
16 August 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Matteo Golfarelli, Lorenzo Baldacci (2019). A Cost Model for SPARK SQL. IEEE TRANSACTIONS ON
KNOWLEDGE AND DATA ENGINEERING, 31(5), 819-832 [10.1109/TKDE.2018.2850339].

Published Version:

A Cost Model for SPARK SQL

Published:
DOI: http://doi.org/10.1109/TKDE.2018.2850339

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/658373 since: 2024-04-23

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/TKDE.2018.2850339
https://hdl.handle.net/11585/658373

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

A Cost Model for SPARK SQL
Lorenzo Baldacci, Matteo Golfarelli DISI - University of Bologna

Abstract—In this paper we propose a novel cost model for Spark SQL. The cost model covers the class of Generalized Projection,
Selection, Join (GPSJ) queries. The cost model keeps into account the network and IO costs as well as the most relevant CPU costs.
The execution cost is computed starting from a physical plan produced by Spark. The set of operations adopted by Spark when
executing a GPSJ query are analytically modeled based on the cluster and application parameters, together with a set of database
statistics. Experimental results carried out on three benchmarks and on two clusters of different sizes and with different computation
features show that our model can estimate the actual execution time with about the 20% of errors on the average. Such an accuracy is
good enough to let the system choose the most effective plan even when the execution time differences are limited. The error can be
reduced to 14%, if the analytic model is coupled with our straggler handling strategy.

Index Terms—Spark, Spark SQL, Cost Model, Query Optimization.

✦

1 INTRODUCTION

B IG Data imposed a change of paradigm in the way data
are handled and analyzed. The volume of data to be

processed, as well as their variety, pushed the development
of a broad set of solutions and platforms. In this context,
Apache Hadoop is the framework that, more than any other,
has gained great popularity over the past years. The first
version of Hadoop was strictly limited to the MapReduce
programming paradigm. MapReduce requires skilled pro-
grammers, so Hadoop designers tried to relieve their users
by providing more high-level and easy-to-use programming
environments such as Pig and Hive – the first SQL system
based on Hadoop and MapReduce.

Spark is a fast and general purpose computing engine
for large-scale data processing that can run on Hadoop. It
builds on the MapReduce paradigm by enabling pipelining
of transformations. In this way it reduces the number of
times data are written back to the disk and can be orders
of magnitude faster than MapReduce [22] while preserving
fault tolerance features. Spark can process data stored in
several storage engines (e.g. MongoDB, Cassandra). In this
work we focus on Hadoop (and HDFS) that is, by far,
the most used architecture for Spark. In particular, Spark
includes an SQL-based sub-system: standard SQL queries
are rewritten in terms of Spark commands and executed in
parallel on a cluster. Spark SQL performance allow on-line
computations on big data, and many OLAP vendors such
as Tableau and Micro Strategy already provide connections
to their systems.

Although Spark is already largely adopted, it is still
under development and continuously evolving. The Spark
SQL engine cannot be considered as mature as traditional
relational DBMSs and many performance improvements are
still possible. In particular, Catalyst [3], the module that is in
charge of translating an SQL query in a sequence of Spark
commands, still relies on a rule-based optimizer and very
little work has been done to develop a cost model that can
predict the cost of running an SQL query.

In this paper we propose a cost model for Spark SQL
which covers the class of GPSJ (Generalized Projection /
Selection / Join) queries that were first studied in [9]. A GPSJ

query is composed of joins, selection predicates and aggre-
gations. Since it is not mandatory that all the three operators
are present, therefore our cost model covers also simple
selection and join queries. Although other cost models have
been developed for generic MapReduce applications, to the
best of our knowledge, this is the first result that keeps
into account the Spark computation paradigm and Spark
SQL. More in details, the distinguishing features of our cost
model are the following:

• It relies on a limited number of task types that, prop-
erly composed, model a wide family of SQL queries.
Since the behavior of these task types is known, their
cost model can be analytically shaped, thus providing
accurate estimates.

• It does not require complex job profiles aimed at captur-
ing a generic job behavior (e.g. [11]), but rather it bases
its estimate on a small set of the cluster and application
features, coupled with the DBs statistics.

• The cost function models an SQL execution plan in
terms of Spark costs. This enables an SQL-aware eval-
uation of the execution costs. We believe that moving
the cost evaluation to a more conceptual level may help
SQL-users to better understand the system behavior.

• The returned cost is not a logical one, but rather the
actual execution time also keeping the cluster features
into account. This enables cluster performance analysis
and cluster tuning to be supported.

Although the cost model is built specifically for Spark (in
terms of task types and system behavior), it is generalizable
to other big data SQL engines such as HIVE and Impala.
The novelty of our approach goes beyond the boundaries of
the Spark SQL world; it represents an original approach to
the calculation of the cost of executing SQL queries on the
Big Data platforms.

The execution time is obtained by summing up the time
needed to execute the nodes of the tree coding the physical
plan produced by Catalyst. The cost model is based on the
disk access time and on the network time spent to transmit
the data across the cluster nodes. We also consider CPU

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

times for data serialization/deserialization and compres-
sion. These costs are implicitly counted by the disk through-
put. As explained in [22], Spark workloads that are mainly
one-pass1, like the one produced by SQL queries, are either
network-bound or disk-bound, whereas CPU can become
a bottleneck with regard to serialization and compression
costs. This is not true for multi-pass2 workloads that are
typically CPU-bound. Experimental results on clusters of
different sizes and with different computation features show
that our model can estimate the actual execution time with
an error of 20% in average. Such accuracy is good enough
to let the system choose the most effective plan even when
the execution time differences are limited. The error can
be reduced to 14%, if the analytic model is coupled with
a straggler handling strategy.

The cost model can be adopted in several contexts that
range from estimating the query execution time given the
cluster and application setting, to obtaining a clear under-
standing of query performances under different settings.
These are key information in workload management, capac-
ity planning, and system tuning. Our cost model is also a
first step towards turning Catalyst into a fully3 cost-based
optimizer and to compare the execution cost of different
physical plans even when adaptive execution is considered.

The main contributions of the paper are: (1) the analytic
cost model that covers GPSJ query expressiveness; (2) a large
set of tests (overall, we run more than 1000 queries) that
analyze its accuracy from several different points of view.
Tests have been carried out on 3 benchmarks and 2 clusters.

The paper outline is as follows: Section 2 reports the
related literature; Section 3 provides a background on Spark
and describes how GPSJ queries are executed on Spark; the
cost model is defined in Sections 4 and 5; Section 6 reports
the experiments; in Section 7, the conclusions are drawn.

2 RELATED WORK

The literature about cost models for predicting the perfor-
mance of SQL engines dates back to the mid-70s, when the
first query optimizers were developed. In [21] the authors
propose a cost model for the relational DBMS System R:
filtering, projection and join operations were considered.
The costs were computed in terms of disk pages fetched
and a set of basic assumptions on the predicate selectivi-
ties was made. Effectiveness of cost models for centralized
SQL engines depends on the quantity of statistics available
about data. For example, moving from basic attribute and
table cardinality to histograms [15] allows to improve the
accuracy of selectivity predicates in presence of skewed dis-
tributed data. When passing from centralized to distributed
DBMSs [13] the communication time must also be taken
into account. The topology of the network plays a central
role in defining the weight of the different cost components:
whereas transmission costs are typically predominant [20] in

1. In a one-pass application data are read from the disk, processed
and written back to the disk (e.g. word-count, sort).

2. In a multi-pass application algorithms iterate over data several
times before writing them back to the disk (e.g. K-means and Page-
rank algorithms).

3. Catalyst, the Spark optimizer, already makes some cost-based
choices when choosing the join algorithms.

a WAN, a cost model devised for a LAN must consider local
access costs, too. A further step forward came with parallel
DBMSs that required the cost models to keep resource
contention and data dependencies into account [7].

The number of SQL engines for big data platforms
is continuously growing. Hive has been the first solution
providing a SQL-like query language, called HiveQL [24].
Hive compiles HiveQL queries into a series of MapReduce
jobs that imply high latency. To address this issue, different
directions have been followed: Tez can run Directed Acyclyc
Graphs (DAGs) as a single job, reducing the latency in
launching jobs; Presto, uses a traditional MPP DBMS run-
time instead of MapReduce. Spark SQL relies on the Cat-
alyst optimizer to turn SQL queries into optimized DAGs
that can be executed on the Spark general purpose engine,
which performs much faster than MapReduce. The Catalyst
versions we analyzed in this paper are mainly-rule based;
Catalyst exploits statistics and a simple cost model since
its 2.3.0 release. For example, as concern join ordering, the
cost function estimates a logical cost in terms of number of
returned rows.

We emphasize that we do not propose a cost-based opti-
mizer but rather a cost model. A cost-based optimizer does
not necessarily compute the whole cost of a query neither in
absolute nor in relative terms (e.g. query plan 1 is better
than query plan 2). Furthermore, a cost-based optimizer
implements query plan transformations (typically based on
rules) that exploit the cost of specific query portions (e.g.
a join) to make choices and to create an optimized plan.
Conversely, our cost model computes the absolute query
cost (in secs.) given the physical plan provided by Catalyst
(i.e. the Spark query optimizer). In Section 6.5 we prove
that our cost model returns an absolute cost that is accurate
enough to choose the best execution plan among the feasible
ones. Closing the loop and changing the actual Spark plan
is out of the scope of the paper. With reference to Hive [17]
the main difference between our cost-model and the costs
computed by the Hive optimizer are:

• Hive does not compute the whole query cost but rather
the cost of the specific portion it is optimizing.

• Hive costs are computed on the physical operator tree
disregarding the cluster configuration. Consequently.
the optimizer choices will be the same for different
clusters and for executions with different resources.

• Hive makes simpler assumptions concerning Read and
Write disk throughputs that are fixed and do not vary
depending on the processes concurring on the disk.

• Hive optimizer supports a larger set of SQL operators
such as UNION ALL and OUTER JOIN that cannot be
modeled as a GPSJ.

As to similarities, we adopt the same set of Hive statistics.
In particular, Hive considers table cardinalities and attribute
cardinalities, while it does not consider attribute value dis-
tributions. The Impala and Spark optimizers make similar
assumptions, apart from Spark that in its 2018 version (ver.
2.3.0) started collecting histograms [18]. Differently from
Spark, far more numerous are the research efforts and
results related to cost models for MapReduce [12]. In [25]
the authors propose an analytical model for MapReduce
that keeps into account, besides the task execution time,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

the delays due to parallel execution: queuing delays due to
contention at shared resources and synchronization delays
due to precedence constraints among tasks. Herodotou [11]
proposed a performance model for describing the execution
of a MapReduce job in Hadoop 1.x. The performance model
describes data flow and cost information at the finer granu-
larity of phases within the map and reduce tasks. In terms of
Herodotou’s model, the overall job execution time is simply
the sum of the costs from all map and reduce phases, no
considerations about synchronization and queuing delays
are provided. Similarly to the previous one, our model
considers the single execution phases at a high level of detail
and also keeps queuing and synchronization delays into
account by considering pipeling and resource contention.
Many differences arise with the Spark SQL context: with
reference to [25] the precedence graph between tasks comes
from the query’s physical execution tree provided in input
and it has to be analyzed in the light of how Spark imple-
ments SQL operators. Considering that Spark uses a finite
and known set of task types to execute GPSJ queries and
that the DB statistics are available, we are able to provide a
detailed modeling of them. Differently from [11], we do not
need a general job profile to characterize the task types. This
is because, instead of general MapReduce jobs, we are mod-
eling SQL queries having available a detailed description of
the query execution plans, plus the DB statistics that allow
us to analytically derive such parameters.

3 BACKGROUND AND SPARK BASICS

Spark [2], [27] is a parallel computational framework com-
patible with Hadoop. The Spark architecture consists of a
driver and in a set of executors. The driver negotiates re-
sources with the cluster resource manager (e.g. YARN) and
distributes the computation across the executors. The ex-
ecutors are in charge of carrying out the operations on data.
Data are distributed across the cluster and are organized in
Resilient Distributed Datasets (RDDs). A RDD is a collection
of immutable and distributed elements, named partitions,
that can be processed in parallel; partitions can either come
from a storage (e.g. HDFS) or be the result of a previous
operation (i.e., held in memory). Spark provides a rich set of
operators to manipulate RDDs. Operators can be classified
in Trasformations and Actions. Transformations can be carried
out in-memory on each RDD partition, whereas actions
either return a result to the driver or imply a shuffling to
combine data distributed in several RDD partitions. Besides
RDDs, Spark introduces the concept of lazy evaluation of
operations too, i.e., Spark does not compute the operation
results right away, but it keeps track of the sequence of oper-
ations to be applied to a RDD until an action is triggered. The
Spark computation paradigm overcomes the one based in
MapReduce by enabling in-memory pipelining (according
to the Volcano model [8]) of subsequent transformations that
do not require shuffling.

At the highest level of abstraction a Spark computation
is organized in jobs: a job is created when an action is
requested over a RDD; it is composed by simpler units of
execution called stages, linked together through a directed
acyclic graph. A stage is still a logical unit of work as it
is composed by a pipeline of transformations to be applied

Spark SQL

& Catalyst

GPSJ

Grammar

Parser

Cost

Model

Physical

Plan

SQL

Query

GPSJ Grammar

Derivation

SQL Query

Cost

DB Statistics and

Cluster Parameters

Fig. 1. A description of the process for our cost model. The grey blocks
are system modules, whereas white ones are input/output data.

to an input RDD. The physical unit of work used to carry
out a stage on each RDD partition is called task. Tasks are
distributed over the cluster and executed in parallel.

Spark SQL [3], is the Spark module that enables the
execution of SQL queries on the structured data stored in
Hadoop. It provides a relational abstraction layer over data
and a SQL-like language to query it. The core of Spark SQL
is Catalyst [3], an extensible optimizer which is in charge of
translating a declarative SQL query into a set of jobs. Given
a SQL query, Catalyst carries out the typical optimization
steps: analysis and validation, logical optimization, physical
optimization, and code generation.

Physical optimization creates one or more physical plans
and then it selects the best one. At the time of writing, this
phase is mainly rule-based: it exploits a simple cost function
in order to select a join algorithm among the available ones
[3]. Spark join algorithms deserve a special mention because
of the importance they have in GPSJ queries:

• Broadcast join: can be used only when one of the two
tables to be joined fits in memory. In this case the
smaller one is broadcasted to every executor so that
each task can perform the join between a partition of the
bigger table and the broadcasted data which is available
in memory.

• Shuffle join: both tables are sorted/hashed on the join-
ing attributes and then split in the same number of
chunks. Chunks are saved on the local disk of the
executors. When shuffling occurs, all the chunks with
the same range of attributes and from the two different
tables are shipped to a reducer task which verifies the
join predicate and saves the filtered data back to the
local disk.

Our cost model computes the query execution time for a
given Spark physical plan (see Figure 1). The cost model
covers a wide class of queries by composing three basic
SQL operators: selection, join and generalized projection.
The combination of these three operators determines GPSJ
(Generalized Projection / Selection / Join) queries that were
first studied in [9]. A GPSJ is a generalized projection π over
a selection σ over a set of joins χ: πσχ. The generalized
projection operator, πP,M (R), is an extension of duplicate
eliminating projection, where P denotes an aggregation
pattern on a relation R, i.e., the set of group-by attributes,
and M denotes a set of aggregate operators applied to the
attributes in R. Thus, GPSJ expressions extend select-join ex-
pressions with aggregation, grouping and group selection.
GPSJ queries are the most common class of queries in OLAP
applications. It is not mandatory that all the three operators
are present, thus our cost model also covers simple selection
queries and join queries.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

<GPSJ>::=<Expr> | <GB(<Expr>)>
<Expr> ::=<SJ(<Expr>,<Expr1>,F)> | <Expr1> |

<BJ(<Expr2>,<Expr3>,F)>
<Expr1> ::=<SC(<Table>,F)>
<Expr2> ::=<SB(<Table>)>
<Expr3> ::=<SC(<Table>,T)> | <SJ(<Expr>,<Expr1>,T)>

| <BJ(<Expr2>,<Expr3>,T)>
<Table> ::={pipe-separeted set of database tables}

Fig. 2. Backus-Naur representation for the GPSJ grammar.

TABLE 1
Task types characterization.

Task Type Addittional params Basic bricks
SC() pred, cols, groups Read, Write
SJ() pred, cols, groups Shuffle Read, Write
SB() pred, cols Read, Broadcast
BJ() pred, cols, groups Write
GB() pred, cols, groups Shuffle Read, Write

Each Spark physical plan modeling a GPSJ query can be
represented as a tree whose nodes apply operations to one
or more input tables, either physical or resulting from the
operations carried out in its sub-tree. The feasible trees are
coded by the context free grammar represented in Figure
2, that we call GPSJ grammar. A feasible tree (i.e., a GPSJ
grammar derivation) properly composes the following 5
task types: table scan SC(), table scan and broadcast SB(),
shuffle join SJ(), broadcast join BJ() and group by GB(). SC()
and SB() are always leaf nodes of the execution tree since
they deal with the physical storage where the relational
tables lie. SJ() and BJ() are inner nodes of the trees and
can be composed to create left-deep execution trees; finally
GB(), if present, is the last task to be carried out. For the
sake of clarity, in Figure 2 we omitted the parameters that
characterize the task types, but do not impact on the tree
structures. Such parameters are listed in Table 1: pred is
an optional filtering/join predicate, cols is the subset of
columns to be actually retrieved, groups identifies a group-
by set of a generalized projection operation. SC(), SJ(), and
BJ() can carry out grouping as Catalyst may push GB()
down for optimization purpose. The grammar defines the
task execution pipeline. In particular, as shown in Figure
2, the last parameter for SC(), SJ(), and BJ() is a boolean
named pipe (see Section 5). When pipe is set to true the
task type does not write back data to the disk, since the
parent task type can be carried out in pipeline. Task type
pipelining4 can only be exploited before a broadcast join,
since all the other task types either correspond to a leaf
node of the tree (i.e., SC() and SB()) or require a shuffle
(i.e., GB() and SJ()). In the GPSJ grammar, such constraint
is ensured by the usage of <Expr3> that appears only as a
SB() parameter.

Example 1 The following GPSJ query is taken from the TPC-H
benchmark [16], one of the benchmarks we used for testing. The

4. Transformations pipelining and task types pipelining are not syn-
onyms: the first term refers to pipelining single Spark transformations,
the second one refers to pipelining of coarser unit of work. A single
task type may include several Spark transformations.

GB(N5, {l_orderkey, o_orderdate,
o_shippriority, l_extendedprice},

{l_orderkey, o_orderdate,o_shippriority},F)

SJ(N1, c_custkey=o_custkey, N2,
{o_orderkey, o_orderdate,

o_shippriority}, { }, F)

SC(lineitem, l_shipdate >‘1995-
03-15’, {l_orderkey,

l_extendedprice}, { }, F)

SC(orders, o_orderdate<‘1995-03-
15’, {o_orderkey, o_custkey,

o_orderdate, o_shippriority}, { }, F)
SC(customers, c_mktsegment =
'BUILDING‘, {c_custkey}, { }, F)

SJ(N3, N4,l_orderkey=o_orderkey,
{l_orderkey, o_orderdate, o_shippriority,

l_extendedprice}, {l_orderkey,
o_orderdate,o_shippriority},F)

N1 N2

N3 N4

N5

N6

Fig. 3. GPSJ grammar derivation for query in Example 1. Node names
substitute sub-expressions in the inner nodes.

query computes the total income collected in a given period and for
a specific market segment grouped by single orders and priority of
shipping.

SELECT l orderkey, o orderdate, o shippriority,sum(l extprice)
FROM customer, orders, lineitem
WHERE c mktsegment = ’BUILDING’ AND
c custkey = o custkey AND l orderkey = o orderkey AND
o orderdate < date ’1995-03-15’ AND
l shipdate > date ’1995-03-15’
GROUP BY l orderkey, o orderdate, o shippriority

A graphical representation of the Spark physical plan chosen
by Catalyst is reported in Figure 3. The tree is a GPSJ grammar
derivation. Each tree node corresponds to a task type applied to
the relational table(s) obtained by the node sub-trees.

In the selected physical plan, orders and customer (i.e., N1,N2)
are initially fetched from HDFS through a SC() task type that also filters
and projects the tuples in main memory before shuffle-writing them to the
executor’s disks. N3 performs a shuffle join of the two tables. The same join
type is used in N5 where the result from N3 is further joined with lineitem
that has been retrieved from HDFS, filtered and projected in N4. Each RDD
partition resulting from N5 shuffle join is also (locally) grouped by l orderkey,
o orderdate, o shipriority to reduce the cost of the last operation (i.e., group-
by push down reduces the quantity of data to be shuffled).The generalized
projection (i.e., GROUP BY) is finalized in node N6.

We finally emphasize that the trees coding the physical
plans of a GPSJ query involving n tables have at most 2 · n
nodes. n nodes (either SC() or SB()) are needed to access the
tables; n−1 nodes (either SJ() or BJ()) are needed to join the
tables; finally a GB() node may be used in case of GROUP
BY clause. Since only left-deep trees are produced by Spark,
the depth of trees is at most n + 1. Left-deep trees generate
the deepest physical plans; indeed, for balanced trees the
depth decreases to ⌈log2(n)⌉+ 1.

4 COST MODEL BASIC BRICKS

Precisely modeling Actions and Transformations would
lead to an useless complexity for our model that is based
on network and disk access costs. For this reason, we focus
on a set of basic bricks that determine such type of costs
and are used within GPSJ queries computations. Noticeably,
the level of abstraction of such bricks is even lower than
that of Trasformations and Actions. Each brick models the
execution of an operation on a single RDD partition, still
considering the resource contentions given by parallel ex-
ecution. Basic bricks are SQL-agnostic and require just the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

Intra-rack SwitchRack 1

Rack 2 Intra-rack Switch

Inter-rack Switch

Fig. 4. A two-racks cluster abstraction. Circles denote executors, black
dots represent cores involved in the computation, white ones are idle.

Fig. 5. Read δr() and write δw() throughput varying the number of
processes concurring on the disk.

Spark and cluster parameters (see Table 2) to be known.
Sub-sections 4.2 to 4.5 characterize the execution cost for
each brick and define a cost function for them.

4.1 Cluster Abstraction and Cost Model Parameters

With reference to Figure 4 a cluster is composed by #N
nodes evenly distributed on #R racks. Each node mounts
#C cores. All the racks/nodes are assumed to be equal
in terms of HW features. Data are stored on HDFS file
system in blocks with redundancy factor rf (rf = 3
by default). The disk throughput plays a central role in
precisely computing the execution time. It is modelled it
through two functions: δr(#Proc) and δw(#Proc), that
return the per-process throughput in MB/s. The functions
values are obtained through a tuning test that must be
carried out on each cluster. In particular, we consider the
total time needed for loading data from the disk and making
them available in a RDD for further processing, so that
the disk throughput implicitly incorporates CPU time for
serialization and decompression. Figure 5 shows the values
of the two functions for one of the two clusters we used for
testing. Read/Write throughput decreases as the number of
processes reading/writing data increase due to contention
of the (shared) disk resource.

Cluster nodes are connected through a network; we
adopt a point-to-point network model with a bandwidth
limit for each connection. Similarly to disk behavior, the
network throughput depends on the number of processes
that are concurrently transmitting between a couple of
nodes. It is a fair assumption that the intra-rack network
speed (IntraRSpeed) is higher or equal to the inter-rack one
(ExtraRSpeed). The formulae for the network per-process
throughput are:

ρi(#Proc) =
IntraRSpeed

#Proc

TABLE 2
Cost model parameters and basic functions. Horizontal lines split those

related to cluster, application and data respectively.

Parameter Description
#R Number of racks composing the cluster.

#RN Number of nodes in each rack.
#N Overall number of nodes (i.e., #R · #RN).
#C Number of cores available on each node.
rf Redundancy factor for HDFS.

δr(#Proc) Disk read throughput (in MB/sec) as a
function of the number of concurrent processes.

δw(#Proc) Disk WRITE throughput (in MB/sec) as a
function of the number of concurrent processes.

ρi(#Proc) Network throughput (in MB/sec) between nodes
in the same rack as a function of the number
of concurrent processes.

ρe(#Proc) Network throughput (in MB/sec) between nodes
in different racks as a function of the number
of concurrent processes.

#SB Number of buckets used for shuffling.
sCmp Percentage of data reduction due to compression

when transmitting on the network.
fCmp Average size reduction achieved by a

compressed file format.
hSel Constant selectivity for HAVING clauses.
#RE Number of executors allocated

to the Spark application in each rack.
#E Overall number of executors allocated

to the Spark application (i.e., #RE · #R).
#EC Number of cores for each executor allocated

to Spark application.
t.Attr Set of attributes in table t.
t.Size Size (in MB) of table t stored in a

uncompressed file format.
t.PSize Average size (in MB) of RDD partitions for table t.
t.Card Number of tuples in table t.
t.Part Number of partitions table t is composed of.
a.Card Number of distinct values for attribute a.
a.Len Average length (in byte) of attribute a .

ρe(#Proc) =
ExtraRSpeed

#Proc

Please note that network and disk performances must be
computed at the node level rather than at the core one,
since they exploit resources that are contended among all
the cores in the same node.

Each Spark application running on a cluster has its own
set of resources and parameters. In our model we assume
that, once assigned, the resources cannot be modified during
the execution. The two main resources to be defined are the
number of executors (#E) and the number of cores (#EC)
on each executor. Each application has an application driver
that runs on a cluster node different from the executor ones.
Due to its relevance in estimating shuffle execution time, we
also consider the number of shuffle buckets #SB (#SB =
200 by default). We finally assume that each shuffle bucket
fits the executor’s memory when read, so that data are never
spilled to local disks.

Since the number of RDD partitions is typically higher
than the number of cores available for the computation,
the resource manager schedules the tasks on the cores in
multiple waves.

Definition 1 (Wave) A wave identifies the parallel execution
of a set of tasks of the same type, one by each core of the
the application executors. Each task processes a distinct RDD
partition. All the executions in the same wave are considered to
behave similarly.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

It is apparent that since all the executor cores work in par-
allel during a wave and behave similarly, the time needed
to run a wave can be estimated as the time needed to run a
task on a single core.

4.2 Read
Since Spark applies the data locality principles, it always
loads RDD partitions from the “closest” position. Reading
time varies if the executor reads the RDD partition from the
local disk, from the disk of a node belonging to the same
rack or from a different one. Read(Size,X) computes the
reading time of a RDD partition of a given Size and depend-
ing on the place X where data are stored. X ∈ {L,R,C}
stands for Local, Rack and Cluster. On the one hand, if data
are read locally, no transmission through the network is
needed; on the other hand, for Rack and Cluster fetching,
the time for transmitting must be considered. Since disk
reading and data transmission happen in pipeline, the over-
all time is the maximum of the two components:

Read(Size,X) = MAX(ReadTX ;TransTX)

In a local wave the RDD partitions are read from the local
disks and no data are transmitted over the network (i.e.,
TransTL = 0).

ReadTL =
Size

δr(#EC)

ReadTL is the time needed by a core to read a RDD
partition of size Size from the local disk whose per-process
throughput is δr(#EC). ReadTL keeps into account disk
resource contention due to the #EC cores hosted on the
same executor.

During a rack wave each executor core receives a RDD
partition from a node of its rack that does not host an execu-
tor (i.e., #RN−#RE nodes). The disks of the executors are
not involved, since, if a copy of the requested RDD partition
was stored on them, it would be read during a local wave in
accordance with the data locality principle. If all nodes host
an executor, all waves are local. We model the probability of
a wave to be local/rack/cluster in Section 5.2.

Each of the non-executing nodes serves ⌈ #RE·#EC
(#RN−#RE)⌉

requests on average5, where #RE ·#EC is the number of
processes/cores working in parallel in a rack. Consequently:

ReadTR =
Size

δr(⌈ #RE·#EC
#RN−#RE ⌉)

In rack and cluster waves, network time must be taken
into account. In particular, given an executor running a
rack wave, each of its #EC cores receives a RDD partition
from one of the #RN − #RE non-executing nodes in the
rack. Assuming a uniform distribution of RDD partitions
across the rack nodes, the number of cores sharing the
same node-to-node network connection can be bounded
by ⌈ #EC

#RN−#RE ⌉. Thus, the time needed to transmit data
through each single network connection is:

TransTR =
Size

ρi(⌈ #EC
#RN−#RE ⌉)

5. Ceiling is necessary since, apart from assuming workload uniform
distribution, a RDD partition is entirely read from one node.

Example 2 In the cluster shown in Figure 4, #R = 2, #RN =
3, #RE = 2 and #EC = 4. During a rack wave, each core reads
a RDD partition within its rack, precisely from the only node with
no executors allocated. Such node is therefore in charge of fetching
8 partitions from its disk. The per-process disk throughput is:

δr(⌈
2 · 4
3− 2

⌉) = δr(8)

We recall that, as per the network model discussed in Section
4.1, nodes are linked together through point-to-point connections,
each ensuring a given bandwith limit. The node with no executors
allocated, once having read the 8 RDD partitions, transmits the
data to the 2 executors allocated in its rack. The per-process
network throughput is then given by:

ρi(⌈
4

3− 2
⌉) = ρi(4)

A similar modeling can be applied to cluster waves
where each node not hosting an executor can potentially re-
ceive a request from all the cores of the executors belonging
to a different rack (i.e., (#R−1)·#RE ·#EC). Such requests
are actually distributed on the (#R − 1) · (#RN − #RE)
nodes ouside the rack that are not hosting an executor. The
per-process throughput of the disk of each non-executing
node is δr(⌈ (#R−1)·#RE·#EC

(#R−1)·(#RN−#RE)⌉), and thus the time needed
to access the disk is:

ReadTC =
Size

δr(⌈ (#R−1)·#RE·#EC
(#R−1)·(#RN−#RE)⌉)

=
Size

δr(⌈ #RE·#EC
(#RN−#RE)⌉)

During a cluster wave, #EC partitions are transferred in
parallel to the cores of each executor from one of the
(#R− 1) · (#RN −#RE) non-executing nodes belonging
to a different rack of the cluster, thus the number of cores
sharing the same node-to-node network connection can
be bounded by ⌈ #EC

(#R−1)·(#RN−#RE)⌉. The time needed to
transmit data through each single network connection is:

TransTC =
Size

ρe(⌈ #EC
(#R−1)·(#RN−#RE)⌉)

4.3 Write

Once read and processed in main memory, each RDD parti-
tion is written back to the local disk. Write(Size) computes
the time taken by an executor to write to the disk Size
MB. The disk write throughput depends on the number of
executor cores.

Write(Size) =
Size · sCmp

δw(#EC)

The formulae embed the size reduction (e.g. sCmp = 0.6)
due to data compression carried out before data are saved
to the disks. This is a configuration option in Spark.

4.4 Shuffle Read

When performing a shuffle read, Spark generates #SB
tasks which are in charge of processing the #SB buckets
previously created during the shuffle write phase. Each
bucket is evenly distributed between the executors, that is,
each executor stores a portion of each bucket. SRead(Size)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

models the time needed for reading a single bucket of Size
MBs.

The reading of a data bucket and its transmission to the
executor, happen in pipeline so that, according to the Vol-
cano model, the loading time is computed as the maximum
of the times needed to carry out the two operations:

SRead(Size) = MAX(ReadT, TransT)

We emphasize that all and only the cluster nodes hosting
an executor are involved in a shuffle read. Each executor
behaves in the same way and data locality cannot be applied
since data are not replicated. Moreover, each single bucket
is distributed across all the executors. Each executor stores
ExecBucketSize = Size/#E MBs for each bucket. Each
core requests in parallel to all the executors the bucket
portion, and each executor must fulfill #E ·#EC requests
(i.e., #EC from the local cores, (#E − 1) · #EC from the
remote ones) of size ExecBucketSize. Due to parallelism
of the requests, the reading time is:

ReadT =
ExecBucketSize

δr(#E ·#EC)

As to network time, we emphasize once again that the role
of each executor is symmetric and that each node-to-node
connection is shared by #EC processes (i.e., each of the
executor’s core requests a bucket portion from all the other
executors). For the same reason, the number of processes
transmitting and receiving on each connection is the same,
therefore send and receive time is the same. Assuming that
inter-rack network speed is lower than intra-rack one, we
can use the inter-rack network throughput to constraint the
time needed to complete the transmission, except when all
the v executors are allocated in the same rack. This happens
with probability:

PSR(v) =


(#RN

v)
(#N

v)
·#R, if v ≤ #RN

0, otherwise
(1)

the probability is 0 if the number of executors is higher than
the number of nodes in a rack. If this is not the case, the
fraction gives the probability of allocating v executor on a
single rack with #RN nodes out of a cluster.

Therefore, the transmission time can be computed as
follows:

TransT =
ExecBucketSize

PSR(#E) · ρi(#EC) + (1− PSR(#E)) · ρe(#EC)

Example 3 In a cluster with #R = 2, #RN = 3, and #E =
2, the probability of having the 2 executors allocated in the same
rack is:

PSR(2) =

(3
2

)(6
2

) · 2 =
3

15
· 2 = 0.4

where 3 and 15 are the number of different executor allocations on
the a single rack and on the whole cluster, respectively.

4.5 Broadcast

A broadcast on a RDD (a) collects at the application driver
all the RDD partitions, each of size Size; (b) distributes the
whole RDD to the executors for further processing. The time

needed to complete a broadcast is the sum of time needed to
complete steps (a) and (b), since only when the whole RDD
is loaded on the application driver, it sends the RDD back
to the executors.

Braodcast(Size) = CollectT +DistributeT

#E · #EC partitions are collected in parallel (i.e., one
by each executor core) and each node-to-driver network
connection is shared by #EC processes. Similarly to the
shuffle read case, the network throughput can be limited
through the inter-rack network one except when both the
executors and the application driver (i.e., #E+1) have been
instantiated in the same cluster (See Formula 1). CollecT
can be computed as:

Size

PSR(#E + 1) · ρi(#EC) + (1− PSR(#E + 1)) · ρe(#EC)

As to step (b), for the purpose of the cost model (see
Subsection 5.3), we consider here the cost for distributing
the whole RDD in tranche of #E ·#EC RDD partitions (i.e.,
those that are collected in parallel). Since the application
driver sends all the data collected to each node, only one
process is active on each network connection. DistributeT
can be computed as:

Size ·#E ·#EC

PSR(#E + 1) · ρi(1) + (1− PSR(#E + 1)) · ρe(1)
DistributeT is not the time needed for distributing the
whole RDD, but rather the one needed for distributing the
data collected in a wave. As we will shown in Section 5.3,
we consistently use such value to compute the total time.

5 MODELING GPSJ QUERIES

In this section we describe how the basic bricks described
in the previous section can be composed to model a GPSJ
query execution plan. Execution time sums up the time
needed to execute the nodes of the tree coding the physical
plan (see Section 3). Each node corresponds to a task type,
and each task type is associated to a specific cost function
(see Sub-Section 5.2 - 5.6) that returns the cost along with the
features of the relational table produced in output. A depth-
first visit of the tree ensures all the input table features to be
available when computing the cost of current node.

5.1 Statistics and Selectivity Estimates

Creating a cost based model requires to collect statistics from
the DB in order to estimate the predicate selectivities and
the size of the tables. The literature on such topics is very
broad. The accuracy of the estimate strictly depends on the
collected information and on the assumptions made on data
distribution. Following several query cost models, in this
paper we assume uniformity of attribute values, attribute
values independence and join containment [6].

A table t includes a set of attributes t.Attr. For each
table we collect its cardinality t.Card and its size t.Size
when stored in an uncompressed file format. We also collect
the average size reduction achieved by a compressed file
format (e.g. Parquet [1]) fcmp , and the average size of the
HDFS partitions t.PSize storing the table. Although, the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

partition size is a HDFS parameter (typically set to 128 MB),
its actual size can vary heavily and can be much smaller
than the theoretic size when the tables are small or when
they are created through a Spark command and they are not
compacted.

For each attribute a ∈ t.Attr we collect the number
of distinct values a.Card, and its average length a.Len
in bytes. Based on the previous statistics, and considering
the well-known works by [23] and [21] we are able to
estimate the selectivity of conjunctive selection predicate
Sel(t, pred), the cardinality JCard(t1, t2, pred) and the size
JSize(t1, t2, pred) of equi-join t1 ▷◁pred t2. We do not report
here the related formulae for space reasons.

We also estimate the percentage length reduction de-
termined by projection Proj(t, cols) on attributes cols ⊆
t.Attr

Proj(t, cols) =

∑
a∈cols a.len∑
a∈t a.len

An estimatimate of the cardinality reduction induced by a
generalized projection (i.e., grouping factor) can be obtained
exploiting the Cardenas formula6 [5]

Group(#tuples,#groups) =
Θ(#tuples,#groups)

#tuples

For example grouping a table t on a group-by set group after
applying a filtering predicate pred will be defined as:

Group(t.Card · Sel(t, pred),
∏

a∈Group

a.Card)

Sel(), Proj(), Group() are set to 1 if the corresponding
parameters are not defined.

5.2 The SC() Task Type
A Scan task accesses a table t stored in HDFS. The function
SC(t, pred, cols, groups, pipe) returns the time needed to
carry out the task. The basic operations this task type carries
out are:
(a) Fetching the RDD partitions storing t into the memory.

Fetching involves accessing HDFS to retrieve the RDD
partitions and sending them to the executors that are in
charge to process them. Transmission of data through
the network is required only for those partitions that are
not stored locally to the executor. Since Spark adopts
a Volcano style pull model, the scan time will be the
maximimum between the access and transmit times.

(b) Filtering (optional) the table tuples according to the
predicate pred. Since Catalyst applies selection push
down, filtering is carried out as soon as a tuple is no
more useful for further computations. When supported
by the used file format (e.g. Parquet), Spark can push
filtering into the sources files, in this case the unused
tuples will not be read at all.

(c) Projecting (optional) the table by dropping the unused
columns (i.e., the columns of t not included in cols).

6. Cardenas formula Θ(R,N) has been originally defined to estimate
the number of data blocks actually accessed to retrtieve, through
an indexed attribute, R records from a relational table stored in N
blocks. Cardenas formula assumes uniform distribution for the indexed
attribute values and for the tuples accross blocks.

Since Catalyst applies projection push down, dropping
is carried out whenever a column is no more useful for
further computations. When supported by the underly-
ing file format (e.g. Parquet), Spark can push projection
into the sources files, in this case the unused columns
will not be read at all.

(d) Aggregating (optional) the tuples when Catalyst pushes
down generalized projection in order to reduce the
quantity of data to be handled in further processing.

(e) Writing (optional) to the disks the remaining tuples
for further elaborations or for saving the final result.
Writing is avoided when a broadcast join is pipelined
(i.e., pipe = T).

According to our cost model only operations (a) and (d)
must be directly modeled, whereas operations (b) and (c)
influence performances since they reduce the quantity of
data to be written back to the disk.

The number of RDD partitions composing t is

#TableP =
t.Size · fcmp

t.PSize
(2)

if the table is stored in compressed format 0 < fcmp < 1,
fcmp = 1 otherwise. Each RDD partition implies RSize =
t.PSize bytes to be fetched from the disk. The quantity
of data to be read from each RDD partition is reduced to
RSize = t.PSize ·Sel(t, pred) ·Proj(t, cols) when filtering
and projection are pushed down to the data sources.

Fetching is executed in ⌈#TableP
#E·#C ⌉ waves. We distinguish

3 types of waves, namely L -local, R - rack and C - cluster,
depending on where the RDD partition to be processed is
stored with reference to the executor in charge of fetching
it. Given a RDD partition p, the probability an executor has
to fetch p locally (PL), within its rack (PR) or anywhere else
(PC) depends on the cluster topology and can be calculated
through the following formulae:

PL = 1−
(#N−rf

#E

)(#N
#E

) (3)

PC =

min(#R,rf)∑
x=1

min(#R,#E)∑
y=1

PPart(x) · PExe(y) ·
(#R−x

y

)(#R
y

)
(4)

PR = 1− PL − PC (5)

In Formula 3, the fraction gives the rate of executor allo-
cations on cluster nodes that do not store one of the rf
replicas of p, over the number of executor allocations on
the whole cluster. In Formula 4, x ∈ {1, · · · ,min(#R, rf)}
is the number of racks having at least one of the rf replicas
of p in any of their nodes, y ∈ {1, · · · ,min(#R,#E)} is the
number of racks having at least an executor allocated. The
fraction gives the rate of allocations of y racks on #R − x
racks (i.e., racks with no p replicas in their nodes), over the
total number of allocations of y racks. Such fraction must
be weighted by the probability that exactly x racks host one
of the rf replicas of p (i.e., PPart(x)) and the probability
that exactly y racks have at least one executor allocated (i.e.,
PExe(y)):

PPart(x) =

(
#R

x

)
·

x∑
j=0

(−1)j
(
x

j

)(#RN ·(x−j)
rf

)(#N
rf

) (6)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

PExe(y) =

(
#R

y

)
·

y∑
j=0

(−1)j
(
y

j

)(#RN(y−j)
#E

)(#N
#E

) (7)

In Formula 6, the inclusion-exclusion principle has been
employed in order to calculate the probability that x given
racks, and only them, host at least one of the rf replicas of
p. Such probability is then multiplied by

(#R
x

)
as any x racks

chosen show the same probability. Formula 7 has been built
up symmetrically.

Once a RDD partition is fetched operations (b) to (d) are
performed on its tuples and WSize bytes are written back
to the disk, where:

WSize =t.PSize · Sel(t, pred) · Proj(t, cols)·
Group(t.Card · Sel(t, pred),

∏
a∈groups

a.Card)

If no grouping is carried out, reading and writing of data can
be performed in pipeline, otherwise writing can start only
after all the tuples are loaded and grouped. In the first case
the execution time of each task is estimated as the maximum
between reading and writing times.

SC(t, pred, cols, groups, pipe) = ⌈ #TableP

#E ·#EC
⌉·∑

X∈{L,R,C}

PX ·MAX(Read(RSize,X),Write(WSize))

(8)

In the second case, the two times must be summed up.

SC(t, pred, cols, groups, pipe) = ⌈ #TableP

#E ·#EC
⌉·∑

X∈{L,R,C}

PX · (Read(RSize,X) +Write(WSize))) (9)

In formulae 8 and 9 WSize = 0 if data must not be written
back to the disk (i.e., the pipe = T).

Table 3 reports the features of the returned table t′.

5.3 The SB() Task Type
A Scan & Broadcast accesses a table t stored in HDFS and
sends it to the application driver that collects the RDD
partitions and broadcast the whole table to all the executors.
The function SB(t, pred, cols) returns the time needed to
carry out the task.

Data collections steps are the same for the SC() task type,
we refer to formulae from 2 to 5 for its modeling. The size of
each RDD partition to be broadcasted may be reduced due
to filtering and projection predicates:

BrSize = t.PSize · Sel(t, pred) · Proj(t, cols)

Note that, since data are filtered and projected either in main
memory or directly whereas they are read from the disks,
they do not directly impact on the task cost. Since data
collection and broadcast work in pipeline, the execution
time is:

SB(t, pred, cols) = ⌈ #TableP

#E ·#EC
⌉·∑

X∈{L,R,C}

PX ·MAX(Read(RSize,X), Broadcast(BrSize))

Table 3 reports the features of the returned table t′.

5.4 The SJ() Task Type

A Shuffle Join carries out a join of two tables t1 and t2 whose
partitions have been previously hashed in #SB buckets.
Input RDD partitions are stored in the local disk of the
executors. The function SJ(t1, t2, pred, cols, groups, pipe)
returns the time needed to carry out the task. The operations
carried out by SJ() in one wave are:
(a) Shuffle Read: the corresponding buckets from t1 and t2

are fetched. A portion of each bucket is stored on each
executor.

(b) Join: once two corresponding buckets from t1 and t2 are
fully available, the pred predicate is used to to merge
the tuples.

(c) Project (optional): columns that are no more useful for
the remaining part of query are dropped. Only the
columns in cols are returned.

(d) Aggregating (optional) the tuples when Catalyst pushes
down generalized projection in order to reduce the
quantity of data to be handled in further processing.

(e) Writing (optional) to the disks the remaining tuples.
Writing is avoided when a broadcast join is pipelined.

Join cannot start before all the tuples of the corresponding
buckets are loaded. Consequently, the time needed for car-
rying out one wave is the sum of time needed for shuffle
reading and writing back (if needed) the processed tuples.
The quantity of data to be read at each wave is

RSize =
t1.Size+ t2.Size

#SB

The quantity of data to be written back to the disk by each
core at each wave is computed as:

WSize =
JSize(t1, t2, pred) · Proj(t1 ⋊⋉ t2, cols)

#SB
·

·Group(JCard(t1, t2, pred),
∏

a∈groups

a.Card)

WSize = 0 if data must not be written back to the disk (i.e.,
the pipe = T). The overall time is the sum of the time taken
by all the wave:

SJ(t1, t2, pred, cols, groups) = ⌈ #SB

#E ·#EC
⌉·

· (SRead(RSize) +Write(WSize))

Table 3 reports the features of the returned table t′.

5.5 The BJ() Task Type

A broadcast join carries out a join of tables t1 and t2 when
one of the two tables, let say t1, is small enough to be broad-
casted and completely kept in the main memory of each
executor. The function BJ(t1, t2, pred, cols, groups, pipe)
returns the time needed to carry out the task. To the aim
of our model, the only relevant operation is the writing
of the data back to the disk. This is because the costs for
loading the two tables are charged on the children nodes
of the execution tree. According to the GPSJ grammar (see
Figure 2): t1 is loaded through a SB() task type, whereas t2 is
either resulting from a previous operation (i.e., SJ(), BJ()) or
is loaded through a SC() operation. Similarly to shuffle join

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

TABLE 3
Estimated features for the output table t′ of the different task types.

Task type t′.Attr t′.Card t′.Size t′.Part

SC() cols t.Card · Sel(t, pred) · Group(t.Card · Sel(t, pred),
∏

a∈groups a.Card WSize · #TableP #TableP

SB() cols t.Card · Sel(t, pred) BrSize · #TableP #TableP
SJ() cols JCard(t1, t2, pred) · Group(JCard(t1, t2, pred),

∏
a∈groups a.Card) WSize · #SB #SB

BJ() cols JCard(t1, t2, pred) · Group(JCard(t1, t2, pred),
∏

a∈groups a.Card) WSize · t2.Part t2.Part

GB() cols t.Card · Group(t.Card,
∏

a∈groups a.Card) WSize · #SB #SB

filtering, projection and grouping may be optionally carried
out in main memory.

Broadcast join is always pipelined to another operation,
either scan, shuffle join, or broadcast join, thus the number
of waves it requires depends on the partition number of t2.
The quantity of data to be written by each core at each wave
is:

WSize =
JSize(t1, t2, pred) · Proj(t1 ⋊⋉ t2, cols)

t2.Part
·

·Group(JCard(t1, t2, pred),
∏

a∈groups

a.Card)

The time needed to complete the operation is the sum of the
time taken by the waves:

BJ(t1, t2, pred, cols, groups) = ⌈ t2.Part

#E ·#EC
⌉·Write(WSize)

Table 3 reports the features of the returned table t′.

5.6 The GB() Task Type
Group by carries out the final grouping. The tuples of the
input table t have been previously hashed in #SB buckets.
Input RDD partitions are stored in the local disk of the
executors. The function GB(t, pred, cols, groups) returns
the time needed to carry out the task. At each wave, the
operations carried out by GB() are:
(a) Shuffle Read the corresponding buckets from t. A por-

tion of each bucket is stored on each executor.
(b) Data are grouped according to the groups attributes

and the aggregated values for the remaining cols −
groups attributes are computed.

(c) Aggregated tuples are written back to the disk.
Grouping cannot start before all the tuples of the cor-
responding buckets are loaded. Consequently, the time
needed for carrying out one wave is the sum of time needed
for shuffle reading and writing back the processed tuples.
The quantity of data to be read by each core at each wave is:

RSize =
t.Size

#SB

The quantity of data to be written back to the disk by each
core at each wave is:

WSize = RSize · hSel · Proj(t, cols)·
·Group(t.Card,

∏
a∈groups

a.Card)

where hSel is a constant selectivity factor for all having
clauses (hSel = 0.33 by default); hsel is set to 1 if pred
is undefined. Although such a simple estimate is often

different from the actual selectivity, it is standard solution in
commercial systems. More refined estimates imply assump-
tions that are not coherent with our framework [10]. The
overall time is the sum of the time taken by all the waves:

GB(t, pred, cols, groups) = ⌈ #SB

#E ·#EC
⌉·

· (SRead(RSize) +Write(WSize))

Table 3 reports the features of the returned table t′.

5.7 Handling Stragglers

The cost model presented so far computes the analytic cost
of a GPSJ query assuming cluster resources to be sufficient
to run the workload without any straggler taking place.
A straggler is a task that performs more poorly than simi-
lar ones due to insufficient assigned resources [26]. Strag-
glers probability is strictly related to cluster/nodes loading
and to their consequent level of resource contentions. We
emphasize that our model inherently considers resource
contentions when it defines network and disk throughput
(see Section 5), but when resources become insufficient,
performances can be reduced in unpredictable ways. Several
techniques [4] have been studied to reduce and prevent
stragglers effects. Spark itself implements a speculative exe-
cution technique that is running, on a different node, a copy
of a task suspected to be a straggler: the result will be taken
from the task finishing first.

Building an analytic model for stragglers is challenging
due to complex task-to-node and task-to-task interactions
[26], thus in our model we keep stragglers into account
by adding, to the basic task cost estimation, an extra time
computed through a straggling profile computed for each
task type TT ∈ {SC(),SB(),SJ(),BJ(),GB()}. Building a
profile requires the real execution times t() of a set of tasks
LLoad
TT of a given type TT to be collected. Load defines the

quantity of resources devoted to the task executions in terms
of percentage of cluster executors Load.Ex = #E/#N and
executor cores Load.C = #EC/#C .

Definition 2 (Straggler [26]) A task i ∈ LLoad
TT is said to be a

straggler if

t(i) > β ·median(t(LLoad
TT))

β measures the sensitivity of the approach to stragglers 7.

7. We set β = 1.3 through an optimization process. Noticeably, it is
the same value adopted in [26] that adopts a similar definition.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

0,2
50,50,7

5

10
2
4
6

0,17

0,3
3 0,50

0,6
7 0,8

3 1,0
0

Load.C

sev

Load.Ex

Fig. 6. The severity profile for SC() on C1.

Definition 2 allows LLoad
TT to be partitioned in stragglers

L̂Load
TT and non-straggler L̄Load

TT tasks. We can now define the
straggler tendency and severity as:

tendLoad
TT = |L̂Load

TT |/|LLoad
TT |

sevLoad
TT =

AV G(t(L̂Load
TT))

AV G(t(L̄Load
TT))

tend measures how often stragglers take place; sev mea-
sures how longer is the execution time for stragglers with
reference to non-straggler tasks. Since both measures are
expressed as a percentage, they can be applied to tasks of
different absolute duration. Since computing sev and tend
for all possible resource configurations can be heavy for
large clusters, we compute the profile for a limited subset
of configurations and then we estimate the remaining ones
through a regression. Figure 6 shows the cluster severity
profile for the scan task. As expected, severity increases
when for higher cluster loads.

Given a task t of type TT and the resources setting Load,
it is now possible to include stragglers effect in our analytic
model as follows:

êt(t) = et(t) · (1− tendLoad
TT) + et(t) · tendLoad

TT · sevLoad
TT

where et() is the expected execution time returned by the
analytic model. The second part of the formula applies a
execution time adjustment proportional to straggler severity
and tendency.

6 EXPERIMENTAL RESULTS

The main goal of our tests is to verify the accuracy of
the cost model estimates both in absolute and in relative
terms. On the one hand, an accurate estimate of a query
duration is useful to obtain a clear understanding of the
system performance under different settings. On the other
hand, being able to compare execution plans in term of their
execution time it is mandatory to select the best one. In
the latter case, it is not relevant the absolute accuracy of
the estimates, but rather it is important that the cost model
preserves the relationship between the two execution times.
For these reasons, given a workload Q = {q1, ...qn} we de-
fine two accuracy measures based on a couple of functions:
t(q) returning the execution time (in seconds) measured by
Spark and, et(q) returning the expected execution time (in

seconds) estimated by our cost model. The first accuracy
measure is the relative error

err(Q) =
1

|Q|
∑
q∈Q

|t(q)− et(q)|
t(q)

(10)

that captures the ability of the model to properly estimate
the execution times, the second measure is the statistical
correlation8 between t() and et() on Q:

cor(Q) =

∑
q∈Q(t(q)− t(Q))(et(q)− et(Q))√∑

q∈Q(t(q)− t(Q))2
∑

q∈Q(et(q)− et(Q))2

where t(Q) and et(Q) are the sample means and standard
deviations for t() and et() on Q. cor(Q) measures how well
the cost model estimates are related to the Spark execution
times. We do not carry out efficiency tests since the time
needed to compute the cost is always negligible (49 millisecs
in the average). The computational effort is given by the
in memory visit of the tree coding the physical plan that,
as mentioned in Section 3, has at most 2 · n nodes, where
n is the number of tables involved in the query. On the
contrary, building the straggler profiles comes with a cost
that is proportional to the number tested configurations (at
most #E · #C). The more the tested configurations, the
greater the computation time and the lower the regression
error. For example, building the straggler profiles for C1

testing 33/17 configurations (uniformly distributed on the
56 feasible ones) reduces the computation time from 7.1
to 3.3/2.2 hours respectively. Conversely, êrr for Q2 only
marginally grown from 0.155 to 0.159 /0.162.

Table 4 reports the features of the two clusters used for
testing. The clusters have different sizes: C1 is on-premisis,
C2 is built on the Google cloud platform; disk and network
throughputs have been derived experimentally through a
separate tuning procedure. Having similar performances on
different versions of the platform testifies to the robust-
ness of the approach. The evaluation has been carried out
employing 3 well-known benchmarks: Q1 is the Big Data
benchmark [14] with size 120GB (highest cardinality among
tables: 7.5 ∗ 108); Q2 is the TPC-H [16] benchmark sized to
100GB (highest cardinality among tables: 6 ∗ 108), finally Q3

is the TPC-H benchmark sized to 1 TB (highest cardinality
among tables: 6 ∗ 109). Data in the three benchmarks are
uniformly distributed as assumed by our model. Queries
in Q1 are rather simple and typically include one or few
task types. Conversely, queries in Q2 and Q3 show the full
GPSJ expressiveness and beyond, thus we have chosen 4
base queries (namely TPC-H queries q1, q3, q6 and q10) and
we built on them to create benchmarks able to stress our cost
model. In all the following tests we varied the cluster con-
figurations in terms of number of executors (#E ∈ [1, .., 6]
for C1; #E ∈ {10, 30, 50} for C2) and number of cores
(#C ∈ {2, 4, 6, 8} for C1; #C ∈ {2, 6} for C2) for a total
of 24 and 6 configurations for C1 and C2, respectively. All
the queries have been run three times9 and the average
execution time has been considered. As shown in Table 4,

8. For stability reasons we do not compute cor(Q) for benchmarks
such that |Q| < 10

9. In absence of stragglers, 3 repetitions are sufficient to ensure
result stability: for example, AV Gt(q) on Q2 computed on 3 and 16
repetitions differ 10.3% only.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

the benchmarks have been tested only on the cluster with
an appropriate computational power.

6.1 Accuracy for Single Task Types
The first test is aimed at evaluating the accuracy of the cost
functions on specific task types. To this aim we extracted the
costs of different task types for queries in Q1, Q2 and Q3. For
the aim of this test, we varied the selectivity of predicates
(i.e., Sel() ∈ {0, 0.25, 0.5, 0.75, 1}) and the reduction rate of
the aggregation (Group() ∈ {0.66, 0.95, 0.99}), along with
the cluster configurations. As shown in Table 5 all the task
types are modeled with a similar accuracy independently
from the cluster they are executed on.

6.2 Accuracy for Full GPSJ Queries
A similar accuracy have been obtained with queries with
full GPSJ expressiveness and, as shown in Table 6, it is 20%
in average. The accuracy of the cost model is stable for
different cluster configurations and for queries that differ
in the duration, number of tasks and waves. This behavior
can be better appreciated in Figure 7 where, for each query
q summarized in Table 6, compares t(q) and et(q). It is
apparent, that most of the queries are close to the scatter
plot diagonal (i.e., t(q) = et(q)) and that, although the error
is higher for longer queries, it is constant in relative terms.
The scatterplot also shows a slight upward translation. This
means that the estimated costs are, in general, slightly lower
than the real ones. This is due to presence of stragglers, as
we will shown in Section 6.3.

Fig. 7. Scatterplot of execution time VS model expected time for Q2.

The detailed performances for different cluster config-
urations are reported in Figure 8.a and 8.b that refer to
the execution of query q1 ∈ Q2 varying the number of
cores (#EC) and the number of executors (#E) allocated
to the Spark application running the query. The figures also
demonstrate a possible application of the cost model: both
charts show a sub-linear improvement of performances,
thus it is useless to allocate more than 4 cores to each of the
six executors due to the concurrence on the disk resource.

6.3 Error Analysis and the Straggler Handling Strategy
We emphasize that only few works propose a cost model de-
tailed enough to enable a comparison between the estimated

(a)

(b)

Fig. 8. Cost Model vs Spark execution time for q1 ∈ Q2 varying (a) the
number of executors allocated to the query (#EC = 4), and (b) the
number of cores allocated to each executor (#E = 6).

and real execution times. As a point of comparison we re-
port the error rates measured in [25] for generic MapReduce
jobs (err() ∈ [15%; 25%]) and in [19] for federated DBMSs
(err() ≤ 20%). Both of them are consistent with our one.

A deviation from the correct value is intrinsically ex-
pected due to the assumptions and simplifications made by
the cost model. In particular, the model assumes that no
skewed attributes are present. If this is not true, the model
would misjudge the output cardinalities of selections and
joins. To evaluate the impact of such errors we modified
data distribution in Q2 so that in each query, the first
selection predicate and the first join predicate operate on a
skewed attribute. Skewness is obtained through a gaussian
distribution of attribute values. We run two additional tests
where 200% and 50% of the tuples expected by the model
are actually selected. The model error, err(Q2), increases by
8.7% and 9.8% for selections and joins, respectively.

We also noted that, running the same query several
times, execution times is likely to fluctuate. Although most
of the executions behave similarly, query execution time
deviates from the median value more than 2.5 times for
the 7% of the observations. Correlation remains higher and
more stable than err, this points out that, although the
model may miss the correct estimate, it keeps consistently
the correct relationship between queries that is necessary
for comparing different execution plans of a given query
(see Section 6.5).

Deviations are strictly related to stragglers that become
more frequent and severe when the cluster load increases
(see Figure 6). All the tests presented so far do not keep
stragglers into account because we focused on the capa-
bilities of our analytic model in returning a valuable exe-
cution time estimate without relying on execution profiles.
The straggler strategy further improves the cost estimate
accuracy. Column êrr(Q) in Table 6 shows that the straggler
handling strategy reduces the error by 6% on the average.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

TABLE 4
Cluster features & benchmark usage.

Name Installation #R #N #C Main Mem. Disk Sw. Releases Q1 Q2 Q3

C1 On Premises 2 7 8 32 GB 6 TB Hadoop 2.6.0 + Spark 1.5.0 ✓ ✓
C2 Cloud (Google) 1 51 8 30 GB 512 GB Hadoop 2.7.2 + Spark 2.0.1 ✓

TABLE 5
Task types accuracy, in bold the task type the test focuses on.

Task types Bench. |Q| AVG t(q) err cor

SC()
Q1 120 428 0.11 0.99
Q2 120 279 0.23 0.98
Q3 30 255 0.27 0.99

GB()
Q1 72 138 0.33 0.87
Q2 72 23 0.26 0.95
Q3 18 53 0.18 0.99

SJ()
Q1 120 606 0.17 0.99
Q2 120 662 0.31 0.99
Q3 30 1021 0.19 0.92

BJ() Q1 120 235 0.18 0.97
Q2 120 240 0.21 0.94
Q3 30 402 0.22 0.96

Overall
Average 0.22 0.96

TABLE 6
Accuracy for queries with full GPSJ expressiveness.

Base Bench. |Q| Total AVG AVG
err cor êrrQuery tasks waves t(q)

q1
Q2 24 1010 58 374 0.17 0.96 0.18
Q3 6 6263 40 666 0.23 0.21

q3
Q2 24 1562 90 516 0.24 0.97 0.13
Q3 6 8197 52 374 0.15 0.10

q6
Q2 24 1010 58 313 0.34 0.99 0.21
Q3 6 6263 40 529 0.05 0.04

q10
Q2 24 1563 90 452 0.20 0.98 0.11
Q3 6 8198 52 656 0.19 0.12

Overall
Average 0.20 0.98 0.14

êrr(Q) is defined as err(Q) (see Equation 10) considering
êt(q) instead of et(q). Stragglers are properly detected for
all task types and for all cluster loads.

6.4 Query Accuracy in Presence of Compressed Data
Our cost model handles projection predicates and data
compressed file format. Projection predicates are modeled
both when they are executed in-memory and when they
are pushed-down to the disk. To test such capabilities we
run the test reported in Table 7. The test is based on a
select query implemented through a single SC() task type.
In the base query we progressively reduced the number
of attributes returned so that Proj() ranges from 1.0 to
0.4. Tests have been executed on C1 varying 24 cluster
configurations. We run the tests both on data stored in
HDFS as text files and on data stored in the compressed
format. Parquet allows projection to be carried out directly
on the disk by preventing the reading of the data. Execution
time due to projection for queries run on text files takes
place when data are written back to the disk since, in
this case, Spark needs to read the whole table. Conversely,
when data are stored in Parquet, saving takes place during

both the reading and the writing phases since unnecessary
data are not read at all. Beside reading/writing only the
projected data, Parquet data are compressed and this further
reduces query execution time. In all the cases the cost model
correctly captures execution times reduction and keeps the
relative errors under 30%. Correlation remains very high.

TABLE 7
Model accuracy varying the projection factor for scan queries on C1.

Proj() |Q| Format AVG t(q) r err cor

1.0 24 txt 785 0.29 0.94
parquet 404 0.28 0.97

0.70 24 txt 488 0.30 0.95
parquet 289 0.29 0.98

0.40 24 txt 387 0.19 0.97
parquet 156 0.28 0.99

6.5 Execution Plan Selection

One of the main goals of a cost model is to allow the best
execution plan to be selected. In previous subsections we
have shown the high level of correlation between t() and
et(), here we show that it is sufficient to select the best plan.

We remark that our starting point is the only physical
plan returned by Catalyst. Catalyst does not make available
other alternative plans to be compared, but since it does not
carry out join reordering, it is still possible to generate alter-
native plans by changing the order of tables in the FROM
clause. Further plans can be generated changing catalyst
parameters (i.e. turning Brodacast join option on/off.) We
initially set a cluster configuration (#E = 2 and #EC = 4)
on C1 and we defined three full GPSJ queries (qa, qb and
qc) on Q2. The queries involve from 3 to 4 tables, and
one or more selection predicates that reduce the number
of involved tuples. For each query we obtained different
plans by changing the join order, and by enabling/disabling
the broadcast join parameter. For example in qa a possible
join order is Lineitem → Orders → Customer → Nation
where Nation, due to its reduced size, can be joined to the
other ones either using a shuffle or a broadcast join. Results
are reported in Table 8. It is apparent that, given a query:

• the different execution plans determine different exe-
cution times, that can be either significantly distant or
very close (see qb and the third and fourth plans for qa);

• the average relative error is comparable with the one
measured in previous tests;

• t() and et() are strictly correlated and for all the three
queries et() allows to choose the cheapest plan between
those available. More in details, the plans orderings
induced by t() and et() are the same, thus the plan
with the lowest expected execution time et() is also the
one with the lowest execution time t().

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 14

TABLE 8
Comparison of alternative physical plans run on cluster C1 and
benchmark Q2. Sel specifies the selectivity of the predicates on

different tables Xb means that table X has been broadcasted. Bold
times are the lowest ones.

Query Sel. Plan t() et() err()

qa N = 0.04

L → O → C → N 4 320 5 100 0.18
L → O → C → Nb 2 760 3 420 0.24
N → C → O → L 1 745 1 200 0.31
Nb → C → O → L 1 740 1 140 0.34

qb

L = 0.67
L → O → C
C → O → L

1 680
1 500

1 560
1 020

0.07
0.32O = 0.50

C = 0.20

qc
O = 0.50 L → O → C 2 280 1 920 0.16
C = 0.20 C → O → L 1 200 1 140 0.05

Overall
Average 0.21

7 CONCLUSIONS

In this paper we proposed the first analytic cost model for
Spark SQL. The cost model covers the expressiveness of
GPSJ queries: a wide family of queries largely used in data
analysis. It is the first cost model that implement the Spark
computation paradigm keeping into account task pipelin-
ing, resource contention and stragglers. Differently from
general purpose cost models for MapReduce, our model is
aware of the single operations carried out to execute the
queries and also relies on a set of statistics on the stored
data. The cost model has shown a high accuracy on a large
set of different tests and different configurations we tested.
The accuracy is good enough to allow the system choose the
most effective plan. Our efforts are not devoted to extend the
cost model applicability by relaxing some of the assump-
tions made. In particular, we would remove the assumption
about uniform data distribution. A straightforward solution
in this direction is to consider histograms to model data
distribution. Such an improvement would impact on the
reliability of both selections and joins on skewed data.

Since other big data engines (e.g. Impala) adopts similar
computation paradigms with different operations and with
different optimizations, we would define ad hoc cost models
applying our approach to them.

REFERENCES

[1] The parquet project. parquet.apache.org, 2016.
[2] M. Armbrust et al. Scaling spark in the real world: performance

and usability. PVLDB, 8(12):1840–1843, 2015.
[3] M. Armbrust et al. Spark sql: Relational data processing in spark.

In SIGMOD, pages 1383–1394, 2015.
[4] A. Bhandare et al. Review and analysis of straggler handling

techniques. IJCSIT, 7(5):2270–2276, 2016.
[5] A. F. Cárdenas. Analysis and performance of inverted data base

structures. Communications of the ACM, 18(5):253–263, 1975.
[6] S. Christodoulakis. Implications of certain assumptions in

database performance evauation. ACM Trans. Database Syst.,
9(2):163–186, 1984.

[7] S. Ganguly, W. Hasan, and R. Krishnamurthy. Query optimization
for parallel execution, volume 21. 1992.

[8] G. Graefe and W. J. McKenna. The volcano optimizer generator:
Extensibility and efficient search. In Data Engineering, pages 209–
218, 1993.

[9] A. Gupta, V. Harinarayan, and D. Quass. Aggregate-query pro-
cessing in data warehousing environments. In VLDB, pages 358–
369, 1995.

[10] P. J. Haas, J. E. Lumby, and C. P. Zuzarte. Selectivity estimation for
processing sql queries containing having clauses, 2004. US Patent
6,778,976.

[11] H. Herodotou. Hadoop performance models. arXiv preprint
arXiv:1106.0940, 2011.

[12] K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and B. Moon. Parallel
data processing with mapreduce: a survey. ACM SIGMOD Record,
40(4):11–20, 2012.

[13] M. T. Özsu and P. Valduriez. Principles of distributed database
systems. 2011.

[14] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Mad-
den, and M. Stonebraker. A comparison of approaches to large-
scale data analysis. In SIGMOD, pages 165–178, 2009.

[15] G. Piatetsky-Shapiro and C. Connell. Accurate estimation of the
number of tuples satisfying a condition. ACM SIGMOD Record,
14(2):256–276, 1984.

[16] M. Poess and C. Floyd. New tpc benchmarks for decision support
and web commerce. ACM Sigmod Record, 29(4):64–71, 2000.

[17] J. Pullokkaran. Introducing cost based optimizer to apache hive.
https://cwiki.apache.org/confluence/download/attachments/
27362075/CBO-2.pdf. Online; accessed 18 dEC. 2017.

[18] H. Ron and W. Zhenhua. Design specification of spark cost-based
optimization. https://issues.apache.org/jira/browse/SPARK-
16026. Online; accessed 18 May 2018.

[19] M. T. Roth, L. M. Haas, and F. Ozcan. Cost models do matter:
Providing cost information for diverse data sources in a federated system.
IBM Thomas J. Watson Research Division, 1999.

[20] P. G. Selinger and M. E. Adiba. Access path selection in distributed
database management systems. In ICOD, pages 204–215, 1980.

[21] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie,
and T. G. Price. Access path selection in a relational database
management system. In SIGMOD, pages 23–34, 1979.

[22] J. Shi, Y. Qiu, U. F. Minhas, L. Jiao, C. Wang, B. Reinwald, and
F. Özcan. Clash of the titans: Mapreduce vs. spark for large scale
data analytics. PVLDB, 8(13):2110–2121, 2015.

[23] A. Swami and K. B. Schiefer. On the estimation of join result sizes.
In EDBT, pages 287–300, 1994.

[24] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,
H. Liu, P. Wyckoff, and R. Murthy. Hive: a warehousing solution
over a map-reduce framework. PVLDB, 2(2):1626–1629, 2009.

[25] E. Vianna, G. Comarela, T. Pontes, J. Almeida, V. Almeida,
K. Wilkinson, H. Kuno, and U. Dayal. Analytical performance
models for mapreduce workloads. International Journal of Parallel
Programming, 41(4):495–525, 2013.

[26] N. J. Yadwadkar, G. Ananthanarayanan, and R. Katz. Wrangler:
Predictable and faster jobs using fewer resources. In Proceedings of
the ACM Symposium on Cloud Computing, pages 1–14. ACM, 2014.

[27] M. Zaharia. An architecture for fast and general data processing on
large clusters. Morgan & Claypool, 2016.

Lorenzo Baldacci received the PhD degree in
2007, and from 2013 to 2016, he was a re-
searcher at DISI, University of Bologna. He has
been publishing in refereed journals and interna-
tional conferences in the fields of pattern recog-
nition, business intelligence, and bioinformatics.
His main research interests are in Business In-
telligence and Data Warehousing, and Big Data
Analytics.

Matteo Golfarelli is Associate Professor at the
University of Bologna teaching Information Sys-
tems and Data Mining. His researches in the
Business Intelligence area covered most of the
design issues related to Data Warehouse sys-
tems. He is co-author of the book Data Ware-
house Design: Modern Principles and Method-
ologies. His current research interests include
Business Intelligence on non-conventional data
and Big Data Analytics.

