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Abstract—Broadband current sensors are key components

in numerous applications including power conversion, motor

control, and smart-metering. We present a compressive sensing

(CS) current sensor system-on-chip (SoC) designed and fabri-

cated in STM 0.16µm BCD technology. The SoC is capable of

measuring currents with amplitudes of up to 10 A peak with a

sensing bandwidth of 1 MHz. Two broadband current sensing

cores, each consisting of a Hall-effect probe, an AFE, and a

2 MS/s 9-bit ADC, are monolithically integrated together with

a digital multi-mode compressive sensing encoder (DCSE) for

data-rate reduction. We focus on the evaluation of CS as data

compression codec for current sensing applications and on the

details of the DCSE architecture designed for general purpose

use. We introduce multi-block decoding that is a decoding

modality to improve the reconstruction quality of “off–grid

sparse” signals commonly occurring in practice. Moreover, we

provide measurements of both the compression performance

and power consumption of the SoC employed in two exemplary

real-world applications; namely, sparse current sensing, and

electrical appliance detection for non-intrusive load monitoring

based on compressive measurements.

Index Terms—Hall sensor, current sensor, SoC, compressive

sensing, non-uniform sampling, non-intrusive load monitoring

I. INTRODUCTION

C
URRENT-SENSING applications, such as power con-
version, motor control, and smart-metering require

small, cost- and energy-efficient current sensor devices of-
fering a large sensing bandwidth up to the MHz range.
As a consequence, data transfer rates of several Mbits per
second need to be sustained, typically relying on serial data
protocols.

In many practical applications, the effective signal band-
width is considerably smaller than the sensing bandwidth [1],
which allows the measured signal to be sparsely represented,
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Switzerland (e-mail: {bellasi, benini}@iis.ee.ethz.ch).

L. Benini is also with the Department of Electrical, Electronic, and
Information Engineering (DEI), University of Bologna, 40131 Bologna, Italy
(e-mail: luca.benini@unibo.it).

M. Crescentini, A. Romani, and M. Tartagni are with the Advanced
Research Centre on Electronic Systems (ARCES) and with the Department
of Electrical, Electronic, and Information Engineering (DEI), University of
Bologna, 47521 Cesena, Italy (e-mail: {marco.crescentini3, aldo.romani,
marco.tartagni}@unibo.it).

D. Cristaudo is with STMicroelectronics, 95121 Catania CT, Italy (e-mail:
domenico.cristaudo@st.com)

This work was financed in part by the Swiss National Science Foundation
projects No. 162524 and No. 157048. Part of this work has received funding
from the ECSEL Joint Undertaking (JU) under grant agreement No. 737434.
This JU receives support from the European Union’s Horizon 2020 research
and innovation programme and Germany, Slovakia, Netherlands, Spain,
Italy. This work reflects only the authors’ view and the JU is not responsible
for any use that may be made of the information it contains.

e.g., in the discrete Fourier or wavelet domain. In this case,
data compression based on compressive sensing (CS) [2]
can successfully be leveraged to reduce the interface data-
rate between the sensor device and any down-stream data
processing unit.

Data compression based on CS is generally lossy and both
the recovery quality and the compression factor are signal-
dependent. Yet, it has been noted that CS offers several
advantages with respect to conventional data compression
methods, such as the facts that CS is a highly asymmetric
codec in which the encoding stage has a particularly low
hardware complexity, and that no a-priori knowledge of the
signal statistics is required to achieve data compression.
These properties make CS an interesting data compression
method for remote sensing applications, where the sensor
data is primarily processed at a central data collection point
with little constraints in computing power.

The application of CS was first considered in high-rate
applications, such as radio-frequency communication, radar
and high resolution imaging. The idea of applying CS in
the context of digital data compression in low-rate sensors is
relatively new, and only a handful of integrated CS encoder
implementations have been reported in the literature so far.
The majority of these encoders were conceived for single-
mode encoding of biomedical signals [3]–[10].

In this paper, we elaborate on the practical aspects of real-
izing a CS-based data compression codec for current sensing
applications and present a digital multi-mode compressive
sensing encoder (DCSE) that was fabricated as integral part
of a 2 MS/s, 10 A peak, current sensor system-on-chip (SoC).
The SoC was realized in a 0.16 mm BCD process using
CMOS devices only, and combines two Hall-effect probes,
two analog front-ends (AFEs), two 9-bit analog-to-digital
converters (ADCs), and the DCSE on a single die [11]. To
the best of our knowledge, this SoC is the first CS-enabled
current sensor reported in the open literature.

The SoC was designed and implemented for general pur-
pose broadband current sensing applications, including—but
not limited to—smart metering for non-intrusive load mon-
itoring and over-current protection in fast-switching power
circuits requiring the detection of fast current spikes. In
both cases, the detection of current signals with amplitudes
up to 10 A peak with at least 6 bit of resolution and with
bandwidths up to 1 MHz is required. Typical current sensors
based on CMOS Hall sensors are limited to a few hundred
kHz [12]–[14]. Our SoC distinguishes itself from prior cur-
rent sensors by achieving a large bandwidth of 1 MHz, and
from prior CS systems by supporting multi-mode encoding
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including hardware sample skipping. The DCSE not only
supports encoding based on random modulation (RM) [15],
but also allows other modes to be realized, such as random
filtering [16], modes based on sample-skipping like non-
uniform sampling (NUS) [2], and more advanced modes
aimed at compressive signal processing [17]. The multi-mode
capability of the encoder provides the necessary flexibility
to reduce the data-rate in the acquisition of a wide range of
sparse current signals.

A. Contributions

Our contributions can be summarized as follows:
1) We provide a detailed description of the digital multi-
mode CS encoder and pertaining measurement results from
our CS current sensor SoC prototype. This work comple-
ments [11], where our SoC has been unveiled already, but
was only summarily presented.
2) We elaborate on CS as a data compression codec, and
discuss practical aspects of different encoding modes. In
particular, non-uniform sampling is confronted with random
modulation in terms of quality/compression trade-off and
power consumption, and hardware sample-skipping is dis-
cussed.
3) We address the problem of ”off-grid sparsity” that is
often encountered in practice and results in lower-than-
expected reconstruction quality; specifically, we propose a
multi-block decoding method that increases the resolution of
the sparsifying basis without burdening the encoder hardware
with a larger blocksize.
4) We present end-to-end tests and measurement results of
our CS-enabled current sensor SoC prototype employed in
two real-world application scenarios, one of which is the first
implementation of a smart utility meter for non-intrusive load
monitoring employing CS-based load-disambiguation.

B. Paper Outline

The rest of the paper is organized as follows: We start
with a review of the compressive sensing basics, followed
by a discussion of the encoding modes most relevant for
integrated CS encoders in Section II. A detailed description
of the CS current sensor SoC is provided in Section III, while
in Section IV the corresponding implementation results are
reported. In Section V we report the performance results
of the fabricated prototype evaluated in two exemplary
application examples. Section VI concludes the discussion
with a small summary.

II. COMPRESSIVE SENSING-BASED DATA COMPRESSION

In this section, we briefly review the basics of CS and
discuss its application as digital data compression codec.
Then, we detail the CS encoding modes most suitable for the
implementation in integrated hardware, and finally, introduce
the multi-block encoding method to mitigate the effects of
off-grid sparsity.

A. The CS Codec

CS can achieve data compression by linearly projecting an
N -dimensional signal vector x 2 RN into an M -dimensional
subspace (M < N ) [18], [19]. The linear projections, called
CS measurements, are obtained as follows:

y = �x+ n, (1)

where � 2 RM⇥N is the measurement matrix and n 2 RM

is additive measurement noise.1

CS can be understood as a data coder-decoder (codec) in
which (1) describes the encoding stage. The decoding stage
has the task of reconstructing the original signal vector x
from the measurements y. Generally, (1) can not be inverted
unambiguously, since the inverse problem—recovery of x
from y—is ill-posed. To make reconstruction possible, CS
leverages the fact that signal compression is possible if
the signal is sparsely representable in some basis or frame
 2 CN⇥P with P � N , such that

x =  ↵, (2)

where the majority of coefficients in ↵ 2 CP is zero. Under
this condition, by solving the convex optimization problem

minimize k↵k1 subject to ky �D↵k2 < ✏, (3)

x can be recovered from y via (2), provided that the
combined measurement matrix D = � fulfills certain
mathematical properties related to the number of non-zero
coefficients in ↵ [19], [20]. The reconstruction tolerance ✏
(an arbitrary non-negative number) renders the optimization
problem feasible in the presence of measurement noise. It
can be shown that (3) finds the sparsest ↵ that is consistent
with the measurements, and that this very ↵ is the unique
solution to the recovery problem [18].

The signal x is said to be -sparse if k↵k0  , i.e., ↵
has at most  non-zero entries. Natural signals are typically
not exactly sparse, but can often be approximated by an ex-
actly -sparse vector ↵k, such that kx� ↵kk1 < � for an
arbitrary non-negative �. In the latter case, the combination
of (3) and (2) yields an approximation of x.

The task of the decoding stage consists of solving (3)
which requires sophisticated reconstruction algorithms either
based on L1-minimization or greedy heuristics [21]. The
computational complexity of the decoding stage is therefore
considerably larger than that of the encoding stage, which
makes the CS codec extremely asymmetrical in this sense.
In remote sensing applications, there is typically no need
to process or display the raw time-domain signal in the
same place where the signal is acquired. The cost of a
computationally intensive decoder stage is acceptable in
such applications, because decoding is performed only at
the receiving end of the remote link where the necessary
computing power is readily available.

1We remark that we assume finite-dimensional discrete-time signals, since
our aim is to provide a mathematical description relevant for our hardware
implementation of CS-based data compression.
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B. Quality/Compression Trade-Off

The compression performance can be quantified by the
compression factor (CF) defined as the ratio between the
total number of bits that enter the encoder and the number
of bits that are produced by the encoder in response to that
input:

CF = (BN)/(QM), (4)

where N and M are the number of signal samples and
resulting CS measurements, respectively, while B and Q
are the resolution in bits of a signal sample and of a CS
measurement, respectively.

Naturally, M must be larger than  for CS encoding to
preserve the signal information (at least approximately). Yet,
M not only depends on the sparsity but also on the degree
of coherence between the measurement operator � and the
sparsifying basis  [22]. The coherence is a measure for
how sparsely the columns of  can be represented with the
rows of � and vice versa. In general, the lower the coherence
the lower the minimum number of measurements necessary
to achieve a certain reconstruction quality.

Measurement matrices obtained from selecting random
vectors independently from a probability distribution have
an optimally low coherence with any fixed sparsifying ba-
sis with overwhelming probability [2]. In this sense such
measurement matrices are considered a universal sampling
modality. Under such conditions, it was shown that

M = O( log(N/)) (5)

measurements suffice for stable recovery of x from the noisy
measurements y [19], [20].

Since the CF is proportional to the ratio N/M , the choice
of M is critical in determining the quality/compression trade-
off of the CS codec. In practice, the number of measurements
M—and thus the CF—necessary to achieve a certain recon-
struction quality must be determined empirically.

C. Encoding Modes

To extend a sensor system with CS-based data compres-
sion capabilities requires the addition of a CS encoder, i.e.,
a piece of hardware to calculate the matrix–vector–product
described by (1). CS encoding can be realized at different
points in the signal acquisition chain. The most frequently
considered options are: Encoding between sensor and A/D
conversion based on analog signal processing (analog CS),
and encoding after A/D conversion using digital signal pro-
cessing (digital CS). Both the analyses in [9] and [15] showed
that—due to the large difference in power and area cost be-
tween analog and digital signal processing—digital CS is the
more cost- and energy-efficient solution under the conditions
typically encountered in remote sensing applications. Thus,
the following discussion will be concerned with digital CS
in which the signal x consists of digital samples obtained
from uniformly sampling, conditioning (i.e., amplifying and
filtering), and digitizing the signal from the sensor.

Irrespective of the encoding domain, the hardware com-
plexity and power consumption of a CS encoder are largely

{-1,1} RM-HSS NUS-HSS

{-1,1} RM NUS

Fig. 1. Examples of � matrices corresponding to different encoding modes.
The blank squares represent the coefficient value zero.

influenced by the type of measurement matrix �, its di-
mensions (M and N ), and the required degree of config-
urability. In addition, the choice of � also affects the qual-
ity/compression trade-off of the codec and defines different
encoding modalities. The most common encoding modalities
are discussed in the following:

1) Random-Modulation: Measurement matrices with en-
tries randomly chosen from a probability distribution work
well with any kind of sparsifying basis. The corresponding
mode is known as random-modulation (RM) since the CS
measurements are inner-products between the input signal
vector and the random vectors formed by the rows of �.

The basic arithmetic operation required for RM is the
multiply–accumulate (MAC) operation, whose hardware
complexity and power consumption largely depend on the
numeric values occurring in �. Bounds on the reconstruc-
tion quality have been formally derived for real-valued and
discrete (sub-)Gaussian distributions, and in particular also
for binary-valued (±1 or {0,1}) random matrices that allow
the MAC operations to be realized without multipliers, based
on adders alone. This circumstance and the observation that
binary-valued RM yields virtually the same reconstruction
quality as multi-valued RM (see, Section V-A) is the main
reason for binary-valued RM being the most frequently
considered CS mode in practice (e.g., in [4], [6]–[10]). An
illustrative example of an RM-type binary-valued measure-
ment matrix is shown in Figure 1 with the coefficient values
displayed as different shades (colors).

In any case, RM measurement coefficients can either be
provided by (on-chip) memory—such as ROM or RAM—or
can be generated on-chip via a pseudo-random number gen-
erator, e.g., based on linear-feedback shift-registers (LFSR).
RAM-based solutions offer user-configurability and allow
encoding with structured measurement matrices, but have a
higher area and power cost. Solutions based on LFSRs are
most area- and power-efficient but produce fixed sequence(s)
of coefficients. In any case, some form of digital memory is
required to hold the intermediate and final CS measurements.

2) Non-Uniform Sampling: Non-uniform sampling (NUS)
is a CS encoding mode in which � is obtained by randomly
selecting M rows from the N ⇥N identity matrix I. Since�
is a {0, 1}-coefficient matrix where each row only contains
a single 1 in a random location (see Figure 1), it is highly
coherent with the identity matrix and the reconstruction
of (approximately) time-sparse signals is very unlikely to
succeed. This may be the reason why NUS is only very
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rarely considered in the CS literature. Yet, in many practical
situations, the signals of interest are sparse in other domains
that have a sufficiently low coherence with the identity matrix
(e.g., Fourier-domain or wavelet-domain).

NUS-type encoding is equivalent to picking at random M
of the possible N samples from the signal vector. Therefore
no MAC operations are required in this mode, leading to a
particularly low hardware complexity [15]. Same as in the
RM mode, depending on the desired degree of programma-
bility, the measurement coefficients for NUS can either be
generated via an LFSR [23] or retrieved from RAM (the
RAM size required in NUS is only a fraction of the one
required for RM).

3) Sample-Skipping: If the measurement matrix contains
all-zero columns, the signal samples at the corresponding
position in the signal vector are not required in the encoding
process, which allows these samples to be skipped. Sample-
skipping (SS) can naturally be employed in the NUS en-
coding mode, but can be enforced in any other encoding
mode as well; simply by zeroing complete columns of
the measurement matrix. Examples of such measurement
matrices are shown in the second row of Figure 1. Suc-
cessful reconstruction of SS-encoded signals depends on the
sparsity-domain being sufficiently incoherent with the time-
domain (i.e., sufficiently low coherence between  and I).

If the acquisition font-end is prevented from actually
taking these samples, a significant reduction in the power
consumption of a sensor is possible [15]. In the following,
this hardware feature will be referred to as hardware sample-
skipping (HSS) to emphasize the difference to simply multi-
plying the samples with zero during the encoding process. It
is worth emphasizing that, HSS achieves both an A/D con-
version rate and sampling rate reduction, whereas in standard
RM-type encoding the signal is sampled and processed at the
Nyquist rate in both digital and analog CS.

D. Multi-Block Decoding
Although CS acquisition and reconstruction can be de-

signed with a certain degree of independence from each
other, certain aspects of CS reconstruction must be taken into
account in the design of the acquisition hardware and/or the
design of the CS codec as a whole. One such aspect is related
to CS reconstruction being performed on a per-block basis,
i.e., consecutive blocks of N signal samples are reconstructed
from their respective M CS measurements. Hardware design
constraints such as power budget or hardware cost limit the
maximum blocksize which is rarely larger than a thousand
in practice [3]–[10]. A limited blocksize in combination
with a large sensor bandwidth (i.e., a large sampling rate)
can prevent a signal from being sparsely representable in
 , despite being characterized by only a small number of
degrees of freedom. Following [24], such a signal may be
described as off–grid sparse.

1) Off–Grid Sparsity: We illustrate the problem of off–
grid sparsity with an example considering the DFT (discrete
Fourier transform) as sparsifying transform. The top graph
in Figure 2 shows the DFT-spectrum of N=500 samples from
a signal with a 300 kHz and a 400 kHz frequency component
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Fig. 2. The effect of off-grid tones on the single-sided DFT-spectrum:
(top) on-grid tone at 400.0 kHz. (middle) off-grid tone at 400.4 kHz. (top)
A 10-times larger blocksize brings the 400.4 kHz tone onto the grid again.

acquired at 2 MS/s. Both signal frequencies coincide with
the frequency of atoms in the DFT matrix, resulting in a
perfectly sparse spectrum corresponding to the exactly 2-
sparse signal2.

The middle graph shows the spectrum of a signal with
a 300 kHz and a 400.4 kHz component, acquired under the
same conditions as in the first case. Although this signal is
also exactly 2-sparse, the DFT-spectrum is not. The frequen-
cies of the atoms in the DFT-matrix are integer multiples
of fs/N Hz (i.e., 4 kHz in the example), none of which
coincides with the 400.4 kHz signal component. Therefore,
the second signal qualifies as off–grid sparse.

Off-grid sparse signals have similar properties as approx-
imately sparse signals, including a considerably reduced
reconstruction quality [15], [25], [26]. Off-grid sparsity
manifests itself as (spectral) leakage which is typical for
representations of physical signals in finite discrete dictio-
naries. Therefore, it is an issue not only encountered in
the DFT domain, but in other discrete transform domains
as well [27]. Although extensions of the CS framework to
handle continuous signal support were proposed [24], [26],
[28], [29], they are based of parametrizing the sparsifying
dictionary, which requires the decoding procedure to infer
the sparsifying dictionary in the process of reconstructing
the signal. The corresponding reconstruction procedure is
naturally much more complex compared to standard CS
where the dictionary is known.

In practical systems, some form of discretization has to be
accepted. Therefore, leakage cannot be avoided entirely [30],
but it can be brought to an acceptable level (e.g., below the
quantization noise in digital signal processing systems). A
straightforward solution is to increase the number of signal
samples per block at a given sampling rate, which makes the
frequency grid denser and therefore the resolution finer.

The graph at the bottom of Figure 2 again shows a spec-
trum of the same signal with the 300 kHz and the 400.4 kHz
components, sampled at the same rate as before. However,

2According to the definition of -sparsity given in Section II-A a real-
valued two-tone signal would qualify as 4-sparse signal since its DFT has
four non-zero complex coefficients. However, due to the redundancy of the
DFT two of these coefficients are enough to fully characterize such a signal.
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the blocksize was increased 10-times, leading to the DFT
having 10 times more atoms with a 10-times finer frequency
spacing. In this case, each of the two signal frequencies
coincides with one of these atoms, resulting again in an
exactly sparse spectrum, as in the first example.

Increasing the blocksize is not desirable in the encoder,
where the hardware complexity and the power consumption
depend on it. Instead, we propose multi-block decoding
(MBD) that increases the blocksize in the decoding stage,
avoids the need to deal with an infinite signal support, and
allows the blocksize in the encoder to remain within practical
limits.

2) Multi-Block Decoding: MBD can be formally stated
as follows: B consecutive measurement vectors obtained
from the encoder are stacked into the column vector
vB = [y>

1 y>
2 · · · y>

B ]
>. Mathematically, vB is obtained via

vB = �BuB , (6)

where uB = [x>
1 x>

2 · · · x>
B ]

> is the column vector
stacking the samples from B compression blocks, and
�B = IB ⌦� is the multi-block measurement matrix that
is the Kronecker product between the identity matrix of size
B ⇥B and the M ⇥N measurement matrix used in the
encoder. Extending (3) correspondingly, a sequence of B ·N
consecutive samples can be reconstructed solving

minimize k↵k1 subject to kvB ��B B↵k2 < ✏, (7)

with  B 2 CB·N⇥P , and ↵ 2 CP⇥1.
Clearly, the compression factor remains the same for any

choice of B, but considering—e.g.—the (B ·N)⇥ (B ·N)
DFT matrix as sparsifying basis  B , it is easy to see that
the frequency spectrum ↵ has B⇥ more entries with respect
to single-block decoding, which results in a correspondingly
increased spectral resolution.

It is worth noting that MBD has no additional cost in
the encoder, but the size of the reconstruction problem in-
creases with increasing number of blocks. The reconstruction
problems occurring in this work are solved employing the
orthogonal matching pursuit (OMP) algorithm [31]. Based
on [31], one can show that the asymptotic computational
complexity of MBD solved in M iterations of OMP is
O(B2MN + BM4), which means that decoding B blocks
together using MBD can take up to B⇥ longer than decoding
them individually when M is small. However, the run-times
rapidly become equal with increasing M and up to a number
of multiblocks exponentially growing with M . Indeed, in
evaluations based on our reconstruction setup, consisting of
the OMP algorithm implemented in Matlab software running
on a general purpose PC, we found that the run-time was
roughly the same in both cases for the problem sizes that
occurred in the applications discussed in Section V.

In terms of related work, [26] should be mentioned,
where the use of a redundant DFT frame was proposed to
improve the spectral resolution in the single-block decoding
context. In contrast to MBD where orthogonal bases are
used, this approach increases the problem size only in one
dimension, but suffers from coherency problems resulting in
degrading performance with increasing number of blocks.

Considering the modest blocksizes encountered in practical
sensing applications and that the overall reconstruction time
is not necessarily affected by the use of MBD, it appears
reasonable to avoid such issues by using MBD instead.

CS formulations that aim at reconstructing a block-wise
encoded signal vector and share some similarity with MBD
are block CS (B-CS) [32] and the multi measurement vector
(MMV) approach [21]:
B-CS is aimed at speeding up the recovery by post-
processing a large signal vector that was encoded and de-
coded sub-block-wise. In both MBD and B-CS the effective
measurement operator is the Kronecker-product between an
identity matrix and the measurement matrix used to encode
the blocks, which leads to the same starting point for the
recovery. However, in B-CS, recovery is performed in two
stages of which the first consists of block-wise reconstruction
of the signal vector, which not only introduces blocking
artifacts, but also suffers from the effects of off-grid sparsity.
Such artifacts do not occur in MBD and the effects of off-grid
sparsity are mitigated by full-length signal reconstruction.
In MMV a number of measurement vectors—obtained from
individually encoding consecutive blocks of a signal vector—
is stacked in parallel to form a matrix. In contrast to MBD,
the reconstruction problem has the form of a matrix equation,
based on which the common support of the associated signal
vectors is recovered in a first step. The knowledge of this
support simplifies the reconstruction of the signal vector,
that is performed in a block-wise manner in a second step.
While MMV can improve the speed and robustness of the
reconstruction, it leaves the granularity of the sparsifying
basis unchanged, and therefore suffers from the effect of off-
grid sparsity to the same extent as single-block decoding.

III. HARDWARE ARCHITECTURE

The current sensor SoC monolithically integrates two
independent current sensing cores, two analog-to-digital con-
verters (ADCs), the digital multi-mode compressive sensing
encoder (DCSE), and a standard 4-wire serial peripheral in-
terface (SPI) for configuration and data transfer. A schematic
overview of the SoC is shown in Figure 3.

A. Current Sensing Cores

The current to be sensed is directly fed through the chip
via a copper strip realized in the top metal layer. The copper
strip has a minimum width of 180 mm, while eight 30 mm
thick copper bonding wires are used, enabling sensing of
currents up to 10 Apeak. The current is measured contact-
lessly by sensing its magnetic field based on two sensing
cores, each consisting of one octagonal Hall-effect probe, a
4-phase current spinning bias generator, and a discrete-time
analog front-end (AFE).

The Hall-effect probe is a magnetic sensor that—in
contrast to other sensor solutions, such as, e.g., resistive
shunts [33] or current transformers [34]—offers both low
insertion losses and ease of integration in standard CMOS
technology. The probes are placed symmetrically with re-
spect to the copper strip, such that the magnetic field lines
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act on the sensing cores with opposite signs; hence, differ-
ential measurement can be realized. In this way, common-
mode interference caused by the earth magnetic field or any
other magnetic field not symmetric with the copper strip is
canceled out. Temperature dependent sensitivity and offset
impairing the accuracy are disadvantages of the Hall-effect
probe. Although not implemented in the present version of
the SoC, different temperature compensation methods were
proposed to mitigate this drawback [35], [36]. Yet, in order
to dynamically cancel out the high intrinsic offset of the
Hall-effect probe, a fast 4-phase current-spinning technique
was implemented [37]. The application of current-spinning
to the octagonal Hall-effect probe is illustrated in Figure 3. It
requires the concurrent injection of two bias currents I1 and
I2 into adjacent bias contacts in each phase (e.g., B1 �B2),
so that the overall effective current (Itot = I1 + I2) flows
always along a diagonal axis of the probe. The magnetic
field lines traverse the probe perpendicular to the plane of
the probe, which results in a measurable potential difference
(i.e., the Hall voltage) in the plane and in the direction
perpendicular to the effective current, i.e., between two
opposite sense contacts (e.g., S2 � S4). In each of the 4
phases, the direction of one of the bias currents is inverted
such that the total effective current Itot is rotated in the
plane by 90 degree. Due to the discrete-time nature of this
offset-reduction technique, the spinning frequency fspin—
i.e. the frequency at which the bias current is rotated— limits
the Nyquist bandwidth to BW  fspin/8 [13]; thus, high

spinning-frequency is mandatory to achieve broadband sens-
ing. Since fspin is linked via the 4 phases to the main clock
frequency fclk by fspin = fclk/4, the Nyquist acquisition
bandwidth can be adapted to the application by changing
the main clock frequency. To achieve the target Nyquist
bandwidth BW = 1MHz, a main clock speed of 32MHz
was selected. This relationship between clock frequency and
Nyquist bandwidth can be exploited to trade-off bandwidth
for resolution [38] but does not affect the power consumption
of the sensing cores.

On the other hand, the analog bandwidth of the Hall-effect
probe is defined by the capacitive load seen by the probe,
which is primarily given by the input load of the AFE [39]–
[42]. To achieve the target bandwidth, an AFE with reduced
input capacitance was implemented [38]. The architecture
of the AFE is shown in Figure 3. It is subdivided into two
acquisition channels—channel A and channel B—that work
in time-interleaved fashion, and are controlled by the signals
�1,�2,�3,�4 that also control current-spinning.

The first stage of each channel is a non-inverting
differential difference amplifier (DDA) [43] with gain
G1 = (1 +R1/R2). The high input impedance and low
input capacitance of this stage (<1 pF) ensure broadband
operation of the Hall-effect probe. The second stage is a
switched capacitor circuit and serves the purposes of storing
the measured voltage during each spinning phase, and of
cancelling both the 1/f noise and the offset of the DDAs via
auto-zeroing. In the third stage, the output voltages of the two
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channels are summed-up, which cancels the intrinsic offset
of the Hall-effect probe. The resulting voltage VOUT is fed
to the ADC, and is proportional to the Hall voltage VH as
follows VOUT = 2G1G2VH , where G2 is the gain of the
third stage. A more detailed description of the Hall-effect
probe and the AFE can be found in [11], [38].

The conditioned Hall voltages from the two sensor cores
are digitized by two ADCs, one for each core. The ADCs are
instances of a 9-bit SAR ADC from a proprietary library, and
are operated at fclk. A single conversion requires 16 clock
cycles, resulting in a maximum sampling rate of 2 MS/s per
core.

B. Digital Multi-Mode CS Encoder
The digital multi-mode CS encoder (DCSE) implements

the CS encoding stage discussed in Section II-A. To allow
the current sensor SoC to be employed in the widest va-
riety of applications, the CS encoder is required to handle
different types of signals, possibly having varying degree
of sparsity and requiring different sparsifying bases. In
order to provide the necessary flexibility, the multi-mode
encoder was designed as matrix-vector multiplier employing
parallel multiply-accumulate (MAC) units and programmable
memory to store a user-defined measurement matrix.

The architecture of the DCSE is shown in detail in Fig-
ure 3. The encoder compresses N consecutive 9-bit samples
from the ADCs into M Q-bit wide CS measurements in a
streaming fashion at 2 MS/s. The digital logic operates at the
SoC main clock speed of 32 MHz, making 16 clock cycles
available for the encoding of a new sample. Only 15 cycles
are actually used to calculate the product of a new sample
with the corresponding column of the measurement matrix
and accumulate the result vector with the intermediate CS
measurements from the previous encoding round (see (1)
in Section II-A). The remaining cycle is reserved for a
coefficient pre-fetch required to realize HSS. The completed
CS measurements are available after N sampling instants,
and are transferred into a read-out buffer that allows the
compressed data to be read-out via the SPI interface without
interrupting the encoding process.

The MAC unit supports the reduced CS measurement
coefficient set {-2,-1,0,1,2}, which allows all necessary
multiplications to be implemented with hardware friendly
bit-shift and add/subtract operations; the implementation of
full four-quadrant multipliers can be avoided. This partic-
ular set allows us to realize all encoding modes discussed
in Section II-C and, in addition, offers support for advanced
compressive signal processing methods, such as punctured
estimation proposed in [17]. The digital representation of
the 5-valued coefficients would require 3 bits per coefficient,
if the coefficients were to be stored individually. Instead, en-
coding the 125 possible values of three coefficients together
into a single 7 bit digital word, results in 22% memory saving
compared to individual storage.

The DCSE implements hardware sample skipping (HSS)
by masking the start signal to the ADCs whenever a sample
is not used. Although not supported by the AFE and ADC in
this SoC, the same masking signal could be used to power

duty-cycle the AFE and the ADC to save power in the
HSS mode. The sample-skip symbol detector (see Figure 3)
impedes the ADC from taking and converting the next
signal sample, when it detects a special HSS symbol in the
measurement matrix during the pre-fetch phase. The HSS
symbol is a reserved 7-bit coefficient value that is not used
for encoding.

The coefficient memory size is directly proportional to
the maximum blocksize Nmax and maximum number of
measurements Mmax supported by the DCSE. The blocksize
and the number of measurements required to capture a signal
of a certain sparsity  are linked via (5). In practice,  is
unknown and the Nmax/Mmax–ratio that yields the optimal
compression/quality trade-off must be evaluated empirically
for a specific type of signal. Instead, when designing a
general purpose CS encoder, the Nmax/Mmax–ratio must
be designed for the worst case which is characterized by a
compression factor of 1. Beyond that, the design rules for
Nmax and Mmax in absolute terms are highly case specific,
and may depend on factors such as power budget, fabrication
cost, and other application constraints. In our DCSE, Nmax

and Mmax were selected as follows: Since there are 15 cycles
for encoding and the measurement coefficients are read from
memory in batches of three, Mmax was selected to be an
integer-multiple of 45. For efficient addressing the multiple
was chosen to be 8, resulting in Mmax=360. Consequently,
24 parallel multiply-accumulate (MAC) units are required for
encoding Mmax measurements in 15 cycles.

The effective compression factor (CF) according to (4)
is CF = (9N)/(QM), where Q and 9 are the wordwidths
of the measurements and of the raw signal samples, re-
spectively. The DCSE allows Q to be configured between
9 bits and 18 bits, which enables the compression factor to
be optimized in each CS mode; more specifically, in the NUS
mode, Q = 9 bit can be set safely because—in contrast to the
RM mode where N samples are being accumulated—there is
no risk of measurement saturation, whereas in the RM mode
the risk of measurement saturation can be traded against
a better compression factor by selecting 9 bit Q 18 bit.
In [15], Q = 9 + log2(N)/2 + 1 bit was found to provide a
good trade-off. The DCSE was designed with a predefined
and fixed silicon area budget that allowed Nmax=546 to be
realized. The effective blocksize N and number of measure-
ments M used during encoding can be selected accordingly
in the range from 1 to 546 and in the range from 1 and 360,
respectively.

The SRAM storing the measurement matrix is 56 KiB in
size, while 0.8 KiB of SRAM are used for the read-out buffer
that ensures continuous encoding operation.

DCSE configuration, coefficient loading, and measurement
read-out is realized via a standard 4-wire serial peripheral
interface (SPI). The same interface alternatively allows the
uncompressed raw data to be read from the ADCs directly.

IV. IMPLEMENTATION RESULTS

The current sensor SoC was implemented and fabricated in
a 0.16-mm BCD (Bipolar-CMOS-DMOS) technology, using
CMOS devices only. The micrograph of the SoC is shown
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in Figure 4 with the various functional blocks highlighted
and labeled. The chip was packaged into a plastic power
small outline (PwSO) package that allows sufficient heat
dissipation when measuring large currents beyond 4 A.

Figure 5 reports main measurement results of the analog
section of the SoC. The resistance across the current input
terminals of the SoC is 80 m⌦, including thick top metal
copper strip, bonding wires and package contacts. The low
input resistance makes the parasitic inductance of the bond-
ing wires significant at high frequency, which was taken into
account in the evaluation of the sensor accuracy. Figure 5(b)
shows the static characteristic of the analog section in the
±7-A range, which roughly corresponds to 10 Apeak. The

TABLE I
COMPARISON

This work [44] [33] [45]
CMOS technology [µm] 0.16 0.18 0.13 0.18
Supply voltage [V] 1.8 1.8 1.5 1.8
Probe type Hall only Hall+coil R shunt Hall only
Measured peak current [A] 10 n.a. 5 n.a.
Nyquist Bandwidth [kHz] 1000 3000 1) 50 62.5
Effective resolution [bit] 6.4 5 14 2) n.a.
Non-linearity error [%] 3 n.a. n.a. < 0.2
AFE power cons. [mW] 4.5 3) 13.9 0.053 0.12
Area of analog [mm2] 0.60 2) 8.75 1.15 1.16
ADC integration yes no yes no
ADC resolution 9 n.a. 14 n.a.
ADC power cons. [mW] 5 n.a. 0.03 n.a.
Digital data compression CS, on-chip no no no

1) by using coils; 2) ADC-limited; 3) per sensing core
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(b)(a)
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0.7 mm2

DCSE
5.4 mm2

3.1 mm2 (SRAM),
2.3 mm2 (logic)2x 9-bit ADC
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Fig. 6. Implementation summary: (a) power breakdown at 2 MS/s, (b)
power breakdown at 40 kS/s, and (c) area breakdown.

sensor and the AFE demonstrate a good linearity with a
maximum non-linearity error of less than 3% after linear
calibration. The normalized amplitude response is reported
in Figure 5(c), and shows the �3 dB bandwidth at roughly
600 kHz and at 1 MHz corresponding to the system being
operated at 32 MHz and 64 MHz, respectively. The Nyquist
bandwidth of the SoC is 1 MHz at 32 MHz clock speed,
which allows us to compensate the amplitude response by
digital post-processing [46], [47] to achieve an effective
1 MHz bandwidth at 32 MHz (i.e., the nominal operating
speed of the SoC). Figure 5(d) shows the input-referred
noise spectrum which is flat up to 1 MHz with a root mean
square value of 70 mArms, leading to an effective resolution
of 6.4 bit. The main parameters characterizing the AFE are
summarized in Table I for comparison with state-of-the-art
current sensors, while a more detailed characterization of the
AFE can be found in [38].

Detailed area and power breakdowns are shown as pie
charts in Figure 6. The complete SoC occupies a total area
of 16 mm2 of which 6.6 mm2 is active. A single current
sensing core (i.e., Hall probe, spinning-current generator,
and AFE) occupies 0.6 mm2 and consumes 4.6 mW from a
1.8 V supply. Each ADC occupies 0.24 mm2, and consumes
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5 mW from a 1.8 V supply. The DCSE occupies 5.4 mm2

with the SRAM memory accounting for 3.1 mm2 or 57% of
the DCSE. The power consumption of the DCSE depends on
the encoding mode and on the selected compression factor.

Figure 7(a) reports the consumption of the DCSE, at the
nominal sampling rate of 2 MS/s and at 40 kS/s which is the
rate used in the application example discussed in Section V-B
while the total consumption of the SoC at the nominal
sampling rate is shown in Figure 7(b). Under nominal con-
ditions, with the SoC running at 32 MHz, the DCSE power
consumption scales with increasing compression factor from
38 mW down to 22 mW in RM-encoding mode (RM), and
from 25 mW down to 22 mW in NUS-mode (NUS). The
DCSE calculates the maximum number of CS measurements
irrespective of the actual M setting. Without this design
flaw, the decrease in power consumption of the DCSE with
increasing CF would be stronger. The current version of
the SoC does not support power-duty-cycling of the AFEs
and ADCs the consumption of which is predominantly static
(cf. Figure 6(a,b)). This shortcoming prevents us from taking
full advantage of HSS that would allow the static consump-
tion of the analog section to be reduced via duty-cycling
whenever encoding modes based on sample-skipping are
being used. As a consequence, Figure 7(a) shows practically
identical total power consumption of the SoC in the NUS and
NUS-HSS modes, whereas with the ability to power-duty-
cycle the AFEs and ADCs the total SoC power consumption
in the HSS mode would decrease approximately linearly with
increasing CF.

A reduction of the data-rate achieved by the DCSE can
have several benefits, e.g., it can relax the requirements of
the down-stream electronics interfacing the SoC, resulting in
lower system design complexity and lower cost, or it can
reduce the cost of data transmission if the SoC is employed
in a remote sensor context. To assess the profitability of the
DCSE with regard to the second case we define and evaluate
the power saving factor (PSF):

PSF =
PSoC � PDCSE + EGC fs B

PSoC + EGC fs B/CF
, (8)

where PDCSE and PSoC are the power figures reported
in Figure 7(a) and (b), respectively, while fs is the sampling

frequency, B = 9 bit is the wordwidth of the raw signal
samples, and EGC is the energy-per-bit-cost of a generic
communication circuit (GC). The denominator is the power
consumption of a system consisting of our SoC and a GC
transmitting the compressed data produced by the DCSE,
whereas the numerator is the consumption of the same
system with the DCSE switched off and the GC transmitting
uncompressed data. The PSF quantifies the factor by which
the power consumptions of the system including SoC and
GC is reduced by operating the DCSE. Thus, a PSF larger
than unity means that the power cost of the DCSE is
outweighed by the savings in transmission power due to the
data-rate reduction achieved by the DCSE, indicating that the
DCSE is profitable. Figure 7(c) plots the PSF at exemplary
sampling rates and CFs against EGC in a range including the
approximate cost of typical data transmission methods used
in smart-metering applications ([48] and references therein).
We note that at a given EGC the PSF increases both with
the sampling rate and the CF, and that the maximum power
reduction achievable is a factor of CF. The results show that
the DCSE proposed here is profitable throughout the range
of parameter values to be expected in remote sensing.

V. APPLICATION EXAMPLES

In this section, we demonstrate the multi-mode compres-
sive sensing current sensor SoC in two exemplary appli-
cations: First, acquisition of sparse current waveforms, and
second, household appliance state detection for non-intrusive
load monitoring based on compressive measurements.

A. Acquisition of Sparse Current Waveforms

To characterize the trade-off between quality and data-rate
reduction achievable with our CS codec applied to generic
current waveforms, we performed a series of experiments
with different encoding modes, varying the CF. The experi-
ments were carried out using a hardware testbed built around
the SoC prototype for performance and power measurements,
and for end-to-end tests. The OMP algorithm was used for
CS reconstruction. The quality is reported in terms of signal-
to-reconstruction-error-ratio (SRER) that measures the ratio
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between the signal energies of the mean-free test signal and
of the reconstruction error:

SRER = 20 log10(ks� sk2/ks� ŝk2), (9)

where s is the mean-value of the test signal s, and ŝ is
the reconstructed signal. Qualitatively, the higher the SRER
value, the lower the reconstruction error.

In Figure 8, we report the reconstruction quality with
respect to the CF for different types and bandwidths of input
current signals, for both NUS and RM encoding. Due to
the signal-dependent performance of the recovery algorithm,
the reconstruction quality was measured for each CF setting,
performing 100 separate encoding-decoding runs. For each
CF setting a new measurement matrix was loaded into the
SoC, and remained unchanged for all 100 codec runs. As
a quality reference we show the SRER of the best-M -
term approximation that is an approximation of the original
signal based on the M largest coefficients in the sparsifying
domain, which is the best approximation in the L2-sense.
We note that the achieved quality/compression trade-off is
close to the optimum that can be expected from CS-based
data compression for the test signals at hand.

Figure 8(a,b) show the reconstruction results of a sinu-
soidal test current of 1.2 App at 950 kHz, while Figure 8(c)
shows the results of compressively measuring a 1.2 App

square-wave current with a 2 ms period. As sparsifying
bases the DFT was used for the sinusoid and the Haar
discrete wavelet transform (Haar-DWT) for the square-wave.
In Figure 8(a) the effect of multi-block decoding is shown.
When decoded using standard block-wise CS reconstruction
using a blocksize of N = 500, the signal is off–grid sparse in
the DFT basis, resulting in a poor quality/compression trade-
off in both RM and NUS encoding modes. In contrast, when
multi-block decoding (MBD) with four blocks is used, the
quality/compression trade-off is improved by 8 dB to 10 dB
at a given CF in both encoding modes, which demonstrates
the effectiveness of MBD.
Figure 8(a) also reveals that the reconstruction quality based
on multi-valued and binary-valued RM encoded data is
virtually identical, confirming earlier studies [3], [49]. Thus,

for the sole purpose of CS-based data compression binary-
valued coefficient support is sufficient. The overhead in terms
of memory size for supporting 5-valued coefficients instead
of 3-valued and binary coefficients is 40% and 130%, respec-
tively. Yet, [17] and the references therein have investigated
into the fusion of classical estimation and filtering with CS
encoding relying on multi-valued coefficient sets. The multi-
valued coefficient support and the programmability of the
measurement matrix enable the DCSE to be employed for
CS-based signal processing beyond data compression. The
exploration of such methods is not covered here.

Referring to Figure 8(b,c), the solid line labeled with RM
and NUS show the average reconstruction quality, while the
shaded area around it corresponds to the range of qualities
obtained in the codec runs. In Figure 8(b) we observe that,
in the best case, high reconstruction quality can be achieved
up to a CF in excess of 100 in both modes, while the
minimum quality drops at a CF of around 10 and 30 in
the RM and NUS mode, respectively. Although in practice
the worst-case performance maybe more relevant—e.g., to
assess the robustness of the CS codec—it is easier to identify
trends looking at the average performance. Indeed, the almost
identical shape of the average quality curve of NUS and RM
indicates that both modes are equally well suited to encode
DFT-sparse signals. However, NUS achieves roughly twice
the CF at the same average quality as RM, which is due to
the CS measurement being 18 bit in RM but only 9 bit in
NUS (see Section III-B for details).

The situation is different for the square-wave test signal;
Figure 8(c) shows that the quality of RM drops earlier, at
around a CF of 4, while NUS has a much larger spread
and a steady drop in quality already at low CFs. The reason
is that the NUS encoding matrix is more coherent with the
Haar-DWT basis than RM, making it less suitable for signals
that are sparse in this basis. Intuitively, the sample-skipping
of NUS can lead to missing important signal information
such as a sudden signal level change. The difference in
quality/compression trade-off between Figure 8(b) and Fig-
ure 8(c) is evidence of the signal-dependent performance of
the CS codec. However, in both cases robust reconstruction
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Algorithm 1 Modified OMP (MOMP)
1: input v,�B , B

2: P = �B B , r0 = v, ↵0 = 0B·N⇥1, �0 = ;
3: Q  P column-wise normalized
4: while k = 1, . . . ,M do

5: c  arg max
i

|r>k�1qi|

6: �k  �k�1 [ {c}
7: ↵k,�  arg min

z
kP�kz� vk2 {least-squares approx.}

8: rk  v �P↵k

9: end while

10: return ↵k

is achieved with SRERs between 10 dB and 25 dB.
In summary, the results show that the NUS encoding

mode—if applicable—achieves a better quality/compression
trade-off than RM. Yet, for a practical CS codec it is useful
to support RM encoding to be able to capture signals that
are characterized by sudden or rare changes.

B. Household Appliance Detection

To demonstrate the versatility of our SoC and of the
CS codec, we study its application in a smart utility meter
for non-intrusive load monitoring (NILM) [50]. Identifying
the type and the state of connected electrical appliances in
a building or household enables inhabitants to have better
control over energy usage, and allows utility providers to
optimize their services [51].

In contrast to monitoring each appliance individually, in
NILM, each appliance and its state are detected by observ-
ing the current and voltage waveforms at the mains entry
point of the building only. This approach greatly reduces
the cost for installation and maintenance of the monitoring
system, but requires load disambiguation which represents
a non-trivial signal processing problem. A large variety of
methods leveraging different types of distinguishing features
exist [52], [53], among which the method based on compres-
sive sensing—proposed in [54] and further refined in [55]—
is of particular interest in this application example. The
experiments reported here are inspired by these prior efforts,
and extend this line of work with a compressive domain
mains cancellation method and a hardware demonstrator
based on the current sensor SoC prototype.

1) Compressive Sensing Appliance Detection: The ap-
proach of [54] and [55] assumes that only a small number
of connected devices is active at any given time. Thus, the
NILM information is sparse in the “appliance domain”, i.e.,
the domain of appliance signatures represented by a dictio-
nary containing characteristic current waveforms uniquely
identifying a specific appliance.

Same as [54] and [55], we use averaged steady-state cur-
rent waveform of each appliance observed during one mains
period as signatures. The bandwidth of these signatures was
found to be no larger than 20 kHz, which allows us to run
the SoC at a sampling rate of 40 kS/s (i.e., with a 640 kHz
clock). To obtain CS measurements that encode the 800
signal samples spanning an entire mains period, we employ

Algorithm 2 CS-based Appliance Detection
1: input v,�B , B , fs
2: t  [0, . . . , (N B � 1)]

>/(N B) {the time base}
3: Nm  50N B/fs {number of encoded mains periods}
4: e  exp(i 2⇡Nm t) {complex exponential at 50 Hz}
5: c v>

(�B · e)/k�B · ek22 {est. offset and amplitude}
6: w  2R{c⇤ · e} {reconstructed mains osc.}
7: v̂  v ��B ·w {measurements without mains osc.}
8: s  arg max

2 iN·B
{wi � wi�1} {find pos. zero-crossing}

9:  ̂B   B column-wise circularly-shifted by s

10: ↵  MOMP(v̂,�B ,  ̂B)

11: return ↵

MBD using N = 200 and B = 4. Referring to the MBD
formulation from Section II-D2, we define  B 2 R(B·N)⇥P

as the dictionary containing signatures of length B ·N = 800
from P different appliance types as columns. We specify ↵
as a vector of non-negative integers with each of its P entries
being the number of active devices of the corresponding type
of appliance. To reconstruct ↵ we use the modified OMP
algorithm detailed in Algorithm 1, with the only modification
being the additional rounding operation in line 8 to enforce
integer-valued results.

In [54] it was shown that canceling the 50 Hz mains
oscillation in both the appliance signatures and the measured
current before encoding improves the detection performance
significantly. Since in our DCSE no such pre-filtering is
available, we instead propose the procedure described in Al-
gorithm 2 to cancel the mains oscillation directly in the
compressive domain and based on the compressive mea-
surements only. More specifically, a complex exponential at
50 Hz is encoded (line 3) using the same CS measurement
matrix used in the encoder. Correlating the result with the CS
measurements obtained from the encoder yields a complex
coefficient c representing an estimate of the mains phase
offset and amplitude (line 4). The mains oscillation can then
be reconstructed (line 5), encoded again, and subtracted from
the CS measurements (line 6). The result is an estimate of
the CS measurements that would have been obtained from
encoding the signal after mains cancellation.

Knowing the mains phase offset, the dictionary does not
have to include all possible phase-shifted versions of each
appliance signature, which massively reduces the size of  .
It is enough to include a single signature per appliance and
then circularly shift each column of by the estimated phase
offset (line 8) to obtain a dictionary of signatures with the
correct phase offset. The phase offset s is calculated from the
reconstructed mains oscillation by calculating the index of its
maximum slope (line 7) which corresponds to the positive
zero-crossing point.

The extraction of an appliance signature from a recorded
current waveform can be done following steps 1 to 7 of Al-
gorithm 2, with v containing the unencoded signal samples
and with an identity matrix of appropriate size instead of
�B . Setting B = NR + 1 and following this procedure, NR

complete signatures can be extracted from v̂ starting at the
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Fig. 9. CS-based appliance detection examples. Setup: NUS encoding, N=200, M=10, CF=20, B=4 multi-block decoding.
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Fig. 10. CS-based appliance detection performance vs. CF: (a) sensitivity of both RM and NUS; (b) and (c) specificity of NUS and RM, respectively.

estimated phase offset s. Finally, the extracted signatures can
be averaged to obtain the final signature in the column of B

corresponding to that specific appliance.
2) End-to-End Tests: The CS-based appliance detection

method was implemented on the same hardware testbed used
in the previous application example. The appliance dictionary
was constructed from 18 signatures from 4 different common
household appliances; namely, a 50 W lamp, a 1300 W
electric heater, a 110 W desktop computer, and a 1200 W
microwave oven. The CS acquisition was run continuously
over the duration of several minutes, while driving the pre-
recorded current waveforms through the current sensing SoC,
using an arbitrary waveform generator.

The detection resolution of Algorithm 2 is one mains
period which is much shorter than the minimum time a
household appliance remains in a specific state. Therefore,
short-lived false positives and false negatives in the output
from Algorithm 2 were eliminated using a median filter with
length 25, corresponding to half a second in real-time.

Figure 9 shows exemplary current waveforms (at the top)
with the corresponding detection results using NUS encoding
with a CF of 20 (at the bottom). In all three cases the correct
appliance was detected reliably with a short occurrence of
falsely detected lamp activity in Figure 9(c).

To quantify the performance of the compressive appliance
detection scheme as a function of CF, the true-positive-rate
(TPR) and the true-negative-rate (TNR) were evaluated over

several minutes (i.e., several thousand mains cycles). The
TPR quantifies the sensitivity in percent and is defined as

TPR =
#(correctly–detected–active)

#(effectively–active)
· 100%, (10)

whereas the TNR quantifies the specificity in percent and is
defined as

TNR =
#(correctly–detected–inactive)

#(effectively–inactive)
· 100% (11)

Reliable detection is characterized by both a high TPR and
a high TNR value. The results of the reliability analysis
are reported in Figure 10, and demonstrate robust detection
performance with both sensitivity and specificity of over
95% up to CFs around 16, and up to CFs around 30 for
NUS. The somewhat lower TPR of the microwave oven can
be explained by the fact that this appliance goes through
a sequence of different internal states not all of which
were captured in the manual signature generation phase. The
detection performance could be improved by completing the
set of signatures.

For this experiment, the SoC was operating at 640 kHz
(40 kS/s), consuming between 20 mW and 22 mW, 95% of
which is due to the consumption of the AFEs and ADCs
(see Figure 6(b)). At this speed, the interface raw data-rate
is reduced by a factor of 25 from 18 Mbit/s at nominal speed
to 360 kbit/s. Using the DCSE in NUS mode, the data-rate
is further reduced by a factor of 30 to 12 kbit/s.
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VI. CONCLUSION

We presented a compressive sensing (CS) current sen-
sor system-on-chip (SoC) designed and fabricated in
STM 0.16 mm BCD technology. The SoC includes two broad-
band, Hall-effect based current sensing cores, two ADCs,
and a digital multi-mode CS encoder (DCSE) for data-rate
reduction. The system offers a sensing bandwidth of 1 MHz
and allows currents with amplitudes of up to 10 Apeak to
be measured with over 6 bit effective resolution. It occupies
6.6 mm2 active area while consuming less than 57 mW from
a 1.8 V supply when operated at 32 MHz.

In this paper, we focused on the details of the DCSE design
and the evaluation of CS as data compression codec for
current sensing applications. Different encoding modes were
compared in terms of reconstruction-quality/compression
trade-off and power consumption. On the decoding side, the
problem of off-grid sparsity was pointed out and multi-block
decoding was introduced as a method to mitigate it.

The SoC and CS codec were tested and measured in
two application case studies; first, compressive acquisition of
sparse current waveforms, and second, household appliance
detection for non-intrusive load-monitoring using CS mea-
surements as features and sparse-reconstruction as classifier.
The first case study has demonstrated the effectiveness of
multi-block decoding to improve the reconstruction quality
of off-grid-sparse signals. It was shown that the CS codec
can achieve robust data compression with SRERs between
10 dB and 25 dB and a signal-dependent data-rate reduction
reaching up to factors of several tens. It was found that
the NUS encoding mode—if applicable—achieves the better
quality/compression trade-off than RM, but for a practical
CS codec it is useful to support RM encoding to be able
to capture signals that are characterized by sudden or rare
changes. In the second case study it was shown that the type
and state of different appliances can be reliably identified
at high compression factors of up to 30 using the proposed
CS-based appliance detection strategy.
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