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Abstract

We consider integer optimization problems where variables can potentially take fractional
values, but this occurrence is penalized in the objective function. This general situation has
relevant examples in scheduling (preemption), routing (split delivery), cutting and telecom-
munications, just to mention a few. However, the general case in which variables integrality
can be relaxed at cost of introducing a general penalty was not discussed before. As a case
study, we consider the possibly simplest combinatorial optimization problem, namely the
classical Knapsack Problem. We introduce the Fractional Knapsack Problem with Penalties
(FKPP), a variant of the knapsack problem in which items can be split at the expense of a
penalty depending on the fractional quantity. We analyze relevant properties of the problem,
present alternative mathematical models, and analyze their performance from a theoretical
viewpoint. In addition, we introduce a Fully Polynomial Time Approximation Scheme for
the approximate solution of the general problem, and an improved dynamic programming
approach that computes the optimal solution in one relevant case. We computationally test
the proposed models and algorithms on a large set of instances derived from benchmarks
from the literature.

Keywords: knapsack problem, mathematical models, dynamic programming,
approximation algorithms, computational experiments.

1. Introduction

Integer Programming and combinatorial optimization problems require to determine the
optimal values for a set of variables, each having a discrete domain. In many cases, variables
enforce boolean conditions, and it is quite natural to resort to binary variables. Just to
mention a few examples, in the knapsack problem one has to decide whether to insert an
item in the knapsack or not. Similarly, in scheduling applications, one is asked to decide
if a job should be scheduled on a given machine. Finally, the vehicle routing problem asks
to decide if a certain customer must be included in a certain route and if a given edge has
to be used in the solution or not. The explosion of new algorithms for binary problems
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in the last 30 years is motivated by the amount and relevance of applications that can be
tackled with these models. It turns out that in many relevant real-world problems decisions
can also be taken at a fractional level, and thus decision variables can attain non-integer
real values. However, this additional freedom of “splitting” an integer variable and selecting
only a fractional part will likely incur additional costs, i.e. “penalties” for deviating from
integrality, thus worsening the solution value.

For example, in preemptive scheduling (see, Pinedo [16]), each task may be processed in
di↵erent phases, until it has finished its execution, to minimize the total makespan. In the
Split Delivery Vehicle Routing Problem (see, Archetti and Speranza [1]), the restriction that
each customer has to be visited exactly once is removed, i.e., each customer can be served
by more than one route, possibly improving the objective function. In most of the cases
addressed in the literature, splitting an item either produces no additional cost or gives a
constant penalty; e.g., Malaguti, Medina and Toth [13] considered a two-dimensional cutting
problem in which raw material has to be cut to produce items, and each cut introduces some
constant trim loss. In some applications, the deterioration of the solution induced by splitting
cannot be evaluated a priori, hence some approximation has to be used; e.g., Lodi et al. [12]
considered an applications arising in Mobile WiMAX in which data (items) have to be sent
from a base station to users using a unique channel (the knapsack). In this system model,
a part of the channel is used to allocate additional information about the packets that are
sent. Splitting an item is allowed, but it increases the amount of additional information to
be sent, i.e., it reduces the available capacity. As the objective is to minimize the amount of
overhead while transmitting all data, the problem was formulated to minimize the number
of items that are fractioned.

In this paper we make a step further in the study of integer problems in which splitting
is allowed by removing the assumption that the penalty induced by splitting is a constant1.
In particular, we allow the penalty to be described by an arbitrary function that depends
on the fraction of item that is taken, and apply this setting to the simplest combinatorial
optimization problem, namely to the 0-1 Knapsack Problem (KP) (cf. [15],[11]).

In KP we are given a knapsack of capacity W and a set N = {1, . . . , n} of items, each
item j 2 N having a positive weight wj  W and a positive profit pj. The problem asks
for selecting a subset of items with maximum profit whose total weight does not exceed the
knapsack capacity. As items cannot be split, KP can be modeled by associating, to each
item j, a binary variable xj taking value 1 if the item is selected, and 0 otherwise. Hence,
the profit for each item is expressed as pjxj, and the capacity it consumes is wjxj. In the
Fractional Knapsack Problem with Penalties (FKPP) addressed in this paper, fractions of
items are allowed to be selected, but whenever an item is split, a penalty is incurred. Thus,
the net profit associated with a fraction 0 < xj < 1 of an item j is smaller than (or equal
to) pjxj, while no profit is earned when the item is not selected, and the full item profit pj is
earned for xj = 1. Formally, FKPP is defined as follows: Given a knapsack problem KP as
defined above, for each item j there is a function Fj : [0, 1] ! < such that Fj(xj) represents
the profit earned if item j is taken at some (possibly, fractional) value xj 2 [0, 1]. We assume

1
Other penalty functions appeared as auxiliary subproblems in [10] and [5].
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that each function Fj(·) has the following shape:

Fj(xj) =

8
<

:

0 if xj = 0
pj if xj = 1
pjxj � fj(xj) otherwise

(j 2 N) (1)

where fj(xj) � 0 for xj 2 [0, 1] is an arbitrary (even discontinuous) function representing
the penalty incurred in case item j is taken at a fractional level xj. Observe that we allow
fj(0) > 0 and/or fj(1) > 0 for some j, as these values are immaterial for the definition of
function Fj(·). In the general case we will not impose any further restrictions on fj(·) except
that function values can be computed in constant time. Thus, FKPP can be formulated as

max

(
nX

j=1

Fj(xj) :
nX

j=1

wjxj  W, 0  xj  1 (j 2 N)

)

where each item j has associated a continuous variable xj indicating the fraction of item j
that is selected, and functions Fj(·) are defined according to (1).

A special case of FKPP is given by the Continuous Knapsack Problem (CKP), that is
the relaxation of KP obtained removing the integrality requirement of the variables. In this
case, variables xj have the same meaning as in FKPP, and both the earned profit and the
used capacity are proportional to xj. Thus, CKP arises when fj(xj) = 0 8xj 2 [0, 1] and
for each item j. It is well known that this relaxation of KP can be solved in polynomial
time by ordering items according to a non decreasing profit over weight ratio, and inserting
them into the knapsack in this order. The first item that cannot be completely inserted in
the knapsack (if any), the so-called critical element (also known as split or break item), is
fractionally inserted in the knapsack, so as to saturate its capacity, and the corresponding
fraction of profit is earned.

Literature review. The classic KP is weakly NP-hard, and in practice fairly large
instances can be solved to optimality with moderate computational e↵ort. The reader is
referred to the books by Martello and Toth [15] and by Kellerer, Pferschy and Pisinger [11]
for comprehensive discussion on algorithms, applications and variants of the problem. Despite
the wide existing literature on knapsack problems, only few contributions can be found that
explicitly take penalties into account.

Freling, Romeijn, Morales and Wagelmans [10] considered a reformulation of the Multi-
period Single-Sourcing Problem as a Generalized Assignment Problem and noticed that the
pricing problem is a knapsack problem with penalties. In this problem, that they called
Penalized Knapsack Problem, the objective function includes a penalty that is described by
a convex function depending on the total amount of capacity that is used. Observing that
the resulting objective function is concave, the authors analyzed the structure of an optimal
solution to the continuous relaxation of the problem. They concluded that it has the same
structure of and optimal solution to the CKP, and propose a solution algorithm. Ceselli
and Righini [7] considered another version of the Penalized Knapsack Problem in which each
item has associated a constant penalty and the objective function is given by the total profit
minus the largest penalty among the selected items. This problem was extensively studied
in Della Croce et al. [8].
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Another related problem is the Bin Packing Problem with Item Fragmentation (BPPIF),
that was introduced by Mandal, Chakrabarti and Ghose [14] to model an application arising
in VLSI (Very Large Scale Integration) circuit design. In this problem, one is asked to pack
a given set of items in a fixed number of identical bins, while minimizing the number of
items that are split among di↵erent bins. Casazza and Ceselli [5] formulated BPPIF using
a mathematical model with an exponential number of variables, requiring the definition of
column generation techniques. It turns out that the pricing problem in this formulation is
a special case of FKPP, where the penalty for selecting each item j at a fractional level xj

is defined as a linear function fj(xj) = kj(1 � xj) for each j 2 N and xj 2 (0, 1). Casazza
and Ceselli [6] introduced mathematical models and algorithms for many variants of BPPIF.
Recently, Byholm and Porres [4] noticed that BPPIF arises in the operation of file systems,
and presented approximation and metaheuristic algorithms for its solution. As mentioned,
in all these papers there is a constant penalty associated with the splitting of an item for bin
packing.

FKPP is also related to the general nonlinear knapsack problem. Bretthauer and Shetty
[3] presented a survey concerning algorithms and applications of this problem, and analyzed
the general form of the problem and of its most common variants: continuous or integer
variables, convex or nonconvex functions, separable or nonseparable functions, bounds on the
variables, or generalized upper bound (GUB) constraints. None of these variants, however,
can be used to model FKPP.

Paper contribution. To the best of our knowledge, this is the first paper that specifically
addresses FKPP in its general settings. Our contributions can be summarized as follows:

1. General structural properties, the special case where all profit functions Fj are convex,
and the analogous case where penalties occur as additional weights (instead of costs)
are introduced in Section 2.

2. In Section 3 we propose two di↵erent mathematical models and discuss the relation
between the two models. The first model has a linear number of variables and con-
straints, but a non-linear objective function. The second model restricts the weight
contribution of each variable to integers and resembles a Multiple-Choice Knapsack
Problem (MCKP), albeit of pseudopolynomial size. Moreover, we construct a Fully
Polynomial Time Approximation Scheme (FPTAS) for the problem in its general form.
This di↵ers from the classical approaches since a special treatment of the profit space
by means of inverse profit functions is required.

3. From an algorithmic point of view we first report in Section 4 the dynamic program
recently proposed by Ceselli and Casazza [5] for the optimal solution of a special case
of the problem. Then an improved algorithm with lower computational complexity is
presented which partitions the dynamic programming iterations into phases of suitable
size. Finally, Section 5 presents some fast and simple heuristic algorithms for the
approximate solution of FKPP.

4. Section 6 reports the outcome of an extensive computational study on the performance
of the proposed models and algorithms. To this end we developed benchmark instances
derived from the KP literature using di↵erent shapes of the penalty functions. It turns
out that our newly developed, improved dynamic programming scheme delivers the
best performance among all solution approaches for the instances it applies to.
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2. Structural results

In this section we impose some natural assumptions on the input data, and describe some
properties of any optimal FKPP solution that will be used in the next section for modelling
and solving the problem. Furthermore, we will introduce the relevant special case where all
Fj(·) are convex.

Assumption 1. All item weights wj and the capacity value W are integers.

This assumption is without loss of generality, as fractions, if any, can be handled by
multiplying with a suitable factor.

Proposition 1. For each item j 2 N we can replace Fj(·) with eFj(·) in the objective function

of FKPP, where eFj(x) = maxyxj{Fj(y)} 8xj 2 [0, 1].

Proof. Let us denote by I = (n,W, (Fj), (wj)) an instance of FKPP. We define another

FKPP instance, say, eI = (en,fW, ( eFj), ( ewj)) with en = n items, capacity fW = W and, for each

item j = 1, . . . , n, weight ewj = wj and profit function eFj(x) = maxyxj{Fj(y)}.
Since I and eI di↵er for the objective function only, a solution x is feasible for I if and

only if it is feasible for eI. In addition, by definition of eFj(·), we have eFj(xj) � Fj(xj) 8j, i.e.,
moving from I to eI cannot reduce the value of solution x.

We now prove that, given an optimal solution ex (say) for eI, it is possible to construct a
solution x that has the same value in I. For each item j, set

xj := min{y : Fj(y) = eFj(exj)}. (2)

Note that, by definition of eFj(·), we have xj  exj for each item j, i.e., x is a feasible solution

for instance I. In addition (2) ensures that Fj(xj) = eFj(exj) 8j, i.e., solutions x and ex have

the same value according to profit functions Fj(·) and eFj(·), respectively. This implies that
x is indeed optimal for I. ⇤

It must be noted that the computation of eFj(·) is not necessarily possible in polynomial
time but depends on the properties of Fj(·). Thus, also mapping an optimal solution for
eFj(·) back into a solution for Fj(·), as required by (2), may be impossible in polynomial time.
However, bearing these computational caveats in mind, the proposition justifies our second
assumption:

Assumption 2. For each item j 2 N , function Fj(·) is non-decreasing in [0, 1].

We now observe that, while an optimal solution to CKP includes at most one fractional
item (namely, the critical item), this is not the case for FKPP. Indeed, there are generic
FKPP instances with n items for which the optimal solution splits all items.

Proposition 2. There are instances of FKPP for arbitrary n, where all n items are split in
the optimal solution.
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Proof. Consider the following instance with n items, knapsack capacity W = M for some
large value M , and all items identical with pj = wj = M � 1 for j = 1, . . . , n. The profit
function Fj(xj) = F (xj) = (M � 1)xj � f(xj) for j = 1, . . . , n is defined as the following
piece-wise linear (non-convex) function (see Figure 1):

F (xj) =

8
>>>>><

>>>>>:

0 if 0  xj  2
M�1

M

M�2n(M � 1)xj � 2M
M�2n if 2

M�1 < xj  1
n

M

M�1

M

n
if 1

n

M

M�1 < xj  M�2
M�1

(M � 1)(M � 1� M

n
)xj � (M � 1)(M � 2� M

n
) if M�2

M�1 < xj  1

Choosing an item j with xj � M�2
M�1 leaves a residual capacity  2 which could only be

filled by items i with xi  2
M�1 , but then these items i would contribute zero profit and the

resulting solution has a total profit at most pjxj  M � 1.

M

n

M

0 2
M�1

1
n

M

M�1
M�2
M�1 1

F (xj)

xj

Figure 1: Example of a generic profit function that leads to an optimal solution with all fractional items.

For choosing an item j with xj < M�2
M�1 it is always better to set xj to the lower end of

the interval where profit is constant, i.e. xj =
1
n

M

M�1 . Taking this fractional choice for all n
items yields an optimal solution value of M (and total weight M). Choosing a value even
smaller than 1

n

M

M�1 for some items does not o↵er any opportunities for improving the con-
tribution of other items by increasing their values, since an increase of profit starts only for
item values > M�2

M�1 , which leads us back to the case we settled at the beginning of the proof. ⇤

2.1. FKPP with convex objective function
For several applications, it is reasonable to assume that the penalty functions fj(·) are

concave. This means that taking a smaller part of an item and selecting it (or its complement)
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will incur a rather small penalty, as it may correspond to a minor trimming operation.
However, splitting an item closer to the middle, and thus deviating more significantly from
integrality, requires a more involved e↵ort and and causes a higher penalty. Hence, we will
consider the special case where all functions fj(·) are concave and thus all profit functions
Fj(·) are convex. Clearly, this case also includes the most plausible cases of linear and constant
penalty functions. Note that the special case of FKPP resulting from BPPIF (Ceselli and
Casazza [5]) contains linear penalty functions and thus falls into this category of convex profit
functions.

We now show that for this case an optimal solution exists in which at most one item is
taken at a fractional level. This fact has pleasing modeling and algorithmic consequences,
discussed next.

Proposition 3. If all profit functions Fj(·) are convex, there exists an optimal solution for
FKPP that has at most one fractional item.

Proof. Let x⇤ be an optimal solution for FKPP that includes two items, say h and k, at a
fractional level. We will show that x⇤ cannot be unique. Let " > 0 be a positive value and
define "h = "/wh and "k = "/wk. Now consider two solutions y and z as follows:

yj =

8
<

:

x⇤
j

if j 6= h, k
x⇤
h
+ "h if j = h

x⇤
k
� "k if j = k

(j 2 N)

and

zj =

8
<

:

x⇤
j

if j 6= h, k
x⇤
h
� "h if j = h

x⇤
k
+ "k if j = k

(j 2 N)

Given their definition, these solutions satisfy the capacity constraint, as " units of capacity
are moved from h to k or vice-versa. In addition, as both x⇤

h
and x⇤

k
are strictly positive and

smaller than 1, solutions y and z are feasible if " is chosen such that "h  min{1 � x⇤
h
, x⇤

h
}

and "k  min{1� x⇤
k
, x⇤

k
}. Finally, " > 0 implies "h > 0 and "k > 0, i.e., y and z are distinct

from x⇤ and x⇤ = 1
2y +

1
2z. As all profit functions are convex we have that:

X

j2N

Fj(x
⇤
j
)  1

2

X

j2N

Fj(yj) +
1

2

X

j2N

Fj(zj)

implying that:
X

j2N

Fj(x
⇤
j
)  max

⇢X

j2N

Fj(yj),
X

j2N

Fj(zj)

�

i.e., at least one between y and z yields a profit not smaller than that of x⇤. Thus, another
optimal solution may be defined either increasing h and decreasing k (or vice-versa), until
one of the two variables hits either the lower or the upper bound. ⇤

Since we assumed the knapsack capacity W and all the item weights wj (j = 1, . . . , n) to
be integer, the following result is a direct consequence of Proposition 3.
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Proposition 4. If all profit functions Fj(·) are convex, there exists an optimal solution to
FKPP where wjxj is integer for each item j.

Proof. Proposition 3 ensures that an optimal FKPP solution, say x⇤, exists in which at
most one item is split. Let k be such item. Since we assume all weights and the capacity be
integer, all items j 6= k have an integer value of wjx⇤

j
, and the residual capacity for item k is

an integer number. As function Fk(·) is non-decreasing, there is an optimal solution where
item k is taken at the largest possible value, which is indeed an integer. ⇤

We conclude this section observing a relevant property of function Fj(·) (j 2 N), in case it
is convex. Indeed, under convexity hypotesis, Fj(0) = 0 implies that there must exist a value
x0
j
2 [0, 1) such that Fj(x)  0 for x 2 [0, x0

j
] and Fj(x) is strictly increasing for x 2 [x0

j
, 1].

Thus, the profit function eF (·) introduced in Proposition 1 is defined as eFj(x) = Fj(x) for

x � x0
j
and eFj(x) = 0 for x < x0

j
. This means that, if we use function eFj(·) instead of Fj(·),

an optimal solution exj obtained for the latter can be mapped to xj = 0 if Fj(exj)  0 and
to xj = exj otherwise. In other words, there is no need to explicitly compute x0

j
, and the

computational complexity for the mapping can be ignored.

2.2. Penalty in terms of weight

We have defined FKPP by considering a penalty in the profit of fractional items. It
seems natural to also consider the case in which the penalty for fractional items is enforced
in terms of additional weight, instead of reduced profit. In other words, we can consider that
a fraction xj of a given item j produces a profit pjxj, but consumes a capacity Gj(xj) � wjxj,
where Gj(xj) is a (possibly discontinuous) function defining the weight of fraction xj, once
the penalty is considered. Define, Gj(0) = 0 and Gj(1) = wj, for all j 2 N . In this section
we show that the fractional knapsack problem with weight penalty can be reduced to FKPP
for a suitable penalty function. To this aim we introduce, for each item j, set

Sj = {x 2 [0, 1] : @y > x, Gj(y)  Gj(x)} (3)

that contains all those points that are not dominated. We next show that, for each j 2 N ,
only points x 2 Sj are relevant in the definition of the weight function Gj(·).

Proposition 5. There exists an optimal solution x of the fractional knapsack with penalty
in terms of weight such that xj 2 Sj for each item j 2 N .

Proof. Let x be an optimal solution of the problem. By contradiction, assume there exists
an item j (say) such that xj /2 Sj. This means that there exists y such that Gj(y) = Gj(xj)
and y > xj. Setting xj = y does not increase the amount of capacity required by item j,
while it increases the objective function value; this contraditcs the assumption that x is an
optimal solution. ⇤

Based on this proposition, for each item j we can define a reduced weight function whose
domain is Sj; it turns out that this reduced function is strictly increasing on its domain.
Setting aside the theoretical issue that the reduced function Gj(·) may be di�cult to compute,
this justifies the following assumption.
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Assumption 3. For all j 2 N , function Gj(·) is a strictly increasing function and hence it
is invertible.

Note that, if Gj(·) is discontinuous for some j, then G�1
j
(·) is not defined for some weight

values. However, we can complete the definition of each G�1
j
(·) for the whole domain by

setting G�1
j
(w) := max{xj : Gj(xj)  w} for all w 2 [0, wj]. Similarly to the discussion in

Section 2, the computational complexity for computing G�1
j
(w) depends on the properties of

Gj(·).
The main result of this section follows:

Proposition 6. A fractional knapsack problem with penalty in terms of weight, described by
invertible functions Gj(·) for all j 2 N , can be reduced to a FKPP.

Proof. Let I = (n,W, (pj), (Gj)) be an instance of fractional knapsack with penalty in terms
of weight. For each item j, let wj = Gj(1) denote its maximum weight. We define an instance
eI = (en,fW, ( eFj), ( ewj)) of FKPP with en = n items and capacity fW = W . In addition, for each

item j = 1, . . . , n, we define a weight ewj = wj and profit function eFj(exj) = pjG
�1
j
(wjexj).

We now show that every feasible solution for I has associated a feasible solution for eI
with the same value, and viceversa. Let x be a feasible solution for I, i.e., such that each
item j has weight Gj(xj) and gives a profit pjxj. We now define a solution ex by setting

exj = Gj(xj)/wj, i.e., item j has weight Gj(xj) and gives a profit eFj(exj) = pjG
�1
j
(wjexj) =

pjG
�1
j
(wjGj(xj)/wj) = pjxj.

Similarly, let ex be a feasible solution for eI, i.e. each item j has weight wjexj and profit
eFj(exj). We define a solution x by setting xj = eFj(exj)/pj, i.e., item j has weight Gj(xj) =

Gj( eFj(exj)/pj) = Gj(pjG
�1
j
(wjexj)/pj) = wjexj and profit pjxj = pj eFj(exj)/pj = eFj(exj). ⇤

3. Mathematical models for FKPP

In this section we present two alternative mathematical models for FKPP. The first model
is general, though it may be non-linear depending on the form of the penalty functions.
Conversely, the second model is an Integer Linear Program (ILP) restricted to integral weight
contributions of all items. Recalling Proposition 4, this applies e.g. for the case when all Fj(·)
functions are convex.

3.1. General model

The first model (MGEN) has continuous variables xj to denote the fraction of item j 2 N
in the solution. In addition we introduce, for each item j, two binary variables ↵j and �j,
that are used to handle the profit function for xj = 0 and xj = 1, respectively. Denoting by
�0

j
= fj(0) and �1

j
= fj(1), the formulation reads:
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(MGEN) max
X

j2N

✓
pj xj � fj(xj) +�0

j
↵j +�1

j
�j

◆
(4)

X

j2N

wj xj  W (5)

↵j  1� xj j 2 N (6)

�j  xj j 2 N (7)

0  xj  1 j 2 N (8)

↵j, �j 2 {0, 1} j 2 N. (9)

The objective function (4) takes into account both the linear profit and the penalty of each
item and is possibly increased by �0

j
or �1

j
when item j is not selected or fully inserted into

the knapsack, respectively. While (5) is the capacity constraint, inequalities (6) and (7) set
the correct values of the ↵j and �j variables, allowing each such variable to be 1 only in case
the associated item is not taken or fully taken, respectively.

This model has polynomial size for what concerns both the number of variables and
constraints. All constraints in the model are linear, and all possible nonlinearities appear in
the objective function only. Thus, the computational tractability of the model depends on
the shape of the penalty functions fj(·).

3.2. An ILP model for integer weight contributions

The second model (MINT ) assumes the integrality of the used weight for each item
j. It samples the function Fj(xj) for all relevant values of variable xj, and introduces a
binary variable for each such value. In particular, for each item j 2 N and possible weight
k = 1, . . . , wj, we introduce a binary variable yjk that takes value 1 if item j uses k units of
capacity, i.e., if wjxj = k. For each pair (j, k), we denote by tjk the net profit obtained by
taking k

wj
units of item j, namely:

tjk = Fj

✓
k

wj

◆
=

8
<

:

0 if k = 0
pj if k = wj

pj
k

wj
� fj(

k

wj
) otherwise

(j 2 N)

.
Recall that, for the case where all profit functions Fj(·) are convex, Proposition 4 ensures

that an optimal solution exists in which each item uses an integer number of units of capacity.
Thus, MINT gives an optimal solution for the convex case. Of course, MINT can be also
applied for the general case where it will yield a possibly sub-optimal, approximate solution,
which will be discussed in Section 3.3.
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Using the above definitions, the second model is:

(MINT ) max
X

j2N

wjX

k=1

tjk yjk (10)

wjX

k=1

yjk  1 j 2 N (11)

X

j2N

wjX

k=1

k yjk  W (12)

yjk 2 {0, 1} j 2 N ; k = 1, . . . , wj. (13)

Objective function (10) takes into account both the profit and the penalties for the selected
items. Constraints (11) ensure that each item is associated with a unique weight value,
whereas (12) imposes the capacity constraint.

Observe that the number of yjk variables is
P

j2N wj, i.e., pseudopolynomial in the input
size. Thus, we may expect this model to be extremely challenging to be solved for instances
with large item weights. However, this model is a pure Integer Linear Program (ILP), and
can thus be solved using the rich machinery o↵ered by modern commercial ILP solvers.
Moreover, it is easy to see that MINT corresponds to a Multiple-Choice Knapsack Problem
(MCKP) with inequality constraints, where each subset of items in MCKP corresponds to
the possible choices for cutting an integer weight from an item in FKPP. Thus, one could
also solve MINT by applying specialized algorithms for MCKP. Note that number of items
in the resulting instance of MCKP, say en, is pseudopolynomial, namely en =

P
j2N wj which

is in O(nwmax), where wmax := max{wj : j = 1, . . . , n} denotes the maximum weight of an
item. Thus, the classical dynamic programming scheme described in [11, Sec. 11.5]) would
take O(nwmaxW ) time.

3.3. Comparison between MGEN and MINT

In the convex case both the general model MGEN and model MINT are valid. The
following proposition states the relationship of the respective continuous relaxations.

Proposition 7. When functions Fj(·) are convex for all j 2 N , the continuous relaxation
of model (4)–(9) dominates the continuous relaxation of model (10)–(13).

Proof. Let (x⇤,↵⇤, �⇤) be an optimal solution to the continuous relaxation of modelMGEN .
Observe that, in any optimal solution, variables ↵ and � will be at the maximum value that
is allowed, namely ↵⇤

j
= 1� x⇤

j
and �⇤

j
= x⇤

j
for each j 2 N . Thus, the contribution of each

item j to the objective function is

pjx
⇤
j
� fj(x

⇤
j
) +�0

j
(1� x⇤

j
) +�1

j
x⇤
j


pjx
⇤
j
�

⇣
�0

j
(1� x⇤

j
) +�1

j
x⇤
j

⌘
+�0

j
(1� x⇤

j
) +�1

j
x⇤
j
= pjx

⇤
j

where the first inequality holds by convexity of �f(xj).
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Consider now a solution, say y⇤, for the second model, defined as follows: for each item
j 2 N , let

y⇤
jk

=

⇢
0 if k < wj

x⇤
j

if k = wj

It is easy to see that this solution satisfies constraints (11) and (12), i.e., y⇤ is a feasible
solution to the continuous relaxation of MINT . The associated value is pjy⇤jwj

= pjx⇤
j
which

concludes the proof. ⇤

We can also explicitly state the following property of the continuous relaxation of MINT .

Proposition 8. Let ȳjk be an optimal solution of the LP-relaxation of MINT . Then ȳjk = 0
for k < wj.

Proof. Comparing the e�ciencies ejk (profit per unit of weight) we have for k < wj:

ejk =
pj

k

wj
� fj(

k

wj
)

k
=

pj
wj

� 1

k
fj(

k

wj

)  pj
wj

= ejwj

Considering (11), it is always advantageous to concentrate the solution values assigned to
the variables corresponding to item j to the variable yjwj with largest e�ciency. ⇤

Although the associated continuous relaxation of MINT provides weaker bounds than
its counterpart for MGEN , the former can be computed much more e�ciently. It follows
from Proposition 8 that the LP-relaxation of MINT is equivalent to the LP-relaxation of
the underlying knapsack problem KP and thus can be solved by the classical linear time
algorithm (see [11, Sec. 3.1]) in O(n) time2. For the continuous relaxation of MGEN no
combinatorial algorithm is available for the general case.

As observed above, one could obtain an approximation of the general case by solving
model MINT and thus implicitly adding the restrictions that wjxj is integer for each item
j. This might seem attractive since the MCKP-type model MINT can be expected to be
much easier to solve than the general MINT , as illustrated by our experiments in Section 6.
Unfortunately, the quality of this approximation may be quite low in the worst case.

For a given instance I, let us denote by z⇤(I) and zINT (I) the optimal solution value
and the value of the solution computed by model MINT , respectively. The following result
determines the maximum percentage deviation of the latter with respect to the optimum
when nonconvex profit functions are considered.

Theorem 1. Let I be an instance of FKPP with arbitrary profit functions Fj(·) for each

item j. Then, we have zINT (I)
z⇤(I)  1

2 and the ratio can be tight.

Proof. For ease of notation, we omit the indication of the instance I at hand. Let zC

be the optimal solution value of the problem in which items can be split with no penalties.

2
Note that employing the linear time algorithm for the LP-relaxation of MCKP (see [11, Sec. 11.2]) would

give an O(nwmax) pseudopolynomial algorithm.
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Similarly, denote by zKP the same value for the problem in which they cannot be split at all.
We have

zC � z⇤ � zINT � zKP � zC

2
, (14)

where the last inequality derives from the observation that zKP corresponds to a KP whose
continuous relaxation is zC . Thus, both zINT and z⇤ belong to the interval [z

C

2 , zC ], implying
that the ratio between these two values cannot be larger than 1

2 .
To prove that the ratio is tight, consider a family of instances defined according to an integer
parameter k, as follows: there are n = k2 + 1 items and the capacity is C = k + 1. The
first item has profit p1 = k, weight w1 = 1, and a profit function such that F1(x1) = 0 for
x1 < 1. Each remaining item j = 2, . . . , n has pj = k + 1, wj = k + 1, and profit function
Fj(xj) = (k + 1)xj for 0  xj  1

k(k+1) and Fj(xj) =
1
k
for xj � 1

k(k+1) .
The optimal solution completely packs the first item and fills the residual capacity by taking
each remaining item j at a level xj =

1
k(k+1) . It is easy to see that each such item requires

a capacity equal to 1
k
and that the resulting profit is z⇤ = p1 + k2 1

k
= k + k = 2k. The

heuristic solution is composed by a unique item j 2 [2, n] that is taken completely, thus
yielding a profit zINT = k+1. Observe that an equivalent solution is obtained taking item 1
and using the residual capacity equal to k to pack the remaining items. In this case, forcing
each item to have an integer wjxj value implies that k items are taken at a level xj =

1
k+1 ,

thus producing a total profit equal to k + k 1
k
= k + 1. Thus we have zINT

z⇤ = k+1
2k , i.e, the

ratio is arbitrarily close to 1
2 for su�ciently large k. ⇤

Inequality (14) also shows the following bound on the e↵ect of allowing fractional values.

Corollary 1.
zKP  z⇤  2zKP

3.4. An FPTAS for the general case

We can derive a Fully Polynomial Time Approximation Scheme (FPTAS) for FKPP
by employing another approximate representation of FKPP as a Multiple-Choice Knapsack
Problem (MCKP) di↵erent from Section 3.2.

For each item j, we define a function 'j : [0, pj] ! [0, 1] such that 'j(p) = inf{x : Fj(x) �
p}. This function is well defined since all Fj are monotonically increasing, though it may not
be easy to evaluate. If Fj is strictly increasing and continuous then 'j is the inverse function
F�1
j

. According to our definition, if a profit function is constant on a certain interval, i.e.
Fj(x) = c for all x 2 [a, b] ✓ [0, 1], then 'j(c) = a.

Note that in all cases we are aware of, an FPTAS for knapsack-type problems is derived
from an exact, pseudopolynomial dynamic programming scheme. Scaling the profit space
then leads to a polynomial running time at a loss of optimality. For FKPP the situation is
di↵erent since the continuous, non-discrete nature of the decision variables and the resulting
item weights and profits does not seem to permit an exact dynamic programming approach for
the general case. Of course, it is well-known that the MCKP instance implied by MINT can
be solved to optimality in pseudopolynomial time and can be approximated by an FPTAS,
but the resulting solution may deviate considerably from the optimal solution for the general
case of FKPP, as illustrated by Theorem 1.
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For our general FPTAS we are given an accuracy parameter " and a scaling parameter
K to be defined later. We partition the profit range [0, pj] of every item j into equal-sized
intervals of width K. Thus, the profit range is approximated by a sequence of discrete values
0, K, 2K, . . . , bpj

K
cK, with a smaller interval possibly left just before pj. This guarantees

that for any profit p 2 [0, pj], there exists an integer number i 2 {0, 1, . . . , bpj

K
c} such that

iK  p < (i+ 1)K.
For any instance I of FKPP, we define a corresponding instance IA of MCKP with the

same capacity W . Each item j in I gives rise to a subset Nj of bpj

K
c + 1 items in IA. For

i 2 {0, 1, . . . , bpj

K
c} there is an item in Nj with profit i and weight 'j(iK). Note that the

sequence of profits in each subset is completely regular, while the sequence of weights may
contain large jumps and also subsequences of identical values if Fj is discontinuous. Every
feasible solution of IA directly implies a feasible solution of I by setting xj = 'j(iK) if item
i was selected from subset Nj.

Our FPTAS consists of running dynamic programming by profits to solve IA to optimality
and reporting the associated feasible solution for I. This can be done by a standard algorithm
(see [11, Sec. 11.5]) whose running time is a product of the number of items, and an upper
bound on the objective function. Setting pmax := max{pj : j = 1, . . . , n}, considering that
the total number of items in IA is

P
j2N(b

pj

K
c+1)  n pmax/K+n, and stating a trivial upper

bound on the objective function value of IA as n pmax/K, its running time can be bounded
by O((npmax/K)2). Now, choosing (similar to the classical FPTAS for KP) K := "pmax

n
the

running time is fully polynomial, namely O(n4/"2). Note that we do not consider possible
improvements of this complexity but just want to establish the existence of an FPTAS.

Theorem 2. There is an FPTAS for FPKK if values 'j(p) can be computed in polynomial
time for all j 2 N and for each p.

Proof. It remains to show that the algorithm yields an "-approximation.3 Consider an
instance I with optimal solution x⇤, solution value z⇤, and the corresponding instance IA of
MCKP. For each value x⇤

j
, determine an integer number ij such that ijK  Fj(x⇤

j
) < (ij+1)K.

Now define the following solution, obtained by setting x⇤A
j

:= 'j(ij K) for each item j.
Clearly, x⇤A is a feasible solution in IA; let us denote by z⇤A its objective function value in
IA. Observe that x⇤A is also feasible in I, and its associated value is Kz⇤A. The di↵erence
between z⇤ and Kz⇤A, i.e. moving from I to IA and back to I, can be bounded by

z⇤ �Kz⇤A  nK = "pmax  "z⇤ (15)

since the profit contributed by each item j will be reduced by less than K.
Now consider the solution to IA computed by our algorithm, i.e., an optimal solution

obtained running the dynamic programming algorithm, and let zA � z⇤A be its objective
value in IA. As the outcome of our FPTAS, this implies a feasible solution, say x0, for I with
objective function value z0 = KzA. Thus, we have from (15)

(1� ")z⇤  Kz⇤A  KzA = z0

3
It should be noted that the direct application of standard arguments as given in [11, Sec. 2.6] does not

work since the optimal solution for I may have an almost arbitrary profit if translated into a feasible solution

of I
A
.
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i.e., the produced solution yields an "-approximation of z⇤ for any " > 0. ⇤

4. Dynamic Programming algorithms for the convex case

In the following sections, we present dynamic programming (DP) algorithms that can be
used for computing an optimal solution to FKPP in case that an optimal solution exists with
at most one fractional item. By Proposition 3 this applies for the broad class of instances
where profit functions are convex. Our algorithms will use a DP algorithm for KP as a
black box. Thus, we firstly review two classical DP algorithms for KP. Then, we describe
the DP approach proposed in [5] to solve FKPP. Finally, we present a new algorithm that
yields improvements with respect to the algorithm by [5] both from a theoretical and from a
computational viewpoint.

4.1. Dynamic Programming algorithms for KP

The basic idea of DP algorithms for KP is to solve, for each item j = 1, . . . , n and capacity
value c = 1, . . . ,W , the KP instance defined by item set {1, . . . , j} and capacity c. Denoting
by T (j, c) the value of this solution, we can determine an optimal solution to the original
instance as T (n,W ).

There are two main procedures that can be used to compute the T entries. The first one,
also known as Bellman recursion [2], is based on the computation of all the n ⇥W entries.
The computation of each entry can be done in constant time, yielding an O(nW ) complexity.
The second scheme is known as Dynamic Programming with Lists (see, [11, ch. 3.4]). The
basic idea is that an optimal solution can be determined without computing all the T (j, c)
entries since many (j, c) pairs may be redundant. This consideration may reduce the memory
requirement and improve the computational performance of the resulting algorithm. On the
other hand, it has no e↵ect in reducing the worst-case complexity and, if the number of
non-redundant entries is comparable to nW , then the overhead needed to handle the lists
could be significant.

In the following, we will assume that a black box procedure DP-KP implementing one
of the schemes above is available. Observe that both algorithms require some initialization
step; conceptually, this corresponds to setting T (0, c) = 0 for each c = 1, . . . ,W . However,
one can easily generalize the schemes simply setting T (0, c) = S(c) for each c = 1, . . . ,W ,
where S is some starting vector to be properly defined in case some profit is obtained even
when no items are taken (S = 0 means that a zero vector is used). In addition, note that the
DP algorithm returns, as a byproduct, the optimal solution value for all possible capacities
c = 1, . . . ,W . Given an item set N , a capacity value W , and a vector S containing a starting
profit value for each capacity entry, procedure DP-KP(N,W, S) computes and returns a vector
T such that T (c) = T (|N |, c) for each c = 1, . . . ,W .

4.2. A Dynamic Programming algorithm for FKPP

The DP algorithm proposed in [5] is based on the following observation: if no item is
fractionally selected in an optimal solution, then an optimal solution of FKPP corresponds
to the optimal solution of KP. Otherwise, one can exploit the fact that only one item is taken
at a fractional level, guess this item and solve a KP associated with the remaining items. In
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case a DP algorithm is used to solve the KP instance, one can easily compute a posteriori
the amount of capacity to be used for the split item and derive an optimal FKPP solution.
The complete algorithm DP1 is given in Algorithm 1, where each zj denotes the profit of the
optimal solution in case item j is split. The version of this algorithm, where DP with Lists
is used, will be referred by DP2.

Algorithm 1 DP1
{compute the optimal solution when no item is split}
set T := DP-KP(N,W, 0) and z⇤ := T (W )
for all items j 2 N do
{apply DP without item j}
set T := DP-KP(N \ {j},W, 0) and zj := T (W );
{complete the solution by splitting item j in the best possible way}
for c = 1 to wj � 1 do
if T (W � c) + Fj(

c

wj
) > zj then

zj := T (W � c) + Fj(
c

wj
)

end if
end for
if zj > z⇤ then
z⇤ := zj

end if
end for
return z⇤

AlgorithmDP1 can be executed in O(n2W ) time. Indeed, computing the optimal solution
when no item is split requires the execution of a dynamic programming for KP. As to the
case in which an item is split, there are n iterations. At each iteration j, one has to run
the dynamic programming for KP with item set N \ {j} and capacity W , which requires
O(nW ); given that, the associated zj value can be computed in O(wj) time. Thus, the
overall complexity of DP1 is O(n2W ). The same considerations apply for DP2.

The above algorithm solves FKPP to optimality in pseudopolynomial time. In addition,
FKPP cannot be easier than KP, which arises as a special case when no item j can be split,
e.g., fj(xj) = pj 8xj 2 (0, 1) (j 2 N). Thus, it follows that:

Observation 1. If all profit functions Fj(·) are convex, FKPP is weakly NP-hard.

4.3. An improved Dynamic Programming algorithm for FKPP

In this section we introduce a new DP algorithm for FKKP having an improved compu-
tational complexity with respect to the scheme given in the previous section. The resulting
algorithm IDP1 (see Algorithm 2) takes as input an integer parameter k that will be defined
later. As for the previous approach, this algorithm considers one item at a time as the split
item, computes the optimal KP solution without this item, and completes the solution in the
best possible way. The main di↵erence is that the KP instances are solved in an incremental
way. In particular, items are partitioned into (say) r subsets, each containing at most k items.
For each item j that belongs to subset Li (say), we compute vector T 1, containing, for every
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capacity value c = 1, . . . ,W , the optimal solution value of the KP instance defined by all
items not in Li and by a capacity value c. Each such a solution is then completed considering
all items in Li but j. This can be done executing again procedure DP-KP, using T 1 as the
vector of starting values, thus obtaining a vector T 2 that contains, for every capacity value
c = 1, . . . ,W , the optimal solution value of KP instance with all items but j and capacity
equal to c. At this point, we can proceed as in DP1, i.e., considering all fractional levels for
item j, and computing the optimal value of the FKPP solution. As stated in the following
Theorem 3, this allows a reduction of the computational complexity of the algorithm. Em-
ploying an implementation of this approach based on DP with Lists will give an algorithm
denoted by IDP2.

Algorithm 2 IDP1
{compute the optimal solution when no item is split}
set T := DP-KP(N,W, 0) and z⇤ := T (W )
partition item set N into r subsets Li such that |Li|  k for each i = 1, . . . , r
for i = 1 to r do
{guess the set Li of items that contains the split item}
set T 1 := DP-KP(N \ Li,W, 0)
for all items j 2 Li do
{apply DP to the residual items (but item j) starting from the optimal values associ-
ated with item set N \ Li}
set T 2 := DP-KP(Li \ {j},W, T 1) and zj := T 2(W )
{complete the solution splitting item j in the best possible way}
for c = 1 to wj � 1 do
if T 2(W � c) + Fj(

c

wj
) > zj then

zj := T 2(W � c) + Fj(
c

wj
)

end if
end for

end for
if zj > z⇤ then
z⇤ := zj

end if
end for
return z⇤

Theorem 3. Algorithm IDP1 can be executed in O(n3/2W ) time.

Proof. Consider an iteration of the algorithm, associated with group (say) Li. The first
DP execution takes O((n� k)W ) time. Then, k executions of the DP algorithm are needed,
trying all items in Li as split item. Each execution requires O(kW ) time and produces a
solution in which item j is not taken. Trying all possible wj�1 ways to complete this solution
with item j takes O(W ) additional time.
Thus, the complexity of each iteration is O

�
nW �kW +k[kW +W ]

�
. Executing r iterations

yields a total complexity equal to O(rnW � rkW + rk2W + rkW ) time.
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Taking k = b
p
nc and r = dn/ke ⇡

p
n we obtain the claimed complexity equal to

O(
p
nnW � nW +

p
nnW + nW ) = O(

p
nnW ). ⇤

Again, a similar reasoning applies for the list based IDP2.

5. Heuristics

In this section we present three simple heuristic algorithms that provide approximate
solutions for the general FKPP.

5.1. First heuristic algorithm
The first heuristic (H1) exploits the similarity between FKPP and KP. The procedure,

described in Algorithm 3, first computes an optimal solution of the KP instance obtained
when items cannot be split. Then, it fills the residual capacity (if any) using a fraction of
some residual item. To this aim, all items that are not packed in the KP solution are tried,
and the one returning the maximum profit is selected.

Algorithm 3 H1
solve KP and let x be an optimal solution
set zH :=

P
j2N pjxj and c := W �

P
j2N wjxj

let j = argmax
i:xi=0

{Fi(c/wi)}
set xj := c/wj and zH := zH + Fj(xj)
return zH

5.2. Second heuristic algorithm
The heuristic algorithm H1 requires the solution of a KP. As this problem is NP-hard,

though solvable e�ciently in practice, we developed a second algorithm based on the approxi-
mate solution of the knapsack problem. In particular, we used the classical GREEDY procedure
described in [11], that returns a KP solution that is maximal with respect to inclusion. This
solution is possibly improved using a fraction of some unpacked item, as shown in Algorithm
4.

Algorithm 4 H2
execute the GREEDY algorithm for KP and let x be the resulting solution
set zH :=

P
j2N pjxj and c := W �

P
j2N wjxj

let j = argmax
i:xi=0

{Fi(c/wi)}
set xj := c/wj and zH := zH + Fj(xj)
return zH

5.3. Third heuristic algorithm
Our third heuristic produces an initial KP solution by applying a variant of the GREEDY

procedure, called GREEDY-SPLIT in [11], that packs items into the knapsack until the critical
item is found (and then terminates). The residual capacity (if any) is filled in an iterative
way, selecting at each iteration the unpacked item that can be packed with a maximum profit.
The complete algorithm is given in Algorithm 5.
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Algorithm 5 H3
execute the GREEDY-SPLIT algorithm for KP and let x be the resulting solution
set zH :=

P
j2N pjxj and c := W �

P
j2N wjxj

while c > 0 do
let j = argmax

i:xi=0
{Fi(vi) : vi = min(1, c/wi)}

set xj := min(1, c/wj), c = c� xjwj and zH := zH + Fj(xj)
end while
return zH

6. Computational experiments

In this section we report the outcome of our computational experiments on FKPP. In
Section 6.1 we first give some details about the implementation of the algorithm, while
Section 6.2 describes our benchmark instances. Sections 6.3, 6.4 and 6.5 report the results
of the exact methods for di↵erent classes of problems, while Section 6.6 reports the outcome
of the experiments concerning the heuristic solution of FKPP.

6.1. Settings

All experiments were performed single thread on a computer equipped with an Intel(R)
Core(TM) i7-6900K processor clocked at 3.20 GHz and 64 GB RAM under GNU/Linux
Ubuntu 16.04. Each run was assigned a time limit of one hour. All DP algorithms and
the heuristic algorithms were implemented in C++, while models MGEN and MINT were
solved using the state-of-the-art commercial solver CPLEX 12.7.1.

As to model MINT , we also solved it using a combinatorial exact algorithm, namely
algorithm MCKP by Pisinger [17]. This algorithm is considered the state-of-the-art in
the solution of Multiple-Choice Knapsack Problems, and its code is publicly available at
www.diku.dk/~pisinger/codes.html. Given a FKPP instance, we defined an associated
MCKP instance as follows: each item j in FKPP corresponds to a subset of items of MCKP,
and each possible fraction of item j with weight equal to k in FKPP corresponds to an
item with weight k in subset j of the MCKP instance, possibly removing MCKP items with
negative profit. Algorithm MCKP is designed for problems with integer positive data and
for the version of the problem with the equality constraint, i.e., the case in which exactly one
item must be selected from each subset of items. Thus, we had to implement the following
transformation:

1. all profit values were multiplied by a large factor, possibly rounding the obtained values;

2. for each subset j of items, a dummy item with zero profit and weight was added;

3. the profit and the weight of each item were increased by one, the capacity was increased
by n.

The results obtained by solving the resulting MCKP instance will be denoted by MCKP
in the following. Computational experiments showed that MCKP largely outperforms, in
terms of computing time, the direct application of our commercial solver on model MINT .
For this reason, we do not report the results obtained using the latter method in our analysis.
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6.2. Benchmark instances

To the best of our knowledge, there is no FKPP benchmark in the literature. Thus, we
generated a large set of problems derived from KP instances from the literature. We now
describe the way KP instances were selected, and discuss later how each KP problem was
used to generate a FKPP instance.

6.2.1. KP instances
To define our benchmark, we used the KP instances introduced by Pisinger [18]. In

particular, several classes of instances have been obtained with di↵erent types of correlation
between profits and weights. The instances generator, publicly available at www.diku.dk/

~pisinger/codes.html, takes as input the class number, a positive parameter R that defines
the range in which weights are generated, and the total number of items n.
For our experiments we considered only the six classes (11, 12, 13, 14, 15, 16) that are
denoted as hard in [18] for KP algorithms, and used five di↵erent values of R (namely,
R = 103, 104, 105, 106 and 107) and five di↵erent values of n (n = 20, 50, 100, 200, and 500).
It turned out that the generator returned integer overflow when generating instances of class
16 with R � 105; thus, we disregarded the corresponding instances. For each class, R and n,
we generated one problem, producing a set of 135 KP instances.

6.2.2. Penalty functions
As to the penalty functions, we tested continuous functions expressed by polynomials

with degree at most 2, i.e., linear or quadratic penalty functions. Recall that �0
j
= fj(0) and

�1
j
= fj(1) represent, for a given item j, the value of the penalty function for xj = 0 and

xj = 1, respectively. Thus, the general form of the penalty function is

fj(xj) = �kjx
2
j
+ (�1

j
��0

j
+ kj)xj +�0

j
(16)

where kj is a parameter that defines the slope of the function. Given (16), the profit function
for each item j reads as follows

Fj(xj) =

8
<

:

0 if xj = 0
pj if xj = 1
pjxj + kjx2

j
+ (�0

j
��1

j
� kj)xj ��0

j
otherwise

(j 2 N) (17)

The linear case. When kj = 0, 8j 2 N , all profit functions are linear, and all methods
described in Sections 3 and 4 can be used to determine an optimal solution. In this case, we
consider three di↵erent penalty functions, depending on the values �0

j
and �1

j
, as follows:

1. Constant penalty: if �0
j
= �1

j
= �j, the penalty function for item j is constant, and

the associated profit function is given by

Fj(xj) =

8
<

:

0 if xj = 0
pj if xj = 1
pjxj ��j if 0 < xj < 1

(j 2 N)
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2. Increasing penalty: if �0
j
= 0 and �1

j
> 0, the penalty function for item j is negligible

for small fractions xj while it assumes its maximum for values of xj close to 1. In this
case the profit function is not continuous in xj = 1:

Fj(xj) =

⇢
pj if xj = 1
pjxj ��1

j
xj if 0  xj < 1

(j 2 N)

3. Decreasing penalty: if �0
j
> 0 and �1

j
= 0, the penalty function for item j assumes

its maximum value for xj = 0 and decreases to 0 for xj = 1. In this case the profit
function is not continuous in xj = 0:

Fj(xj) =

⇢
0 if xj = 0
pjxj ��1

j
xj if 0 < xj  1

(j 2 N)

The quadratic case. If kj 6= 0 the objective function (17) is quadratic. In particular,
it corresponds to a convex function if kj > 0, whereas it is a concave function in (0, 1) if
kj < 0 (while it is not concave neither convex when 0 and 1 are considered). In the first case
Proposition 3 applies, thus both model MINT and the DP algorithm can be used to derive
an optimal solution. In this case, however, we could not use model MGEN since our solver
does not support the maximization of convex functions. In the concave case, instead, model
MINT and the DP algorithm do not provide an optimal solution, whereas model MGEN
asks for the minimization of a convex quadratic integer program, which can be tackled by
our solver (the continuous relaxation of MGEN has concave objective function).

Figures 2 and 3 show the di↵erent shapes of the profit function in the linear and quadratic
cases, respectively, inside the interval [0, 1]. They are compared with the linear profit function
corresponding to CKP.

-∆0
j

0

pj - ∆
1
j

pj

0 1

F(xj)

xj

CKP

Constant

Increasing

Decreasing

Figure 2: Linear profit functions of FKPP

compared with CKP.

-∆0
j

0

pj - ∆
1
j

pj

0 0.5 1

F(xj)

xj

CKP

Convex

Concave

Figure 3: Convex and concave profit func-

tions of FKPP compared with CKP.

Our benchmark includes, for each KP instance, 5 FKPP problems defined according to
the penalty functions described above: convex, concave, constant, increasing and decreasing.
In all cases, but for the one with increasing penalty, we set �0

j
= 0.1pj for each item j.

Similarly, all instances but those with decreasing penalty shape, �1
j
= 0.1pj for each item

j. For the quadratic concave case, we set kj = 0.4pj, as this choice defined a curve that is
a tangent to the linear function pjxj for xj = 0.5. By analogy, we set kj = �0.4pj in the
convex case.

21



6.3. Results on linear instances

Table 1 reports the results for the considered FKPP instances with linear penalty functions
(kj = 0). The first and the second columns of the table report the range R and the number
of items n of the instances, respectively. Each row summaries the results of eighteen di↵erent
instances (fifteen for R � 105): one instance for each class (as in [18]) and for each type of
linear penalty function (constant, increasing and decreasing). Then the table is vertically
divided into six sections, each associated with a model or an algorithm. For each algorithm
we report the percentage of instances solved to optimality and the average computing time
(for instances solved to optimality only). As algorithms IDP1 and IDP2 can solve all
instances to proven optimality, we report only the associated computing times. Finally, row
Avg collects the averages of the above values.

MGEN DP1 IDP1 DP2 IDP2 MCKP

R n % Opt. Time % Opt. Time Time % Opt. Time Time % Opt. Time

10
3

20 100.00 0.01 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00

10
3

50 100.00 0.11 100.00 0.01 0.00 100.00 0.00 0.00 100.00 0.00

10
3

100 100.00 1.10 100.00 0.03 0.00 100.00 0.02 0.01 100.00 0.00

10
3

200 100.00 7.30 100.00 0.08 0.01 100.00 0.06 0.01 100.00 0.00

10
3

500 100.00 10.00 100.00 1.06 0.10 100.00 1.31 0.13 100.00 0.02

10
4

20 100.00 0.01 100.00 0.01 0.01 100.00 0.00 0.00 100.00 0.29

10
4

50 100.00 0.31 100.00 0.06 0.02 100.00 0.01 0.01 100.00 0.04

10
4

100 100.00 42.85 100.00 0.22 0.05 100.00 0.07 0.03 100.00 0.05

10
4

200 77.78 1208.05 100.00 0.87 0.13 100.00 0.37 0.06 100.00 0.10

10
4

500 55.56 0.49 100.00 4.66 0.46 100.00 3.48 0.37 94.44 0.20

10
5

20 100.00 0.01 100.00 0.10 0.04 100.00 0.00 0.00 100.00 22.72

10
5

50 100.00 0.06 100.00 0.40 0.13 100.00 0.01 0.01 100.00 29.42

10
5

100 100.00 0.75 100.00 1.58 0.35 100.00 0.33 0.14 100.00 62.46

10
5

200 80.00 0.97 100.00 6.21 0.92 100.00 2.92 0.66 100.00 28.97

10
5

500 60.00 76.46 100.00 38.47 3.45 100.00 27.86 3.09 100.00 0.76

10
6

20 100.00 0.01 100.00 0.95 0.40 100.00 0.00 0.01 100.00 831.63

10
6

50 100.00 0.27 100.00 5.87 1.80 100.00 0.07 0.06 93.33 1102.64

10
6

100 100.00 0.85 100.00 21.61 4.25 100.00 3.86 1.68 86.67 256.69

10
6

200 80.00 1.21 100.00 84.95 12.10 100.00 33.94 8.32 100.00 143.40

10
6

500 86.67 673.10 100.00 531.08 47.37 100.00 395.27 42.46 86.67 466.65

10
7

20 100.00 0.01 100.00 12.10 5.35 100.00 0.04 0.08 0.00 -

10
7

50 100.00 0.37 100.00 78.15 22.85 100.00 0.20 0.19 0.00 -

10
7

100 100.00 1.96 100.00 298.58 60.47 100.00 18.08 12.98 0.00 -

10
7

200 100.00 2.63 100.00 1161.82 167.09 100.00 477.00 129.27 0.00 -

10
7

500 100.00 12.90 0.00 - 650.15 60.00 0.22 701.85 0.00 -

Avg 93.60 81.67 96.00 93.70 39.10 98.40 38.61 36.06 78.44 147.30

Table 1: Average computing time (seconds) over 6 classes of instances with linear profit function.

Computational experiments show that the DP algorithms have a much better perfor-
mance than the direct application of the ILP solver on model MGEN : the computing times
for the model are often orders of magnitude larger than those of the DP algorithms, and the
number of instances solved to optimality is slightly over the 80%. The improved DPs (IDP1
and IDP2) are, on average, the best performing algorithms for the larger instances having
500 items. For these instances, the computing times are one order of magnitude smaller than
those of the corresponding non-improved versions. In addition, IDP1 and IDP2 are the only
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methods that can solve all the instances within the time limit. Finally, as to MCKP , results
show that the performance of this algorithm are only marginally a↵ected by the number of
items, whereas it strongly deteriorates when increasing the maximum size R of the items:
actually, MCKP is unable to solve any instance with R = 107.

Figures 4, 5 and 6 report the same results, for constant, increasing and decreasing penalty
functions, respectively, using performance profiles (in logarithmic scale). Following the guide-
lines suggested by Dolan and Moré [9], performance profiles are defined as follows. Let m
be any solution method and i denote an instance of the problem. In addition let ti,m be the
time required by method m to solve instance i. We define performance ratio for pair (i,m)
as

ri,m =
ti,m

minm2M{ti,m}
where M is the set of the considered methods. Then, for each method m 2 M , we define:

⇢m(⌧) =
|{i 2 I : ri,m  ⌧}|

|I|

where I is the set of the instances. Intuitively, ri,m denotes the worsening (with respect
to computing time) incurred when solving instance i using method m instead of the best
possible one, whereas ⇢m(⌧) gives the percentage of instances for which the computing time
of method m was not larger than ⌧ times the time of the best performing method.

The performance profiles clearly show that the DP algorithms are not influenced by the
considered penalty function: they “sample” the value of the profit function for integer weight
values and associate the profit to the corresponding item fraction. Instead, the performances
of the other two methods depend on the penalty function: model MGEN has a good perfor-
mance for about 40% of the instances with increasing penalty functions, for which it is the
fastest method, but then it struggles in solving the instances with constant penalty function.
On the contrary, MCKP turns out to be the fastest method for almost 40% of the instances
with constant penalty, but it has low performance in the remaining two cases. Among DP
algorithms, IDP2 turns out to be the most e�cient method: actually, this is the fastest
algorithm for almost 30% of the instances and turns out to be the best algorithm for all the
hard instances that require a large computing time.

6.4. Results on convex instances

Table 2 reports the results for the considered FKPP instances with convex profit function
(kj < 0, j 2 N). The table is organized as Table 1 though it does not include results for
model MGEN , that cannot be optimized using our MIP solver.

The results are somehow similar to those of the linear case, and confirm that the DP
algorithms are not really dependent on the shape of the profit function. Conversely, algo-
rithm MCKP has a much more unpredictable behavior that, in any case, deteriorates when
increasing the value of R.

Figure 7 reports the performance profile for these instances, showing that DP2, IDP2
andMCKP are the best methods for 30% of the instances each, while IDP1 being the fastest
method for 10% of the instances. The fact that DP2 can be the best method, i.e., even better
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Figure 4: Performance profile of exact methods for FKPP - Constant penalty function.
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Figure 5: Performance profile of exact methods for FKPP - Increasing penalty function.
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Figure 6: Performance profile of exact methods for FKPP - Decreasing penalty function.

DP1 IDP1 DP2 IDP2 MCKP

R n % Opt. Time Time % Opt. Time Time % Opt. Time

10
3

20 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00

10
3

50 100.00 0.01 0.00 100.00 0.00 0.00 100.00 0.00

10
3

100 100.00 0.03 0.00 100.00 0.02 0.00 100.00 0.00

10
3

200 100.00 0.08 0.01 100.00 0.07 0.02 100.00 0.00

10
3

500 100.00 1.09 0.12 100.00 1.30 0.15 100.00 0.01

10
4

20 100.00 0.01 0.00 100.00 0.00 0.00 100.00 0.16

10
4

50 100.00 0.05 0.02 100.00 0.01 0.01 83.33 0.01

10
4

100 100.00 0.22 0.04 100.00 0.07 0.04 100.00 0.02

10
4

200 100.00 0.79 0.12 100.00 0.36 0.07 100.00 0.04

10
4

500 100.00 4.67 0.48 100.00 3.50 0.36 100.00 0.11

10
5

20 100.00 0.08 0.03 100.00 0.00 0.00 100.00 17.64

10
5

50 100.00 0.39 0.17 100.00 0.01 0.01 80.00 6.14

10
5

100 100.00 1.59 0.36 100.00 0.32 0.15 80.00 0.37

10
5

200 100.00 6.16 0.97 100.00 2.96 0.66 100.00 0.32

10
5

500 100.00 38.44 3.47 100.00 28.52 3.11 60.00 0.35

10
6

20 100.00 0.94 0.40 100.00 0.01 0.01 60.00 1006.89

10
6

50 100.00 5.30 1.60 100.00 0.08 0.05 80.00 421.53

10
6

100 100.00 20.74 4.09 100.00 3.18 1.54 80.00 3.80

10
6

200 100.00 83.88 12.00 100.00 31.16 8.32 100.00 17.54

10
6

500 100.00 593.05 52.29 100.00 507.75 43.01 80.00 54.57

10
7

20 100.00 11.61 5.17 100.00 0.05 0.08 0.00 -

10
7

50 100.00 71.74 21.21 100.00 0.17 0.20 0.00 -

10
7

100 100.00 282.98 56.63 100.00 16.62 13.03 0.00 -

10
7

200 100.00 1114.09 160.22 100.00 357.51 129.78 0.00 -

10
7

500 0.00 - 678.84 60.00 0.23 701.45 0.00 -

Avg 96.00 93.25 39.93 98.40 38.16 36.08 72.13 76.47

Table 2: Average computing time (seconds) over 6 classes of instances with convex objective function. Observe

that the times required by the di↵erent DP algorithms are almost identical to those of the linear case.
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that its improved counterpart IDP2, is due to implementation details that produce some
slowdown in the latter; typically these e↵ects are negligible, but they are evident for easy
instances that are solved within fractions of a second.
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Figure 7: Performance profile of exact methods for FKPP - Quadratic convex penalty function.

6.5. Results on concave instances

As to profit functions that are concave in (0, 1), the only available method for computing
an optimal solution is the application of our solver to model MGEN . Table 3 reports the
computing times and the percentage of instances solved to optimality for these instances.

n = 20 n = 50 n = 100 n = 200 n = 500
R % Opt. Time % Opt. Time % Opt. Time % Opt. Time % Opt. Time
103 100.00 0.75 83.33 614.84 33.33 0.44 33.33 5.74 0.00 -
104 100.00 1.32 66.67 0.94 33.33 0.66 33.33 6.24 16.67 165.84
105 100.00 0.93 80.00 19.21 40.00 0.68 20.00 3.99 20.00 29.63
106 100.00 0.81 80.00 77.98 20.00 1.06 20.00 4.99 20.00 13.16
107 100.00 14.39 40.00 287.85 20.00 4.12 20.00 5.14 20.00 10.93
Avg 100.00 3.64 70.00 200.16 29.33 1.39 25.33 5.22 15.33 54.89

Table 3: Average times (seconds) over 6 classes of instances with quadratic concave objective function.

The results in Table 3 show that solving the problem with concave profit is much more
challenging than in the linear case: MGEN is able to consistently solve all the instances
with 20 items, with an average computing time of 3.64 seconds, but it fails in solving 30% of
the instances with n = 50. Remind that, in the linear case, the same algorithm was able to
solve all the instances with n  100. Results are even worse for larger instances: only 15%
of the instances with 500 items are solved to proven optimality within the given time limit.
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6.6. Results of heuristic algorithms

Finally, we report the results obtained by executing the heuristic algorithms of Section
5 on our instances. We compare these heuristics with a trivial approach that solves the
associated KP instance and takes no item at a fractional level. All these algorithms require a
negligible computing time for the considered instances, thus times are not reported in what
follows.

We evaluate the quality of a heuristic solution as follows

%prof = 100⇥ zH

z⇤
(18)

where z⇤ and zH denote the optimal and the heuristic solution values, respectively.
Figure 8 and 9 plot the quality of the heuristic solutions for all the instances with linear and
convex profit functions, as for all these instances the optimal solution value is known. The
two figures show the trend with increasing number of items and range, respectively.

From Figure 8, we see that H1 finds the best solutions, on average, for instances with 20
items; for larger instances the best algorithm is H2. H3 has a trend which is similar to that
of H2, though it performs better than the latter on instances with 20 items only. Finally we
observe that the quality of the heuristic solutions improves when increasing the number of
items: for n = 20, the best performing algorithm (namely, H1) has an average profit that is
about 1% smaller than the optimal one, while for n = 500 this gap is considerably reduced,
and the profits of the heuristic solutions are almost the same as the profits of the optimal
solutions. This is due to the fact that, for large number of items, the optimal KP solution
value is very close to the optimal FKPP solution value (see the plot of algorithm KP), hence
the way the spare capacity is filled becomes less crucial. From the practical viewpoint this
is good news: for smaller instances, it is important to compute optimal solutions, which can
be obtained in short computing time; for large instances, where computing optimal solutions
may be time consuming, heuristic solutions are indeed near-optimal. Figure 9 (increasing
range) shows a similar behavior concerning the KP solutions. However, in this case, the
trend associated with the other heuristic solutions is much more irregular. This plot points
out the obvious dominance of H1 over KP. In addition, also in this case H2 and H3 have
similar performances, that are better than H1 for instances with small R, but become even
worse than KP for instances with R � 105.

As to instances with concave profit functions, we could solve to optimality only instances
with 20 items. Table 4 reports, for the KP and the three heuristic algorithms, the average
values of %prof , and the percentage of instances for which each algorithm computed an
optimal solutions.

In this case the best algorithm is clearly H3, which finds an optimal solution in about
44% of the cases and gives, on average, a profit which is 99.93% times the optimal one.

7. Conclusions

We considered integer optimization problems in which the integrality of the variables
can be relaxed at the expenses of some penalty in the objective function, a situation that
has relevant applications in many contexts. Di↵erent from previous approaches from the
literature, that always considered the case in which the penalty is constant, we allow the
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KP H1 H2 H3
R % Opt. %prof % Opt. %prof % Opt. %prof % Opt. %prof
103 16.67 95.77 33.33 96.95 16.67 98.88 33.33 99.72
104 0.00 96.76 0.00 97.30 33.33 99.53 50.00 99.98
105 20.00 99.19 20.00 99.74 20.00 98.54 40.00 99.96
106 40.00 98.45 40.00 99.42 20.00 99.37 60.00 99.99
107 20.00 99.15 20.00 99.15 20.00 99.23 40.00 99.98
Avg 19.33 97.86 22.67 98.51 22.00 99.11 44.67 99.93

Table 4: Average percentage profit and optimal solutions for the heuristic algorithms, concave profit function

(20 items).
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penalty to be dependent on the fractional quantity. As a case study, we concentrated on
the Knapsack Problem (KP), which is the simplest integer optimization problem and for
which many relevant properties are known. Introducing a penalty associated with fractional
variables, we thus defined the Fractional Knapsack Problem with Penalties (FKPP), that we
modelled using two mathematical formulations. We studied some properties of the problem,
and analyzed the performances of the two models depending on the penalty functions used.
From an approximability perspective, we showed that FKPP admits a Fully Polynomial Time
Approximation Scheme (FPTAS), independently from the form of the penalty function. From
an algorithmic point of view, we introduced two dynamic programming algorithms and three
fast heuristic algorithms. We performed an extensive computational analysis to illustrate
the performances of all the approaches on a large benchmark set derived from the literature.
Our experiments show that we are able to e�ciently solve medium-sized FKPP instances,
and that the hardness of the instances is closely related to the shape of the penalty function
used. Moreover, it seems that FKPP instances are consistently much harder that their KP
counterparts, which can be solved in an almost negligible time using combinatorial algorithms
from the literature. This suggests that some combinatorial algorithm tailored for FKPPmight
allow the solution of much larger instances in a reasonable computing time.

Acknowledgments

Enrico Malaguti and Michele Monaci are supported by the Air Force O�ce of Scientific
Research, grants FA9550-17-1-0025 and FA9550-17-1-0067, respectively. Ulrich Pferschy was
supported by the University of Graz project ”Choice-Selection-Decision” and by the COL-
IBRI Initiative of the University of Graz.

References

[1] C. Archetti and M. G. Speranza. Vehicle routing problems with split deliveries. Inter-
national Transactions in Operational Research, 19(1-2):3–22, 2012.

[2] R. Bellman. Dynamic Programming. Princeton University Press, 1957.

[3] K. M. Bretthauer and B. Shetty. The nonlinear knapsack problem–algorithms and
applications. European Journal of Operational Research, 138(3):459–472, 2002.

[4] B. Byholm and I. Porres. Fast algorithms for fragmentable items bin packing. Technical
Report 1181, Turku Centre for Computer Science, 2017.

[5] M. Casazza and A. Ceselli. Mathematical programming algorithms for bin packing
problems with item fragmentation. Computers & Operations Research, 46:1–11, 2014.

[6] M. Casazza and A. Ceselli. Exactly solving packing problems with fragmentation. Com-
puters & Operations Research, 75:202–213, 2016.

[7] A. Ceselli and G. Righini. An optimization algorithm for a penalized knapsack problem.
Operations Research Letters, 34(4):394–404, 2006.

29



[8] F. Della Croce, U. Pferschy, and R. Scatamacchia. Dynamic programming algorithms,
e�cient solution of the LP-relaxation and approximation schemes for the penalized knap-
sack problem. Technical Report 2017-03-5880, Optimization Online, 2017.
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