 function

Jϕ ∈ Fun(M′), called the Jacobian of φ, such that∫
M
µMf =

∫
M′

µM′Jφφ
∗f (2.14)
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for any f ∈ Fun(M). The logarithmic Jacobian

rφ = ln Jφ
1/2 (2.15)

is a natural, equivalent substitute for Jφ. It obeys the equation

∆M′rφ +
1

2
(rφ, rφ)M′ = 0. (2.16)

A canonical map φ is said special if rφ = 0.

The pull-back action of a canonical map φ : M′ → M of BV manifolds M,M′ ∈ B

does not intertwine between the BV Laplacians ∆M, ∆M′ . In fact,

∆M′φ
∗f − φ∗∆Mf + (rφ, φ

∗f)M′ = 0 (2.17)

for f ∈ Fun(M). It does however if φ is special. Relation (2.13) expresses the non

covariance of ∆M for a generic φ.

The BV manifolds of the collection B and their canonical maps constitute a groupoid

under composition and inversion, the canonical groupoid of B. The BV manifolds of B

together with the special canonical maps constitute a subgroupoid of the canonical groupoid

of B, the special canonical groupoid of B. However, we shall not rely on this categorical

interpretation in what follows.

If φ :M′ →M is a canonical map of BV manifoldsM,M′ ∈ B and L′ is a Lagrangian

submanifold ofM′, then φ∗L′ is a Lagrangian submanifold ofM as well. In this case, (2.9)

and the identity iφ∗L′ ◦ φ|L′ = φ ◦ iL′ imply that∫
φ∗L′

µM|φ∗L′1/2f =

∫
L′
µM′ |L′1/2Jφ1/2φ∗f (2.18)

for f ∈ Fun(M).

A prototypical BV manifold M is the −1 shifted cotangent bundle T ∗[−1]F of a

Z-graded manifold F with canonical BV form ωcan and measure µcan. ωcan and µcan

are given by the familiar relations in terms of the base and fiber coordinates xa and x∗a,

ωcan = dx∗adx
a and µcan = ddimFxddimFx∗. The BV bracket and Laplacian are in this case

(f, g)can = (−1)(|f |+1)εa∂af∂
∗ag − (−1)(|f |+1)ε∗a∂∗af∂ag (2.19)

and

∆canf = (−1)ε
a
∂a∂

∗af, (2.20)

respectively, where εa = |xa|, ε∗a = |x∗a|.
Every BV manifoldM with BV form ω and measure µ admits locally special Darboux

coordinates xa and x∗a such that ω and µ are expressed as ωcan and µcan in terms xa and

x∗a. Thus, the local structure of BV manifold M is that of a prototypical BV manifold

T ∗[−1]F for some F .

– 8 –
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2.2 BV quantization scheme

In this subsection, we review the BV quantization algorithm or BV theory for short.

BV geometry, as formulated in subsection 2.1, informs BV theory and makes its struc-

ture intuitive.

In field theory, one is initially given with a space Fcl of degree 0 classical fields ψcl
i

and a degree 0 action functional Scl invariant under the action of a distribution G of the

tangent space TFcl of Fcl, representing gauge symmetries in a broad sense. One is further

interested in the computation of quantum correlators of field functionals f of Fcl which

are invariant under the action of G. In general, G is not freely acting nor it is involutive,

though as a rule it is when restricted to the submanifold of Fcl of fields obeying the Euler-

Lagrange equations, that is the critical locus crit(Scl) of Scl in Fcl. As well known, a

functional integral approach to quantization in a situation of this type is problematic. BV

theory offers an elegant solution for this difficulty.

The implementation of the BV quantization algorithm involves the following four steps.

First, one enlarges the field space Fcl by adding to the classical fields a ghost field of suitable

positive degree for each of the independent generators of the distribution G. One obtains

in this way a space F of fields ψa of non negative degree. Second, one adjoins a negatively

graded antifield ψ∗a to each field ψa such that the degrees of ψ∗a and ψa add up to −1.

The resulting total field space is structured as the −1 shifted cotangent bundle T ∗[−1]F
of F with fields and antifields parametrizing respectively its base and fibers. T ∗[−1]F is

then endowed with the canonical BV form and measure ωcan and µcan, rendering it a BV

manifold. Third, the action Scl is extended to an action S, called BV MA, defined on the

whole total field space T ∗[−1]F and such that S reduces to Scl when all the fields and

antifields are set to zero except for the original classical fields ψcl
i. Fourth, quantization is

implemented by restricting the functional integration to a suitable Lagrangian submanifold

L of T ∗[−1]F with the Boltzmann weight eS inserted. The unnormalized correlator of a

functional f on T ∗[−1]F is therefore given by an integral of the form

ZS(f) =

∫
L
µcan|L1/2 eS f. (2.21)

L must be carefully chosen in order to avoid the usual diseases associated with the

gauge symmetry of Scl. Except for the simplest cases, taking L to be the zero section

of T ∗[−1]F , corresponding to setting all the antifields to zero, will not work. In general,

there are infinitely many choices of L. Consistency requires that the value of quantum

correlators is independent from the choice made. This entails a restriction on the form of

the BV MA S: the BV quantum ME

∆canS +
1

2
(S, S)can = 0 (2.22)

must be obeyed by S. It also entails a restriction on the allowed functionals f which can

be inserted in correlators; they must satisfy the equation

∆canSf = 0, (2.23)
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where ∆canS is the degree 1 second order linear differential operator defined by

∆canSf = ∆canf + (S, f)can. (2.24)

∆canS is called covariant BV Laplacian. By virtue of (2.22), ∆canS is nilpotent

∆canS
2 = 0 (2.25)

and is therefore characterized by its cohomology.

Inserting the Boltzmann weight eS in the functional integral (2.21) amounts to redefine

the BV measure from µcan to

µcanS = µcan · e2S . (2.26)

The BV ME (2.22) ensures that the measure µcanS is compatible with ωcan as µcan. ∆canS

is just the nilpotent BV Laplacian associated with ωcan and µcanS according to (2.4).

2.3 BV RG theory

In a concrete setting in which the fields in T ∗[−1]F are sections of bundles on a space-time

manifold, the above functional set-up is plagued by ultraviolet (UV) divergences. In fact,

the canonical BV form and measure ωcan and µcan yield a BV Laplacian ∆can containing

pairs of functional derivatives acting at the same point of space-time and thus ill-defined.

In such a situation, the whole theoretical scheme is purely formal and so virtually unusable.

To cure this disease, one has to introduce a very high energy scale t0 to regularize the UV

divergences and use the methods of EFT to describe the quantum field theory at a relevant

lower energy scale t.

It is natural to expect that, in an EFT description, the formal framework of BV

quantization should remain essentially unchanged. BV theory and BV geometry that

underlies it constitute a delicate structure unlike to preserve its efficacy and selfconsistency

under severe modifications. We assume thus that quantization proceeds much as in the

unregularized case but with the unregularized quantities replaced by effective ones at the

given scale t. The unregularized BV form and measure ωcan and µcan get in this way

replaced by an effective BV form ωt and measure µt and the unregularized BV bracket

(−,−)can and Laplacian ∆can by the associated effective BV bracket (−,−)t and Laplacian

∆t. There is a price attached to this: ωt, µt, (−,−)t and ∆t are mathematically far more

complicated than ωcan, µcan, (−,−)can and ∆can are. Further, since the scale t cannot be

assigned any a priori special value, we are considering a whole one parameter family of BV

manifolds T ∗[−1]Ft having T ∗[−1]F as underlying graded manifold and ωt and µt as BV

form and measure. However, the formal properties of the effective structure are exactly

the same as those of the unregularized one, allowing for an in depth theoretical analysis.

From subsection 2.2, quantization of the EFT involves restriction of integration to a

Lagrangian submanifold Lt of T ∗[−1]Ft with insertion of the Boltzmann weight eSt of a

BV EA St. Unnormalized correlators thus read as

ZS(f) =

∫
Lt
µt|Lt1/2 eSt f (2.27)
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for any functional f on T ∗[−1]F . The EA St must again satisfy the BV ME

∆tSt +
1

2
(St, St)t = 0. (2.28)

Further, the functionals f inserted in correlators must obey

∆tSf = 0, (2.29)

where ∆tS is the effective covariant Laplacian defined by

∆tSf = ∆tf + (St, f)t. (2.30)

Again, by virtue of (2.28), ∆tS is nilpotent

∆tS
2 = 0 (2.31)

and thus characterized by its cohomology.

The variation of the Lagrangian submanifold Lt and the BV EA St under continuous

shifts of the energy scale t, the so called RG flow, must be such to preserve the whole BV

structure. In our EFT formulation, it is natural to assume that the flow is implemented by

scale dependent field redefinitions, that is invertible maps of the total field space T ∗[−1]F .

The largest most natural family of maps preserving the BV structure is the set of mor-

phisms of the canonical groupoid of the BV manifold family T ∗[−1]Ft which we introduced

above. In the present modelization, so, the RG flow is given by a two parameter family of

canonical maps ϕt,s : T ∗[−1]Ft → T ∗[−1]Fs satisfying the relations

ϕt,sϕu,t = ϕu,s, (2.32)

ϕs,t = ϕt,s
−1, (2.33)

ϕs,s = idT ∗[−1]F (2.34)

for s, t ∈ R. The basic requirement that the RG flow must obey is that the partition

function ZS(1) remains constant along it, so that for any two value s, t of the energy scale

ZS(1) =

∫
Lt
µt|Lt1/2 eSt =

∫
Ls
µs|Ls1/2 eSs . (2.35)

By the general result (2.18), one has∫
ϕt,s∗Lt

µs|ϕt,s∗Lt1/2 eSs =

∫
Lt
µt|Lt1/2 eϕt,s

∗Ss+ln Jϕt,s
1/2

. (2.36)

A sufficient condition for the identity (2.35) to hold is that the Lagrangian submanifolds

Ls, Lt are related by

ϕt,s∗Lt = Ls, (2.37)

at least up to body homology, and that the RG flow of the BV EA St is driven by the flow

map ϕt,s,

St = ϕt,s
∗Ss + rϕt,s, (2.38)

where the logarithmic Jacobian rϕt,s = rϕt,s is defined in (2.15).
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Relation (2.38) implies that the RG flow of the BV EA is governed by the first order

differential equation,
dSt
dt

= ϕ•tSt + r•ϕt, (2.39)

where ϕ•t and r•ϕt are respectively given by

ϕ•t =
∂ϕt,s

∗

∂t

∣∣∣
s=t
, (2.40)

r•ϕt =
∂rϕt,s
∂t

∣∣∣
s=t
. (2.41)

(2.39) is the BV RGE in its more general form. It has the standard form of an RGE, the

first and second term in the right hand side corresponding to the so-called classical and

quantum term, respectively.

The concrete embodiment of the BV RGE (2.39) obeyed by the BV EA St depends on

the form of the RG flow map ϕt,s. At first glance, (2.39) appears to be a non homogeneous

linear differential equation in St, but this is a deception of notation. Relation (2.38) on

which (2.39) rests is in fact a condition simultaneously constraining and relating ϕt,s and

St. The flow map ϕt,s therefore is not a datum independent from the action St but in

general contains built in information on the latter. The realizations of ϕt,s encountered in

concrete applications do indeed depend explicitly on St. The RGE (2.39), so, normally is

nonlinear in St.

The BV RG framework we have just outlined fits with the Polchinski’s RG theory [6]

reviewed in subsection 1.1 and is also in line with the RG formulations of refs. [24–26],

although at this point we have not yet committed ourselves with any specific assumption

about the form of the EA St.

2.4 Derived BV EAs

In the BV theory of the RG, it is often useful to consider parametrized families of BV EA

St whose RG flow is governed by a fixed set of flow maps ϕt,s. This is most naturally done

using the methods of derived geometry along the lines of ref. [13]. Here, we shall present

a simplified formulation tailored for a functional integral formulation of BV theory.

In the derived approach, a family of functionals on field space T ∗[−1]F is modelled

as a functional on T ∗[−1]F valued in a differential graded commutative algebra A, which

must be thought of as the algebra of functions on a fiducial parameter space. The family

might depend on the RG scale t, while A itself does not. The BV Laplacians ∆t, brackets

(−,−)t and RG flow maps ϕt,s are assumed to be given. The ∆t, (−,−)t and the pull-backs

ϕt,s
∗ of the ϕt,s act on functional families through their A-linear extensions. A derived BV

EA is then a t dependent degree 0 A-valued functional SAt on T ∗[−1]F defined modulo

A-valued constants and obeying the derived BV quantum ME

dASAt +∆tSAt +
1

2
(SAt, SAt)t = 0 (2.42)

(cf. eq. (2.28)), dA being the differential of A, and the RGE

dSAt
dt

= ϕ•tSAt + r•ϕt, (2.43)
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(cf. eq. (2.39)) also modulo A-valued constants. Eq. (2.42) arises from demanding that the

derived BV effective covariant Laplacian

∆tSAf = dAf +∆tf + (StA, f)t. (2.44)

(cf. eq. (2.30)) is nilpotent on A-valued functionals f on T ∗[−1]F . The reason why SAt
is defined and (2.42), (2.43) hold only up to A-valued constants is that the nilpotence of

∆tSA entails only that adt(dASAt +∆tSAt + (SAt, SAt)t/2) = 0.

The basic problem of derived BV RG theory is finding out under which conditions

the derived BV EA SAt can be lifted to an A-valued functional on T ∗[−1]F satisfying

eqs. (2.42), (2.43) exactly and not simply modulo A-valued constants. It is always possible

to choose a lift SAt obeying (2.43) exactly by choosing a lift SAs for a certain value s of

the RG scale and defining SAt for an arbitrary value t of the scale by demanding that it

obeys the integrated RG flow equation (2.38)

SAt = ϕt,s
∗SAs + rϕt,s. (2.45)

Then, eq. (2.43) holds exactly by straightforward differentiation of (2.45) with respect to

t. Once this is done, however, eq. (2.42) gets weakened as

dASAt +∆tSAt +
1

2
(SAt, SAt)t = αA, (2.46)

where αA is a degree 1 element of A. It can be verified that αA is independent from t,

that dAαA = 0 and that a different choice of the lift SAt alters αA by an amount dAβA
for some degree 0 element βA of A. Therefore, there exists a degree 1 cohomology class

[αA] in H1(A, dA) independent from the scale t that obstructs the existence of a lift SAt
obeying (2.42) exactly.

A standard application of the above derived geometric set-up occurs in the analysis of

BV EA homotopies [13]. In such a case, A = Ω∗(I) is the algebra of differential forms in

the interval I = [0, 1] and dA = ddR is the Rham differential. The derived BV EA is of

the form SΩ∗(I)t = Sxt + ddRxS
∗
xt, where Sxt, S

∗
xt have respectively degrees 0, −1. The

obstruction form reads as αΩ∗(I) = αx + ddRxα
∗
x with components αx, α∗x of degrees 1,

0. The deformation SΩ∗(I)t is liftable provided αx = 0. In such a case, one has

∆tSxt +
1

2
(Sxt, Sxt)t = 0, (2.47)

∂Sxt
∂x
−∆tS

∗
xt − (Sxt, S

∗
xt)t = α∗x. (2.48)

We can readily absorb α∗x by shifting Sxt by the irrelevant constant
∫ x

0 dxα
∗
x. Upon doing

so, for fixed x, Sxt is a BV EA and ∂Sxt/∂x is trivial in the ∆tSx cohomology.

In many instances, one considers the case where A is the Chevalley-Eilenberg algebra

CE(g) of an L∞ algebra g and dA is the associated Chevalley-Eilenberg differential dCE(g).

In such cases, g encodes a generalized symmetry of the EFT and the derived BV EA SCE(g)t

describes an action of g on the a BV EFT in the interpretation of ref. [13].
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If SCE(g)t can be lifted, then the action of g is called inner. As we have just shown,

the liftability of SCE(g)t is equivalent to the vanishing of the obstruction class [αCE(g)]

in H1(CE(g), dCE(g)). The cohomology H∗(CE(g), dCE(g)) is just the Chevalley-Eilenberg

cohomology of g. A class [αCE(g)] in H1(CE(g), dCE(g)) so describes a −1 shifted central

extension of g.

0 −→ C[−1] −→ ĝ −→ g −→ 0. (2.49)

The non triviality of the extension is thus tantamount to the non liftability of SCE(g)t. This

is how BV anomalies appear.

2.5 Perturbative BV RG theory

In perturbation theory, one assumes that it is possible to turn off the interactions of a given

quantum field theory and that a free quantum field theory that is fully under control and

simple is yielded in this way.

In BV theory, the effective free field theory is based on a BV structure characterized by

a total field space T ∗[−1]F0 and an effective BV form ω0
t and measure µ0

t and is governed

by a free BV EA S0
t all depending on the energy scale t. To implement the perturba-

tive program, one considers the algebra of formal power series Fun(T ∗[−1]F0)[[~]] over

Fun(T ∗[−1]F0) instead of Fun(T ∗[−1]F0) itself as the appropriate algebra of field func-

tionals, the Planck constant ~ working here as formal expansion parameter, and replaces

S0
t by S0

t /~ throughout.

As required, the free BV EA S0
t satisfies the ME (2.28),

~∆0
tS

0
t +

1

2
(S0

t, S
0
t)

0
t = 0. (2.50)

Since S0
t is independent from ~, the two terms in the left hand side of (2.50) must separately

vanish and so (2.50) effectively breaks up into two independent equations.

The RG flow of the free BV EA S0
t is governed by a free flow map ϕ0

t,s. S
0
t obeys

accordingly the RGE (2.39),

dS0
t

dt
= ϕ0•

tS
0
t + ~r•ϕ0t. (2.51)

Unlike the ME (2.50), (2.51) does not split into simpler equations, because ϕ0•
t and r0•

t

generally depend on S0
t /~, for reasons explained at the end of subsection 2.3, making the

two terms of the right hand side ~ dependent.

The full BV RG EA St decomposes perturbatively as

St = S0
t + It, (2.52)

where the interaction action It is an element of Fun(T ∗[−1]F0)[[~]].

The full EA St also satisfies the ME (2.50),

~∆0
tSt +

1

2
(St, St)

0
t = 0, (2.53)
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which on account of the free ME (2.50) reduces effectively to

~∆0
tS0/~It +

1

2
(It, It)

0
t = 0, (2.54)

where the BV Laplacian ∆0
tS0/~ is defined according to (2.30). Since It is a formal power

series in ~, this equation relates the coefficients of the ~ powers of It in a non trivial manner.

The RG flow of the full BV EA St is governed by a full flow map ϕt,s. St then obeys

the RGE
dSt
dt

= ϕ•tSt + ~r•ϕt. (2.55)

Using the decomposition (2.52), this yields a RGE for It. Since ϕt,s differs in general from

its free counterpart ϕ0
t,s in a complicated way because of the interaction, ϕ•, r•ϕt are not

straightforwardly reducible to ϕ0•
t, r

0•
t. For this reason, there is no simple expression for

the RGE of It, which must be deduced on a case by case basis. We shall came back to this

point in a specific setting later in subsection 4.4.

In ref. [11], a formulation of the perturbative RG in BV theory is provided. Its power

and many nice features make its paradigmatic. We hope that the BV RG theory presented

in this paper may pave the way to alternative equally fruitful perturbative formulations,

satisfying the RGE

3 Batalin-Vilkovisky renormalization group supersymmetry

In this section, we shall introduce the main novelty of the present work, a BV RG set-up

enjoying an RG supersymmetry imposing important constraints on the form of the resulting

RGE. This will allow us to establish a connection between the BV RGE we obtain and

Polchinski’s version of the RGE [6].

To develop our line of thought, we are forced to make a few natural assumptions. So,

our results are to an extent conjectural. In particular, we have no general proof that the

RG supersymmetry is a general property of BV EFT. In next section, we shall illustrate

non trivial models exhibiting it.

3.1 BV RG supersymmetry

In BV theory, field space is a graded manifold, field functionals form a graded commutative

function algebra and basic structures such as the BV form, measure, bracket and Laplacian

are all graded in the appropriate sense. The ubiquitous occurrence of the mathematical

structures proper of graded geometry in BV theory suggests that it may be worthy to

explore whether extension of the RG energy scale parameter manifold R to a more general

graded manifold is capable of providing new useful ways of analyzing BV RG theory.

In what follows, we shall demonstrate that enhancing the energy scale space R to

its shifted tangent bundle T [1]R does indeed furnish under certain conditions important

structural information on the BV RG flow and RGE. To avoid confusion, we shall call the

RG set-ups based on R and T [1]R “basic” and “extended”, respectively.

Switching from the R to the T [1]R parameter space involves adding to the usual scale

parameter t a degree 1 partner θ. In the extended set-up, so, all the constitutive elements
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of the BV RG framework get modified by acquiring a θ dependence, while maintaining all

their formal properties. Further, on general grounds, because of the nilpotence of θ, they

can be expressed as non homogeneous linear polynomials of θ.

In the extended set-up, the BV form ωtθ enjoys the expansion

ωtθ = ωt + θω?t, (3.1)

where ωt is the basic set-up form and ω?t is a new partner form. The properties of ωtθ as

BV form entail that ω?t has degree −2 and is closed. The extended set-up BV measure

µtθ is instead independent form θ because of its multiplicative nature and thus equal to its

basic counterpart,

µtθ = µt. (3.2)

By (3.1), the extended set-up BV bracket (−,−)tθ has the structure

(f, g)tθ = (f, g)t + θ(−1)|f |(f, g)?t (3.3)

for f, g ∈ Fun(T ∗[−1]F), where (−,−)t is the basic set-up bracket and (−,−)?t is a new

partner bilinear bracket. The properties of (−,−)tθ as a BV bracket imply that (−,−)?t
has degree 0, is graded symmetric and derivative in both its arguments. The graded

Jacobi identity, conversely, fails to hold. By (3.1) again, the BV Laplacian ∆tθ decomposes

similarly as

∆tθ = ∆t + θ∆?
t, (3.4)

∆t being the basic set-up Laplacian and ∆?
t a partner Laplacian, which by the BV Lapla-

cian properties of ∆tθ has a degree 0 and commutes with ∆t.

In the extended BV RG framework, the BV RG EA Stθ must likewise be a function of

t, θ and therefore expressible as

Stθ = St + θS?t, (3.5)

where St is the basic set-up EA and S?t is a degree −1 partner of it. Stθ must obey the

appropriate extended version of the BV quantum ME (2.28),

∆tθStθ +
1

2
(Stθ, Stθ)tθ = 0. (3.6)

Insertion of the expansions (3.3), (3.4) and (3.5) into (3.6) yields two equations. The first

is the basic BV quantum ME (2.28). The second is novel. It relates St and S?t and reads

∆tS
?
t + (St, S

?
t)t = ∆?

tSt +
1

2
(St, St)

?
t. (3.7)

As we shall see in due course, (3.7) will play a role in shaping the form of the extended

set-up BV RGE.

In the extended BV RG framework, the BV RG flow ϕtθ,sζ depends on t, s, θ, ζ. The

obvious generalization of relations (2.32)–(2.34) obeyed by ϕtθ,sζ entails that this latter

factorizes as

ϕtθ,sζ = (idT ∗[−1]F −ζϕ?s) ◦ ϕt,s ◦ (idT ∗[−1]F +θϕ?t), (3.8)
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where ϕt,s is the basic set-up RG flow and ϕ?t is a degree −1 vector field on T ∗[−1]F . The

associated logarithmic Jacobian rϕtθ,sζ similarly read as

rϕtθ,sζ = (idFun(T ∗[−1]F) +θϕ?t)
∗(rϕt,s + θr?ϕt − ζϕt,s∗r?ϕs), (3.9)

where rϕt,s is the basic set-up logarithmic Jacobian and r?ϕt is a degree −1 element of

Fun(T ∗[−1]F). The canonical nature of the flow maps ϕtθ,sζ entails that ∆t, ∆
?
t, ϕt,s, ϕ

?
t,

rϕt,s and r?ϕt obey a host of identities which follow from substituting expressions (3.4), (3.8)

and (3.9) into the identity ∆tθϕtθ,sζ − ϕtθ,sζ∆sζ + adtθ rϕtθ,sζ ϕtθ,sζ = 0 (cf. eq. (2.17)).

The RG flow of the extended BV EA Stθ is driven by the flow maps ϕtθ,sζ ,

Stθ = ϕtθ,sζ
∗Ssζ + rϕtθ,sζ . (3.10)

At the infinitesimal level, (3.10) reproduces the basic set-up BV RGE (2.39) obeyed by St,

but it also yields another relation, namely

S?t = ϕ?tSt + r?ϕt, (3.11)

about which we shall have more to say momentarily.

The degree −1 partner S?t of the EA St allows us to write the infinitesimal generator

and logarithmic Jacobian ϕ•t and r•t of the basic set-up BV RG flow ϕt,s, in terms of which

the RGE is written, in the reduced form

ϕ•t = − adt S
?
t + ϕ̄•t, (3.12)

r•ϕt = ∆tS
?
t + r̄•ϕt, (3.13)

ϕ̄•t and r̄•t being a degree 0 vector field and a degree 0 element of Fun(T ∗[−1]F), called

reduced infinitesimal generator and Jacobian, respectively. Using these and eq. (3.7), the

basic set-up BV RGE for the EA St can be cast as

dSt
dt

= ∆?
tSt +

1

2
(St, St)

?
t + ϕ̄•tSt + r̄•ϕt. (3.14)

Recall that, in the RGE (3.14), ∆?
t and (−,−)?t are a degree 0 second order differential

operator and a degree 0 graded symmetric bracket, respectively. The first two terms in

the right hand side, so, have a form analogous to that of the leading terms appearing in

Polchinski RGE [6]. Thus, switching to the extended set-up has led us to a more structured

RGE than that one would have in the mere basic RG framework. The reduced infinitesimal

generator and Jacobian φ̄•t and r̄•t turn out under favorable conditions to be simpler than

their unreduced counterparts φ•t and r•t. We expect them to correspond to the so-called

“seed” terms of the RGE, though at the present level of generality we cannot show this.

To understand the structure of the RGE (3.14), we recall that the RG flow of the BV

EA St leaves the partition function invariant. Since the BV structure encoded in the scale

dependent BV bracket (−,−)t and measure µt does itself vary along the flow, the flow rate

dSt/dt of St should comprise in principle two components. The first is such that it would

leave the partition function invariant if the variation of the BV structure did not occur.
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This should therefore be a degree 0 ∆tS coboundary. The second compensates for the

actual variation of the partition function caused by the first due to the variation of the BV

structure. This cannot be a degree 0 ∆tS coboundary and should not be even a cocycle.

Eq. (3.7) shows that the sum of the first two terms in the right hand side of the

RGE (3.14) is a degree 0 ∆tS coboundary. This contribution is so naturally identified with

the first component of the flow rate dSt/dt hypothesized in the previous paragraph. The

sum of the last two terms in the right hand side of (3.14) should thus constitute the second

component. Note that the degree −1 partner S?t of St acts as the ∆tS integral of the

first component. Beyond this, its role needs to be further elucidated. More about this in

subsection 3.3.

The results which we have obtained hinge on the extension of the energy scale space

from R to T [1]R by adjoining to the usual scale parameter t an odd partner θ, leading

effectively to a sort of RG supersymmetry. Whether there is something more profound

behind this seemingly formal procedure we cannot say yet.

Before concluding this subsection, it must be emphasized that in the above analysis

we have assumed throughout that the enhancement of the basic set-up to the extended one

is possible. However, this cannot be shown in general but only on a case by case basis. In

section 4, we shall construct a non trivial model admitting an extension.

3.2 BV RG flow as a BV MA homotopy

Identifying the degree 1 coordinate θ of T [1]R of the extended RG set-up with the de

Rham differential ddRt, the BV EA Stθ given in (3.5) can be written as St + ddRtSt
∗ and

so be regarded as a functional on T ∗[−1]F valued in the differential graded commutative

algebra Ω∗(R). As such, it represents a homotopy relating the BV MAs at different values

of the RG scale t.1 This homotopy however cannot be described in the derived geometric

framework of subsection 2.4, since in that set-up homotopies relate BV MAs at a fixed

value of t. For homotopies of that type, the rate of variation ∂Sxt/∂x is always trivial in

the degree 0 ∆tSx cohomology, while, as discussed at the end of subsection 3.1, the flow

derivative dSt/dt is not and cannot be.

The possibility of viewing the RG flow as a homotopy of BV MAs is implicit in

Costello’s work [11], but to the best of our knowledge its implications have never been

explored to the extent we have done in the present paper.

3.3 Perturbative BV RG theory and BV RG supersymmetry

In this subsection, we shall explore the implications of the RG supersymmetry discovered

in subsection 3.1 for perturbative BV RG theory.

When we try to formulate perturbative BV RG theory in the extended set-up, we have

to assume that the free field theory is characterized by an extended BV form ω0
tθ and

measure µ0
tθ and the associated bracket (−,−)0

tθ and Laplacian ∆0
tθ with the properties

described in subsection 3.1.

1We thank the paper’s referee for pointing this out to us.
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Besides the above free BV structure, we have also to assume the existence of an ex-

tended free BV RG EA action S0
tθ so that the basic free EA S0

t is adjoined by a free

degree −1 partner S0?
t. Further, not only S0

t satisfies the BV quantum ME (2.50), but

S0
t and S0?

t together obey the ME (3.7), here reading as

~∆0
tS

0?
t + (S0

t, S
0?
t)

0
t = ~∆0?

tS
0
t +

1

2
(S0

t, S
0
t)

0?
t. (3.15)

As eq. (2.50), this too breaks up effectively into two equations due to the ~ independence

of S0
t, S

0?
t.

A free BV RG flow ϕ0
tθ,sζ governs the t, θ dependence of the extended free EA S0

tθ.

Infinitesimally, this reproduces the basic free BV RGE (2.51) for S0
t and further relates

S0
t and S0?

t as in (3.11)

S0?
t = ϕ0?

tS
0
t + ~r?ϕ0t. (3.16)

By virtue of (3.15), further, the RGE (2.51), can be written in the Polchinski form (3.14),

dS0
t

dt
= ~∆0?

tS
0
t +

1

2
(S0

t, S
0
t)

0?
t + ϕ̄0•

tS
0
t + ~r̄•ϕ0t. (3.17)

In the extended perturbative BV RG framework, the full BV RG EA Stθ decomposes

in analogy to (2.52) as

Stθ = S0
tθ + Itθ, (3.18)

where the extended interaction action Itθ belongs to the formal power series algebra

Fun(T ∗[−1]F0)[[~]]. This latter enjoys in turn the expansion

Itθ = It + θI?t, (3.19)

where It is the basic set-up interaction action and I?t is a degree −1 partner of it. In this

way, in addition to the perturbative splitting (2.52), we have also

S?t = S0?
t + I?t. (3.20)

The full EA Stθ obeys further the extended quantum ME (3.6) (with (−,−)tθ and ∆tθ

replaced by (−,−)0
tθ and ~∆0

tθ). Insertion of the perturbative expansion (3.18) into this

latter reproduces upon taking eqs. (2.50), (3.15) into account eq. (2.54) and a further equa-

tion

~∆0
tS0/~I

?
t + (It, I

?
t)

0
t = ~∆0?

tS0/~It +
1

2
(It, It)

0?
t, (3.21)

where the BV Laplacian ∆0
tS0/~ is defined according to (2.30) and ∆0?

tS0/~ is the degree

0 Laplacian given by

∆0?
tS0/~f = ∆0?

tf + ~−1(S0?
t, f)0

t + ~−1(S0
t, f)0?

t (3.22)

for f ∈ Fun(T ∗[−1]F0).

As in the basic perturbative RG framework of subsection 2.5, the extended BV RG

flow ϕtθ,sζ that governs the t, θ dependence of the extended full EA Stθ differs in principle

from it free counterpart ϕ0
tθ,sζ because of the effect of the interactions. Therefore, the
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RGE equation for Stθ is not simply that for S0
tθ with S0

tθ replaced by Stθ. In particular,

the basic full EA St obeys the RGE (2.55), the S?t to St relation (3.11) takes the form

S?t = ϕ?tSt + ~r?ϕt (3.23)

and the Polchinski RGE (3.14) reads

dSt
dt

= ~∆0?
tSt +

1

2
(St, St)

0?
t + ϕ̄•tSt + ~r̄•ϕt. (3.24)

However, as we already mentioned in subsect 3.1, we expect that the reduced full infinites-

imal generator and logarithmic Jacobian ϕ̄•t and r̄•ϕt to be somewhat related to the seed

terms of the RGE, which, in a perturbative framework, are normally determined by the

free EA S0
t only and are independent from interactions. For this reason, we assume that

in the RGE (3.24), one has

ϕ̄•t = ϕ̄0•
t, (3.25)

r̄•ϕt = r̄•ϕ0t. (3.26)

Taking this for granted, we can now subtract the free and full RGE (3.17) and (3.24) and

obtain an RGE equation for the interaction action It. Upon using relation (3.12) for ϕ0
t,s

and S0
t, we find

dIt
dt

= ~∆0?
tIt +

1

2
(It, It)

0?
t + (S0

t, It)
0?
t + ϕ̄0•

tIt. (3.27)

Combining relations (3.12), (3.13) for the free and full case with the perturbative

decomposition (3.20) and taking further identities (3.25), (3.26) into account, the following

revealing equations are found

ϕ•t = ϕ0•
t − ad0

tI
?
t, (3.28)

r•ϕt = r•ϕ0t +∆0
tI
?
t. (3.29)

(3.28), (3.28) provide an interpretation of interaction action partner I?t: it drives the

deviation of the full BV RG flow ϕt,s from its free counterpart ϕ0
t,s.

Analogously to its non perturbative counterpart, eq. (3.7), discussed in subsection 3.1,

eq. (3.21) expresses roughly the triviality in the degree 0 ∆tS/~ cohomology of the non seed

terms of the RGE (3.27), the degree −1 partner I?t of the interaction action It being their

integral. On account of (2.52) and (3.18), eq. (3.23) provides implicitly I?t in terms of It
and so works as an integration formula. We have not been able to recast it in a way that

neatly separates the free and interacting contributions. More work is required to elucidate

this point.

The conclusions of our analysis rest of course on the assumptions (3.25), (3.26) and

thus fail if these do not obtain. Again, one must check them on a case by case basis. In

the model detailed in section 4, they are verified to hold. It is also found that the last two

seed-like terms in the right hand side of (3.27) cancel out leaving a seedless RGE.
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4 Models of Batalin-Vilkovisky renormalization group

An important issue in the BV theory of the RG developed in this paper is the construction

of non trivial models which exemplify it. A program of this scope certainly cannot be

carried out to its full extent in the limited space of this paper. Still, a few simple but non

trivial models can be built.

In what follows, we work in the degree −1 symplectic framework originally developed

by Costello in ref. [11], which has a very rich structure and lends itself particularly well

to our task. We first review the framework to set our notation. We then illustrate a free

model of BV RG flow and EA both in the basic and extended set-ups of subsection 3.1.

Finally, we explore the implications of results found for perturbation theory.

All the statements made below hold strictly speaking in finite dimension. Presumably,

they can extended also to an infinite dimensional context with limited modifications.

4.1 The degree −1 symplectic set-up

In this technical subsection, we review the degree −1 symplectic set-up of ref. [11], which

we shall employ to construct a class of models of BV RG theory. A few original results are

also presented along the way. A more thorough account of these matter will be provided

in ref. [23].

We begin by setting our notation. The basic algebraic structures we shall be concerned

with are a graded vector space E , its dual vector space E∗ and its internal endomorphism

algebra End(E). We shall consider further the full degree prolongations E = E ⊗GR, E∗ =

E∗⊗GR and End(E) = End(E)⊗GR of E , E∗ and End(E), where GR =
⊕

p∈ZR[p]. E is a

graded vector space, E∗ is its dual vector space and End(E) is its internal endomorphism

algebra, as suggested by the notation. For each p ∈ Z, Ep, E
∗
p and Endp(E) are just

respectively E , E∗ and End(E) with degree reset to the uniform value p. We shall denote

by |− | the degree map of all the graded spaces and algebras considered above. We shall

work mostly with E, E∗, End(E).

Homogeneous bases of E , E∗ come in dual pairs ai, a
∗i with the property that |ai| +

|a∗i| = 0. Below, we shall set εi = −|ai| = |a∗i| for convenience. Given a dual basis pair

ai, a
∗i, we can expand homogeneous vectors e ∈ E, covectors l ∈ E∗ and endomorphisms

A ∈ End(E) as e = aie
i, l = lia

∗i and A = ai ⊗ Aija∗j , where |ei| = |e| + εi, |li| = |l| − εi

and |Aij | = |A|+ εi − εj .
A homogeneous endomorphism A ∈ End(E) is characterized by its graded trace, which

is defined as

grtr(A) = (−1)(|A|+1)εiAii. (4.1)

It can be shown that grtr(A) is independent from basis choices. Further, one has |grtr(A)|=
|A| and grtr(AB) = (−1)|A||B| grtr(BA) for A,B ∈End(E). See ref. [30] for an analogous no-

tion.

In the symplectic set-up, the graded vector space E is equipped with a degree −1

symplectic pairing, i.e. an antisymmetric bilinear form 〈−,−〉E : E × E → R with the

property that for homogeneous e, f ∈ E , 〈e, f〉E = 0 whenever |e|+ |f | 6= 1. 〈−,−〉E induces
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a bilinear pairing 〈−,−〉E : E × E → GR such that 〈−,−〉E : Ep × Eq → R[−p − q + 1]

and, in particular, 〈−,−〉E : E0 × E0 → R[1].

The pairing 〈−,−〉E can be viewed as degree −1 vector space isomorphism $E : E → E∗.
With respect to a given basis a∗i of E∗, $E can be expanded as $E = a∗i ⊗ ωija∗i, where

ωij is a non singular antisymmetric real matrix such that ωij = 0 for εi + εj + 1 6= 0.

Using the matrix ωij and its inverse ωij , one can define the symplectic dual bases ai and

a∗i of the bases ai and a∗i of an (algebraically) dual pair by ai = ajω
ji and a∗i = −ωija∗j .

These have degrees |ai| = −εi and |a∗i| = εi, respectively, where εi = −εi−1. Vectors e ∈ E,

covectors l ∈ E∗ and endomorphisms A ∈ End(E) can be expanded with respect the dual

bases ai, a∗i e. g. e = −aiei, l = −lia∗i, A = ai ⊗ Aija∗j = −ai ⊗ Aija∗j = −ai ⊗ Aija∗j

etc. The components with respect the dual bases are related to those with respect to the

given bases as expected, e. g. ei = −ωijej , li = ljω
ji, Ai

j = −ωikAklωlj , etc. Care must

be taken when dealing with signs.

The transpose of a homogeneous endomorphism A ∈ End(E) is the homogeneous

endomorphism A∼ ∈ End(E) such that 〈e,Af〉E = 〈f,A∼e〉E for e, f ∈ E0. The matrix

components of A∼ are given in terms of those of A by the expression

A∼i
j = (−1)|A|(ε

i+εj+1)+εi(εj+1)Aj i. (4.2)

One has |A∼| = |A| and (AB)∼ = (−1)1+|A||B|B∼A∼ for A,B ∈ End(E) and 1E
∼ = −1E .

Furthermore, one has grtrA∼ = grtrA, so that grtrA = 0 whenever A∼ = −A.

Henceforth, we concentrate on the degree 0 subspace E0 ⊂ E. E0 can be endowed

with a structure of graded manifold through a set of globally defined graded coordinates

xi. Upon picking a basis a∗i of E∗, the xi are the elements of E∗ of degree |xi| = εi

corresponding to a∗i. The symplectic dual coordinates xi = −ωijxj of degree |xi| = εi can

also be used as coordinates of E0.

E0 is naturally a BV manifold isomorphic to the canonical BV manifold T ∗[−1]F0 of

some graded vector space F0 regarded as a graded manifold. The Darboux coordinates

of E0 are the coordinate functions xi associated to a chosen Darboux basis ai for the

symplectic pairing 〈−,−〉E . The canonical BV form of E0 is the degree −1 symplectic form

ωE =
1

2
dxiωijdx

j . (4.3)

The canonical BV measure is simply

µE =
∏
idx

i. (4.4)

Let Fun(E0) be the internal graded commutative algebra of smooth functions on E0

with the usual grading |−|. The canonical BV bracket (−,−)E on Fun(E0) associated with

ωE reads

(u, v)E = (−1)ε
i(|u|+1)∂iuω

ij∂jv (4.5)

for u, v ∈ Fun(E0). Further, the canonical BV Laplacian ∆E associated with ωE and µE
is given by

∆Eu =
1

2
(−1)ε

i
∂i ω

ij∂ju (4.6)

for u ∈ Fun(E0).
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The canonical BV structure of E0 specified by the BV form and measure ωE , µE is not

sufficient for the formal developments of later subsections. A suitable generalizations of it is

required. It is possible to construct a deformation ωA, µA of ωE , µE for any endomorphism

A ∈ End(E) that satisfies |A| = 0 and A∼ = −A and is invertible. The A-deformed BV

form reads

ωA =
1

2
dxiωikA

−1k
jdx

j . (4.7)

The A-deformed BV measure equals instead the canonical one

µA =
∏
idx

i. (4.8)

The A-deformed BV bracket on Fun(E0) takes in this way the form

(u, v)A = (−1)ε
i(|u|+1)∂iuA

i
kω

kj∂jv, (4.9)

while the A-deformed BV Laplacian reads

∆Au =
1

2
(−1)ε

i
∂iA

i
kω

kj∂ju, (4.10)

where again u, v ∈ Fun(E0).

When A = 1E , the A-deformed BV form and measure reduce to the canonical ones as

do the deformed BV bracket and Laplacian. It is convenient however to proceed in another

direction and relax some of the restriction on the deforming endomorphism A ∈ End(E)

imposing only that A∼ = −A but requiring that neither |A| = 0 nor A is invertible.

The A deformed BV bracket (−,−)A and Laplacian ∆A can still be defined through (4.9)

and (4.10). (−,−)A exhibits properties generalizing those of the canonical BV bracket

(−,−)E except for the graded Jacobi identity. Similarly, ∆A enjoys properties extending

those of the canonical BV Laplacian ∆E except for nilpotence. For (−,−)A and ∆A to have

all the properties of a BV bracket and Laplacian, respectively, it is required in addition

that |A| = 0 mod 2.

In the calculations carried out below, we use repeatedly a host of basic identities, which

we collect here for convenience in index free form and whose proof will be given in [23]. A

part of these involve vector fields of the basic form

〈x,K adE x〉E , (4.11)

where K ∈ End(E) is an endomorphism of E such that K∼ = −K. These act naturally on

deformed brackets: for A,B ∈ End(E) such that A∼ = −A, |A| = 0 mod 2 and B∼ = −B,

one has

〈x,B adE x〉E(u, v)A = (〈x,B adE x〉Eu, v)A (4.12)

+ (−1)|B|(|u|+1)(u, 〈x,B adE x〉Ev)A − (−1)|B|(|u|+1)(u, v)AB+BA

for u, v ∈ Fun(E0). Further, they have simple commutation relations with the associated

Laplacians

[〈x,B adE x〉E , ∆A] = (−1)1+|B|∆AB+BA. (4.13)
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Another part concern quadratic functions of Fun(E0) of the form

〈x,Nx〉E (4.14)

with N ∈ End(E) an endomorphism of E such that N∼ = +N . They are characterized by

simple deformed BV brackets: if A,B,C ∈ End(E) are endomorphism such that A∼ = −A
and B∼ = +B, C∼ = +C, then

(〈x,Bx〉E , 〈x,Cx〉E)A = 4〈x,BACx〉E . (4.15)

The action of the deformed Laplacian on them is also simple enough,

∆A〈x,Bx〉E = grtr(AB). (4.16)

Finally, we have

〈x,A adE x〉E〈x,Bx〉E = 〈x, (AB + (−1)|A||B|BA)x〉E . (4.17)

4.2 Symplectic gl(1|1) structures

gl(1|1) structures, which we review briefly in this subsection, are recurrent in differential

geometry, supersymmetric quantum mechanics and topological sigma models. An gl(1|1)

structure enters also in the symplectic set-up of ref. [11] as one of its constitutive elements.

Let E be degree −1 symplectic vector space (cf. subsection 4.1). An gl(1|1) structure

on E consists of four endomorphisms Q,Q,H, F ∈ End(E) of degrees |Q| = 1, |Q| = −1,

|H| = 0, |F | = 0 satisfying the graded commutation relations

[Q,Q] = 0, [Q,Q] = 0, (4.18)

[Q,Q] = H, (4.19)

[Q,H] = [Q,H] = 0, (4.20)

[F,Q] = Q, [F,Q] = −Q, (4.21)

[F,H] = 0 (4.22)

and the transposition conditions

Q∼ = Q, (4.23)

Q
∼

= −Q, (4.24)

H∼ = −H, (4.25)

F∼ = F + 1E . (4.26)

A gl(1|1) structure on E is named in this way because the (4.18)–(4.22) are the basic Lie

brackets of the gl(1|1) Lie superalgebra. Q, Q, H and F are called respectively supercharge,

conjugate supercharge Hamiltonian and Fermion number in the physical literature.

Relations (4.19), (4.21) imply that

grtrQ = 0, (4.27)

grtrQ = 0, (4.28)

grtrH = 0. (4.29)
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Q,Q,H constitute in this way an sl(1|1) structure on E, since the (4.18)–(4.20) are the

standard Lie brackets of the sl(1|1) Lie superalgebra.

The fact that |H| = 0 makes it possible to construct an endomorphism φ(H) ∈ End(E)

for any real analytic function φ(x). By (4.20), (4.22) and (4.25), φ(H) has zero degree,

|φ(H)| = 0, commutes with Q, Q and F

[Q,φ(H)] = [Q,φ(H)] = 0, (4.30)

[F, φ(H)] = 0 (4.31)

and transposes as

φ(H)∼ = −φ(H). (4.32)

The property that |F | = 0 allows likewise the introduction of the sign endomorphism

(−1)F ∈ End(E). By (4.21), (4.22) and (4.26), (−1)F ∈ End(E) has degree 0, |(−1)F | = 0,

anticommutes with Q, Q and commutes with H

{Q, (−1)F } = {Q, (−1)F } = 0, (4.33)

[H, (−1)F ] = 0, (4.34)

where {A,B} = AB + (−1)|A||B|BA denotes the graded anticommutator of two endomor-

phisms A,B ∈ End(E), and transposes as

(−1)F∼ = +(−1)F . (4.35)

4.3 Free models of BV RG

The basic datum required for the construction of free models of BV RG illustrated below

is a degree −1 symplectic vector space E together with a gl(1|1) structure Q,Q,H, F on E .

Our aim is working out a free BV EFT on the field space E0 = T ∗[−1]F0. To this

end, as explained in subsection 2.3, we have to replace the unregularized BV form and

measure ωE , µE with effective counterparts ωt, µt depending on an energy scale parameter

t. Inspired by Costello’s formulation [11], we choose ωt, µt to be the deformations of ωE ,

µE associated with the endomorphism e−tH ∈ End(E) in accordance with (4.7), (4.8)

ωt = ωe−tH , (4.36)

µt = µe−tH = µE . (4.37)

Since | e−tH | = 0 and e−tH∼ = − e−tH and e−tH is invertible, this can be consistently done.

The effective BV bracket and Laplacian (−,−)0
t, ∆

0
t are then given by the concomitant

deformations of (−,−)E , ∆E , viz

(u, v)0
t = (u, v)e−tH , (4.38)

∆0
t = ∆e−tH (4.39)

with the right hand sides defined conforming with (4.9), (4.10), respectively.

– 25 –



J
H
E
P
0
3
(
2
0
1
8
)
1
3
2

The RG flow ϕ0
t,s of the free BV EFT is generated infinitesimally by the degree 0

vector field 〈x,H adE x〉E ,

ϕ0
t,s = exp

(
t− s

2
〈x,H adE x〉E

)
. (4.40)

Its logarithmic Jacobian vanishes,

rϕ0t,s = 0. (4.41)

The pull-back action ϕ0
t,s
∗ of ϕ0

t,s on the internal function algebra Fun(E0) of E0 is

given also by the right hand side of (4.40) upon regarding 〈x,H adE x〉E as a derivation of

Fun(E0).

The proof that ϕ0
t,s is a BV RG flow is simple enough. To begin with, we note that

relations (2.32)–(2.34) are trivially satisfied. To show that the maps ϕ0
t,s are canonical, it

is enough to prove that they intertwine the BV brackets (−,−)0
t as in (2.13). This follows

from the relation

(u, v)0
t = ϕ0

t,0
∗(ϕ0

t,0
−1∗u, ϕ0

t,0
−1∗v)E , (4.42)

which can be shown straightforwardly using (4.12). The vanishing of rϕ0t,s can be inferred

by comparing the relation

∆0
t = ϕ0

t,0
∗∆Eϕ

0
t,0
−1∗, (4.43)

which is a simple consequence of (4.13), and (2.17).

Consider next the one-parameter family of free actions S0
t ∈ Fun(E0), where

S0
t = −1

2
〈x,Q etH x〉E . (4.44)

We are now going to show that S0
t has the required properties of a BV RG EA.

S0
t obeys the BV quantum ME (2.28). This can be immediately using the calcula-

tions (4.15), (4.16) and the identities (4.18) and (4.27),

∆0
tS

0
t +

1

2
(S0

t, S
0
t)

0
t = −1

2
grtr(Q) +

1

2
〈x,Q2 etH x〉E = 0. (4.45)

Next, S0
t satisfies the RG flow relation (2.38). Indeed, using the expressions (4.40),

(4.44) and relation (4.17), it is not difficult to verify that ∂(ϕ0
t,s
∗S0

s)/∂s = 0. Therefore,

one has

S0
t = ϕ0

t,t
∗S0

t = ϕ0
t,s
∗S0

s (4.46)

as required. The RGE obeyed by S0
t takes in this way the simple form

dS0
t

dt
=

1

2
〈x,H(x, S0

t)E〉E . (4.47)

The free RG set-up considered above is evidently of the basic type discussed in sub-

section 3.1. It is natural to wonder whether there exists an analogous construction in the

extended set-up. The answer is affirmative as we show next.

Our aim is now the construction of an extended version of the basic free BV EFT on

the field space E0 = T ∗[−1]F0 worked out above. In line with what done earlier in the
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basic case, we have to replace the unregularized BV form and measure ωE , µE with effective

counterparts ωtθ, µtθ depending on an energy scale parameter t and an additional degree 1

partner parameter θ. We choose ωtθ, µtθ to be the deformations of ωE , µE associated with

the endomorphism e−tH+θ(−1)FQ ∈ End(E) according to (4.7), (4.8), viz

ωtθ = ω
e−tH+θ(−1)FQ = ωe−tH + θωQ e−tH , (4.48)

µtθ = µ
e−tH+θ(−1)FQ = µE , (4.49)

where with an abuse of notation we set ωQ e−tH = 1
2〈dx,Q etH dx〉E . We note that

| e−tH+θ(−1)FQ | = 0, (e−tH+θ(−1)FQ)∼ = − e−tH+θ(−1)FQ and that e−tH+θ(−1)FQ is invert-

ible as required. The effective BV bracket and Laplacian (−,−)0
tθ, ∆

0
tθ are then given by

the accompanying deformations of (−,−)E , ∆E , viz

(u, v)0
tθ = (u, v)

e−tH+θ(−1)FQ = (u, v)e−tH + θ(−1)|u|(u, v)Q e−tH , (4.50)

∆0
tθ = ∆

e−tH+θ(−1)FQ = ∆e−tH + θ∆Q e−tH (4.51)

defined complying with (4.9), (4.10), respectively.

The RG flow ϕ0
tθ,sζ of the free BV EFT is generated infinitesimally by the degree 0,

−1 vector fields 〈x,H adE x〉E , 〈x,Q adE x〉E ,

ϕ0
tθ,sζ = exp

(
− ζ 1

2
〈x,Q adE x〉E

)
◦ (4.52)

exp

(
t− s

2
〈x,H adE x〉E

)
◦ exp

(
θ

1

2
〈x,Q adE x〉E

)
.

Its logarithmic Jacobian again vanishes,

rϕ0tθ,sζ = 0. (4.53)

The pull-back action ϕ0
tθ,sζ

∗ of ϕ0
tθ,sζ on the function algebra Fun(E0) is given by the right

hand side of (4.53) with the three exponential factors in reversed order upon regarding

〈x,H adE x〉E , 〈x,Q adE x〉E as derivations of Fun(E0).

The proof that ϕ0
tθ,sζ is a BV RG flow follows the same lines as that of the corre-

sponding property in the basic case. Relations (2.32)–(2.34) again hold trivially. The proof

that the maps ϕ0
tθ,sζ are canonical, that is that they intertwine the BV brackets (−,−)0

tθ

as in (2.13), follows from the relation

(u, v)0
tθ = ϕ0

tθ,00
∗(ϕ0

tθ,00
−1∗u, ϕ0

tθ,00
−1∗v)E , (4.54)

analogous to (4.42), which can be shown again using (4.12). The vanishing of rϕ0tθ,sζ can

be inferred by comparing the relation

∆0
tθ = ϕ0

tθ,00
∗∆Eϕ

0
tθ,00

−1∗, (4.55)

analogous to (4.43) and proven again using (4.13), and (2.17).
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In the extended theory, the appropriate enhancement of the basic theory BV EA is

the two-parameter family of free actions S0
tθ ∈ Fun(E0) given by

S0
tθ = −1

2
〈x,Q etH x〉E − θ

1

4
〈x, {Q,Q} etH x〉E , (4.56)

where {Q,Q} = QQ−QQ. We are now going to show that S0
tθ has the required properties

of a BV RG EA.

S0
tθ obeys the extended BV quantum ME (3.7). This follows again from the identi-

ties (4.15), (4.16) and from (4.18) and (4.27) and the graded cyclic invariance of graded

trace grtr,

∆0
tθStθ +

1

2
(Stθ, Stθ)

0
tθ = −1

2
grtr(Q) +

1

2
〈x,Q2 etH x〉E (4.57)

+ θ

[
− 1

2
grtr(QQ) +

1

4
grtr({Q,Q})

+
1

2
〈x,QQQ etH x〉E −

1

2
〈x,Q{Q,Q} etH x〉E

]
= 0.

Next, S0
t satisfies the RG flow relation (3.10). We first note that

S0
tθ = ϕ0

0θ,00
∗S0

t0, (4.58)

as can be proven easily using that ϕ0
0θ,00 = exp

(
θ 1

2〈x,Q adE x〉E
)

by (4.52) and employ-

ing (4.17). Next, we note that

S0
t0 = ϕ0

t0,s0
∗S0

s0 (4.59)

by the same calculation which proves the analogous relation of the basic case detailed

above, since S0
t0 = S0

t and ϕ0
t0,s0 = ϕ0

t,s. It follows by (4.52) that

ϕ0
tθ,sζ

∗S0
sζ = ϕ0

0θ,00
∗ϕ0

t0,s0
∗ϕ0

0ζ,00
−1∗ϕ0

0ζ,00
∗S0

s0 = S0
tθ (4.60)

as required.

In the extended set-up, the RGE obeyed by S0
t = S0

t0 can be cast as

dS0
t

dt
= −∆Q e−tHS

0
t −

1

2
(S0

t, S
0
t)Q e−tH −

1

2
grtr(QQ), (4.61)

as is immediately verified using (4.56) together with the identities (4.15), (4.16).

By the results of subsection 3.1, we expect that the RGE (4.47) can be cast in the

form (3.14). Eq. (4.61) apparently deviates from (3.14) by the sign of the first two terms.

This mismatch is however only apparent. As we shall argue in subsection 4.4 below, the

reduced infinitesimal generator and Jacobian of the BV flow, ϕ̄0•
t and r̄•ϕ0t, contain those

very same terms with coefficients such to produce the result shown.

4.4 Perturbative BV RG

In this final subsection, we analyze the implications of the results found in subsection 4.3

for the perturbative BV RG.
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In perturbation theory, one promotes the function algebra Fun(E0) to the formal power

series algebra Fun(E0)[[~]] of the parameter ~ over Fun(E0). Further, for fixed t, the full

action St ∈ Fun(E0)[[~]] is rescaled by ~−1. It is further assumed that St satisfies the same

BV quantum ME as the free action S0
t,

~∆e−tHSt +
1

2
(St, St)e−tH = 0. (4.62)

Aiming to a perturbative analysis of the BV RG, one splits the action St as

St = S0
t + It, (4.63)

where S0
t is the free action (4.44) and It ∈ Fun(E0)[[~]] is an interaction term at least

cubic in x mod ~.

A simple calculation shows that It obeys the BV quantum ME

~∆e−tH It −QIt +
1

2
(It, It)e−tH = 0, (4.64)

where Q is the degree 1 first order differential operator defined by

Qu = 〈x,Q(x, u)E〉E (4.65)

acting on Fun(E0)[[~]]. Eq. (4.64) is precisely of the same form as the ME for It obtained

by Costello in ref. [11].

The next problem we have to address is determining the BV RG flow of the full action

St. We assume as a working hypothesis that this is governed by the Polchinski’s RGE with

seed action S0
t reducing to the free RGE (4.61) in the limit of vanishing It is

dSt
dt

= ~∆Q e−tH (St − 2S0
t) +

1

2
(St, St − 2S0

t)Q e−tH −
~
2

grtr(QQ). (4.66)

The last term may be absorbed by adding a constant term t
2 grtr(QQ) to St and for this

reason is usually neglected, but we shall keep it for the time being. Next, we are going to

argue that (4.66) is the correct full RGE.

By the perturbative decomposition (4.63), the RGE (4.66) can be cast as

dIt
dt

= ~∆Q e−tH It +
1

2
(It, It)Q e−tH . (4.67)

By (4.50), (4.51), and the standard identity e−u∆ eu = ∆u+ 1
2(u, u) of BV theory, (4.67)

can be written more compactly as

dIt
dt

= ~∆Q e−tHe
It/~. (4.68)

The formal solution of (4.68) is

eIt/~ = exp

(
~
∫ t

s
dτ∆Q e−τH

)
eIs/~ . (4.69)
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This relation constitutes one of the characterizing property of It in the analysis of ref. [11].

The RGE (4.66) can be reshaped in the form

dSt
dt

= ~∆Q e−tHSt +
1

2
(St, St)Q e−tH + ϕ̄•tSt + ~r̄•ϕt, (4.70)

where ϕ̄•t and r̄•t, are the degree 0 derivation and element of Fun(E0)

ϕ̄•t = − adQ e−tH S
0
t, (4.71)

r̄•ϕt = −2∆Q e−tHS
0
t −

1

2
grtr(QQ). (4.72)

The reason for this rewriting of (4.66) is that (4.70) has the same form as the RGE (3.14) of

the extended RG set-up of subsection 3.1. (4.70) may provide in this way useful indications

about the underlying BV RG flow.

In the extended RG set-up, the full BV RG EA St has degree −1 partner S?t and St
and S?t obey eq. (3.7). Though it is not obvious that such partner exists, let us assume

that it does. Eq. (3.7) would then read

~∆e−tHS
?
t + (St, S

?
t)e−tH = ~∆Q e−tHSt +

1

2
(St, St)Q e−tH . (4.73)

Correspondingly, the RGE (4.70) would take the form

dSt
dt

= ϕ•tSt + ~r•ϕt, (4.74)

where ϕ•t and r•t are the degree 0 derivation and element of Fun(E0)

ϕ•t = − ade−tH S
?
t + ϕ̄•t, (4.75)

r•ϕt = ∆e−tHS
?
t + r̄•ϕt. (4.76)

It is reasonable to hypothesize that, in analogy to St, S
?
t splits as

S?t = S0?
t + I?t, (4.77)

where S0?
t is the degree −1 partner of the free action S0

t given by the second term in the

right hand side of (4.56) and I?t ∈ Fun(E0)[[~]] is similarly a partner of the interaction

term It likewise cubic in x mod ~.

Under the above assumptions, ϕ•t and r•ϕt are given by

ϕ•t =
1

2
〈x,H adE x〉E − ade−tH I

?
t, (4.78)

r•ϕt = ∆e−tH I
∗
t. (4.79)

We obtain these identities by substituting relations (4.71), (4.72) and (4.77) into (4.75),

(4.76), inserting the explicit expressions of S0
t and S0?

t appearing in (4.56) into the re-

sulting expressions and simplifying. It turns out that, under the assumptions made, ϕ•t
and r•t are the infinitesimal generator and logarithmic Jacobian of a BV RG flow ϕt,s. ϕt,s
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is the flow generated infinitesimally by the vector field ϕ•t. The conformality of ϕt,s is a

consequence of the equation

ϕ•t(u, v)e−tH = (ϕ•tu, v)e−tH + (u, ϕ•tv)e−tH +
d

dt
(u, v)e−tH , (4.80)

which can be verified using (4.12). The expression (4.79) of the logarithmic Jacobian of

ϕt,s can be inferred by its satisfying the equation

d

dt
∆e−tH − [ϕ•t, ∆e−tH ] + ade−tH r

•
ϕt = 0 (4.81)

following from (4.13). By (4.74), then, St is a BV RG EA flowing according to ϕt,s.

The infinitesimal generator and Jacobian ϕ0•
t and r•ϕ0t of the special free BV RG flow

ϕ0
t,s of eq. (4.40) are

ϕ0•
t =

1

2
〈x,H adE x〉E , (4.82)

r•ϕ0t = 0. (4.83)

Comparing (4.78), (4.79) with (4.82), (4.83), it appears that the full BV RG flow ϕt,s differs

form its free counterpart ϕ0
t,s by an amount determined by I∗t. As this latter, so, ϕt,s has

a formal perturbative expansion.

The importance of the BV RG EA partner’s interaction term I∗t should by now be

clear, although presently we cannot prove its existence in general. On account of (4.63),

(4.77), I∗t is related to BV RG EA interaction term It through eq. (4.73). An elementary

calculations shows that

~∆e−tH I
∗
t −QI∗t + (It, I

∗
t)e−tH = ~∆Q e−tH It −

1

2
HIt +

1

2
(It, It)Q e−tH , (4.84)

where Q is defined in (4.65) and H is the degree 0 first order differential operator

Hu = 〈x,H(x, u)E〉E . (4.85)

Eq. (4.84) is a further quantum ME involving simultaneously It, I
?
t and complementing

the ME (4.64). It can be recast in an alternative form using the RGE (4.67).

5 Outlook, beyond renormalization group

In this final section, we speculate about possible applications of the BV RG framework we

have described in depth in the main body of the paper.

In physical applications of RG theory, much effort is devoted to the derivation of the

RGEs of the couplings of the basic fields in the EA and the computation of the appended

beta functions. These RGEs are implicit in the RGE of the EA. It would be interesting

to devise systematic methods to obtain them within the BV RG framework of this paper.

See ref. [17] for an alternative approach to this problem.

The connection between the weak coupling limit of the RG flow of two-dimensional

non linear sigma models, originally studied by Friedan in [31–33], and the Ricci flow,
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introduced by Hamilton in [34], is by now established [35, 36]. Ricci flow has played a

pivotal role in important developments of geometric analysis, such as Perelman’s proof of

Thurston’s geometrization program [37, 38] for three-manifolds and the related Poincaré

conjecture [39–41].

The Alexandrov-Kontsevich-Schwartz-Zaboronsky (AKSZ) formulation of the BV

quantization scheme [42] is a general framework for the construction of the BV MA of

a broad class of sigma models, at least in the semiclassical limit. It has had a wide range

of field theoretic applications with remarkable mathematical ramifications. See ref. [43] for

a recent review of the AKSZ approach.

In the AKSZ approach, the fulfilment of the BV ME by the MA of a sigma model,

and so its ultimate quantum consistency, rests on relevant features of the model’s target

space geometry. The AKSZ approach can therefore be employed to construct for any given

target geometry a canonical sigma model capable of probing it. It is conceivable that a

carefully designed BV RGE for the model may yield a flow equation analogous to Ricci

flow potentially useful for the study of important geometrical and topological issues of the

target manifold. This remains at the moment an unexplored possibility.
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