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Table S1 Absolute energies of the CS and BS equilibrium structures for the systems investigated. The

functional used in the calulations is indicatd in each column, the basis set is 6-31G*

molecule CS B3LYP BS B3LYP CS CAM-B3LYP | BS CAM-B3LYP
2T10 -1716.112835 -1716.114497 -1715.587518 -1715.599069
QDTBDT -2654.823343 -2654.826237 -2654.205229 -2654.221908
FP -1460.135601 -1460.141536 -1459.271501 -1459.289888
DFB -1919.852877 -1919.857490 -1918.738459 -1918.752805
BISPHE -1382.737494 -1382.743254 -1381.914852 -1381.939840
TPQ -1447.944339 -1447.952670 -1447.121301 -1447.148836
SHZ -1535.228557 -1535.240897 -1534.329870 -1534.361897
QANTHENE -2147.467558 -2147.481580 -2146.230673 -2146.264864

Table S2 Tetraradical character computed at different levels of theory (PUHF and PUDFT) for CS and

BS optimized structures of the systems investigated. The basis set is 6-31G*

y: PUHF
Geometry—> | CS CAM-B3LYP | CS-B3LYP | BS UCAM-B3LYP | BS UB3LYP
2T10 0.10 0.11 0.09 0.11

QDTBDT 0.05 0.05 0.04 0.05
FP 0.15 0.17 0.16 0.17
DFB 0.14 0.19 0.19 0.20
BISPHE 0.06 0.06 0.02 0.02
TPQ 0.14 0.14 0.10 0.12
SHZ 0.22 0.24 0.25 0.26
QANTHENE 0.16 0.16 0.14 0.15
y: PUCAM | y; PUB3LYP y: PUCAM y: PUB3LYP
Geometry—> | CS CAM-B3LYP | CS-B3LYP | BS UCAM-B3LYP | BS UB3LYP
2T10 0.00 0.00 0.00 0.00
QDTBDT 0.00 0.00 0.00 0.00
FP 0.00 0.00 0.00 0.00
DFB 0.00 0.00 0.00 0.00
BISPHE 0.00 0.00 0.00 0.00
TPQ 0.00 0.00 0.00 0.00
SHZ 0.01 0.00 0.01 0.00
QANTHENE 0.00 0.00 0.00 0.00
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Table S3 Computed number of unpaired electrons N, at different levels of theory for CS and BS

optimized structures of the systems investigated. The basis set is 6-31G*

N,,(UHF)
Geometry—> | CS CAM-B3LYP | CSB3LYP |BSUCAM-B3LYP | BS UB3LYP
2T10 3.83 4.12 4.21 4.27
QDTBDT 3.57 3.86 3.86 3.98
FP 5,66 6.02 5.98 6.15
DFB 6.49 7.81 7.68 7.95
BISPHE 545 5,66 4.68 4.80
TPQ 5,03 5.38 5.20 5.44
SHZ 6.92 7.19 7.13 7.29
QANTHENE 9.12 9.42 9.17 9.44

N, (UCAM) |N,(UB3LYP)| N,UCAM) |N,(UB3LYP)
Geometry— | CS CAM-B3LYP | CSB3LYP | BS UCAM-B3LYP | BS UB3LYP

2T10 0.87 0.41 1.73 0.84
QDTBDT 1.15 0.62 1.64 0.91
FP 1.33 0.93 1.93 1.34
DFB 1.34 0.91 1.88 1.31
BISPHE 1.65 1.06 1.81 1.18
TPQ 1.54 1.10 1.96 1.43
SHZ 1.96 1.50 2.23 1.67
QANTHENE 2.08 1.68 2.23 1.82
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Table S4 Overlap (S) between BS frontier molecular orbitals (H, Hg L, Lpg) obtained from

UB3LYP/6-31G* calculations for the singlet open-shell configuration, along with the diradical character

computed at PUHF and PUB3LYP levels. All the data are computed employing the BS UB3LYP/6-

31G™* optimized geometry.

Yo PUHF Yo PUB3LYP S(HaHp) S(Lalp) S(HaLp)
and

S(HpLo)
2TIO 0.67 0.10 0,57 -0,62 0,77
QDTBDT 0.68 0.14 0,52 -0,58 0,81
FP 0.80 0.34 0,26 -0,39 0,88
DFB 0.80 0.30 0,23 -0,42 -0,87
BISPHE 0.85 0.26 -0,41 0,46 0,89
TPQ 0.86 0.42 0,14 -0,34 0,89
SHZ 0.87 0.52 -0,23 0,26 0,96
QANTHENE 0.92 0.71 -0,11 0,14 0,96
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Table S5 Excited electronic states from TDB3LYP/6-31G* calculations at geometries optimized with
the CAM-B3LYP functional. The reference configuration was a restricted or unrestricted configuration
as indicated. The double exciton state is identified only in TDUB3LYP (unrestricet open-shell singlet

reference configuration) and SF TDUB3LYP (unrestricet open-shell triplet reference configuration)

Excited state (H-L) (H—L) (H-L) (H-L)
character —
Type of calculation | TD-B3LYP/6-31G* TD-B3LYP/6-31G* | TD-UB3LYP/6-31G* exp
%
Geometry — CS CAM-B3LYP BS UCAM-B3LYP BS UCAM-B3LYP
2TI10 2.09 1.66 1.80 1.88°
QDTBDT 1.97 1.71 1.72-1.79 1.85°
FP 1.61 1.30 1.53 1.48°
DFB 1.22 1.00 1.16 1.25¢
BISPHE 1.41 1.34 1.47 1.43"
TPQ 1.74 1.39 1.49 1.46°
SHZ 1.21 1.00 1.49 1.50"
QANTHENE 0.96 0.75 1.20 1.35'
Excited state (HH-L,L) (HH-L,L) (HH-L,L)
character —
Type of calculation | TD-UB3LYP/6-31G* SF TD-B3LYP/6- exp
N 31G*
Geometry — BS UCAM-B3LYP BS UCAM-B3LYP
2TIO 1.14 1.41 1.68°
QDTBDT 1.15 1.57 1.57°
FP 1.18 1.04 1.13¢
DFB 0.93 0.86 0.92°
BISPHE 1.07 1.24 1.54"
TPQ 1.21 1.01 1.138
SHZ 1.33 0.98 1.19"
QANTHENE 0.94 0.76 1.08'

* Geometry optimized at CAM-B3LYP/6-31G* (CS) or UCAM-B3LYP/6-31G* (BS) levels of theory;
°In n-hexane from ref. [1]; “Measured in CHCl; from ref. [2]; “In CH,Cl,, from ref. [3]; In CH,Cl, from
ref. [4]; Tn CHCLs, from ref [5] ®8Measured in CH,Cl, from ref. [6]; "In CH,Cl, from ref. [7]; 'In CH,CL
from ref. [8].
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Table S6 Computed TD-UB3LYP excitation energies, S°, wf composition, oscillator strength of the
strongly one-photon active excited state (single exciton state or (H—L)) and the available experimental

data for the systems investigated.

Excited state (H—L)?
character —»
yo PUB3LYP E(eV) 5 wi f ExpleV
2710 0.10 1.81 0.70 0.57Ha —La; 0.883 1.88"
-0.57HP —>LB
0.14 1.81 0.40 0.55Ha —La; 0.567 1.85°
QDTBDT -0.55Hp —>LB
Fp 0.34 1.51 0.35 0.67Ha —La; 0.617 1.48°
-0.67Hp —>Lp
DEB 0.30 1.13 0.79 0.58Ha —La; 0.177 1.25°
-0.58Hp —>Lp f
0.26 1.47 0.04 0.70Ha —La; 0.552 1.43
BISPHE -0.70Hp —>Lp
TPO 0.42 1.48 0.39 0.68Ha —La; 1.234 1.46°
-0.68HP —>Lp
SHZ 0.52 1.49 0.44 0.62Ha —Lo; 0.086 1.50"
-0.62Hp —>Lp
0.71 1.28 0.18 0.71Ho —»La; 0.124 1.35'
QANTHENE 0.71HB L

* Geometry optimized at UB3LYP/6-31G* (BS) levels of theory; °In n-hexane from ref. [1]; “Measured
in CHCl; from ref. [2]; “In CH,CL,, from ref. [3]; °In CH,Cl, from ref. [4]; Tn CHCls, from ref [5]
EMeasured in CH,Cl, from ref. [6]; "In CH,Cl, from ref. [7]; 'Tn CH,Cl, from ref. [8].

S6




Table S7 Computed TD-UB3LYP excitation energies, S°, wf composition, oscillator strength of the

one-photon forbidden excited state (double exciton state or (H,H—L,L)) for the systems investigated.

Excited state (HH—-L,L)?
character —
yo PUB3LYP E(eV) 5 wi f ExpleV
2710 0.10 0.98 0.68 0.70Ha —La; 0.000 1.68"
0.70Hp —Lp
0.14 1.07 0.48 0.70Ha —La; 0.000 1.57°
QDTBDT 0.70Hp —>Lp
P 0.34 1.13 0.38 0.69Ha —La; 0.000 1.13°
0.69HP —Lp
DEB 0.30 0.91 0.42 0.70Ha —La; 0.001 0.92°
0.70Hp —Lp f
0.26 1.03 0.38 0.70Ha —La; 0.000 1.54
BISPHE 0.70Hp —>Lp
TPO 0.42 1.16 0.35 0.69Ha —La; 0.000 1.13°
0.69HP —>Lp
SHZ 0.52 1.32 0.35 0.62Ha —La; 0.000 1.19"
0.62Hp —>Lp
0.71 1.17 0.30 0.69Ha —La; 0.000 1.08'
QANTHENE 0.69HB —>LB

* Geometry optimized at CAM-B3LYP/6-31G* (CS) or UCAM-B3LYP/6-31G* (BS) levels of theory;
®In n-hexane from ref. [1]; “Measured in CHCI; from ref. [2]; 9In CH,Cl,, from ref. [3]; “In CH,Cl, from
ref. [4]; In CHCl;, from ref [5] ®Measured in CH,Cl, from ref. [6]; n CH,Cl, from ref. [7]; 'ITn CH,Cl,

from ref. [8].
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Figure S1. 2TIO: (top) CS and BS equilibrium structures from B3LYP/6-31G* calculations, (bottom)

CS and BS equilibrium structures from CAM-B3LYP/6-31G* calculations
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Figure S2. QDTBT: (top) CS and BS equilibrium structures from B3LYP/6-31G* calculations,
(bottom) CS and BS equilibrium structures from CAM-B3LYP/6-31G* calculations

B3LYP
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Figure S3. FP: (top) CS and BS equilibrium structures from B3LYP/6-31G* calculations, (bottom) CS
and BS equilibrium structures from CAM-B3LYP/6-31G* calculations
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Figure S4. DFB: (top) CS and BS equilibrium structures from B3LYP/6-31G* calculations, (bottom)
CS and BS equilibrium structures from CAM-B3LYP/6-31G* calculations
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Figure S5. BISPHE: (top) CS and BS equilibrium structures from B3LYP/6-31G* calculations,
(bottom) CS and BS equilibrium structures from CAM-B3LYP/6-31G* calculations
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B3LYP

Figure S6. TPQ (top) CS and BS equilibrium structures from B3LYP/6-31G* calculations, (bottom) CS
and BS equilibrium structures from CAM-B3LYP/6-31G* calculations
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Figure S7. SHZ: (left) CS and BS equilibrium structures from B3LYP/6-31G* calculations, (right) CS
and BS equilibrium structures from CAM-B3LYP/6-31G* calculations
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Figure S8. QANTHENE: (left) CS and BS equilibrium structures from B3LYP/6-31G* calculations,
(right) CS and BS equilibrium structures from CAM-B3LYP/6-31G* calculations
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Figure S9. Correlation between the y, value computed at PUHF (green squares) or PUCAM-B3LYP
(red squares) level and the computed stabilization of the BS structure with respect to the CS structure,

both optimized at CAM-B3LYP/6-31G* level.
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Figure S10. Frontier molecular orbitals of 2TIO computed with (top) a CS singlet reference

configuration, (middle) a BS singlet open-shell configuration and (bottom) a triplet configuration, at the
optimized BS UB3LYP geometry of the singlet ground state (y,(PUHF) = 0.67). Each localized

orbital (BS) is also expressed as a linear combination of the delocalized (CS) orbitals.
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Figure S11. Frontier molecular orbitals of QDTBDT computed with (top) a CS singlet reference
configuration, (middle) a BS singlet open-shell configuration and (bottom) a triplet configuration, at the
optimized BS UB3LYP geometry of the singlet ground state (y,(PUHF) = 0.71). Each localized

orbital (BS) is also expressed as a linear combination of the delocalized (CS) orbitals.
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Figure S12. Frontier molecular orbitals of FP computed with (top) a CS singlet reference configuration,

(middle) a BS singlet open-shell configuration and (bottom) a triplet configuration, at the optimized BS

UB3LYP geometry of the singlet ground state (y,(PUHF) = 0.80). Each localized orbital (BS) is
also expressed as a linear combination of the delocalized (CS) orbitals.
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Figure S13. Frontier molecular orbitals of DFB computed with (top) a CS singlet reference
configuration, (middle) a BS singlet open-shell configuration and (bottom) a triplet configuration, at the
optimized BS UB3LYP geometry of the singlet ground state (y,(PUHF) = 0.80). Each localized

orbital (BS) is also expressed as a linear combination of the delocalized (CS) orbitals.
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Figure S14. Frontier molecular orbitals of BISPHE computed with (top) a CS singlet reference
configuration, (middle) a BS singlet open-shell configuration and (bottom) a triplet configuration, at the
optimized BS UB3LYP geometry of the singlet ground state (y,(PUHF) = 0.85). Each localized

orbital (BS) is also expressed as a linear combination of the delocalized (CS) orbitals.
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Figure S15. Frontier molecular orbitals of TPQ computed with (top) a CS singlet reference
configuration, (middle) a BS singlet open-shell configuration and (bottom) a triplet configuration, at the
optimized BS UB3LYP geometry of the singlet ground state (y,(PUHF) = 0.86). Each localized

orbital (BS) is also expressed as a linear combination of the delocalized (CS) orbitals.
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