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ABSTRACT

Pilocytic astrocytoma (PA) is the most common glioma in pediatric patients 
and occurs in different locations. Chromosomal alterations are mostly located at 
chromosome 7q34 comprising the BRAF oncogene with consequent activation of 
the mitogen-activated protein kinase pathway. Although genetic and epigenetic 
alterations characterizing PA from different localizations have been reported, the 
role of epigenetic alterations in PA development is still not clear. The aim of this study 
was to investigate whether distinctive methylation patterns may define biologically 
relevant groups of PAs. Integrated DNA methylation analysis was performed on 20 
PAs and 4 normal brain samples by Illumina Infinium HumanMethylation27 BeadChips. 

We identified distinct methylation profiles characterizing PAs from different 
locations (infratentorial vs supratentorial) and tumors with onset before and after 3 
years of age. These results suggest that PA may be related to the specific brain site 
where the tumor arises from region-specific cells of origin. We identified and validated 
in silico the methylation alterations of some CpG islands. Furthermore, we evaluated 
the expression levels of selected differentially methylated genes and identified two 
biomarkers, one, IRX2, related to the tumor localization and the other, TOX2, as 
tumoral biomarker.
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INTRODUCTION

Pilocytic astrocytoma (PA) is a pediatric low-grade 
glioma (pLGG) and the most common pediatric brain 
tumor, accounting about for 18% of all pediatric brain 
tumors and mostly affecting children between 5–15 years 
of age. It can arise anywhere in the CNS, but is most 
commonly localized in the cerebellum followed by the optic 
pathway/hypothalamic region [1]. It is classified as grade I 
by the World Health Organization (WHO), reflecting their 
slow growth and typically non-invasive behavior. 

Pilocytic astrocytomas typically contain a BRAF 
fusion but occasionally a BRAF V600E mutation, RAF1 
fusion, intragenic duplication of FGFR1, or other rarer 
alterations are present [2, 3].

Childhood pilocytic astrocytomas (PA) are low 
grade tumours with an excellent prognosis. However, 
PA can cause extensive morbidity due to local tumor 
expansion or therapy-related side effects and recurrence 
or progressive disease (PD), which occurs in up to 80% 
of patients, depending on location and extent of initial 
resection [4]. Therefore, new therapies are needed in order 
to specifically target the disease and improve the clinical 
course of these patients.

Epigenetic biomarkers represent a promising 
area of research, with DNA methylation having the 
potential to provide information regarding physiological 
and pathological status. Methylation signatures can be 
useful as specific and accurate biomarkers to assist with 
prognosis. The aims of the present work were to define 
biologically distinct groups of PA and possible relevant 
biomarkers through a global DNA methylation analysis 
over 27K CpG loci, and to asses the impact of methylation 
alterations on gene expression by qRT-PCR.  We identified 
distinct methylation profiles characterizing PAs from 
different locations (infratentorial vs supratentorial) and 
tumors with onset before (≤ 3 yrs) and after (> 3 yrs)  
3 years of age. Our study also identified IRX2 as possible 
topographical biomarker and TOX2 as tumoral biomarker.

RESULTS

Differential methylation analysis

We performed a global DNA methylation profiling 
using Illumina Infinium HumanMethylation27 BeadChips 
on 20 PAs and 4 normal brain samples from healthy 
individuals. We carried out a differential methylation 
analysis between tumoral and non-tumoral samples, by 
comparing the average beta signal obtained for each locus 
in the two subgroups. We found 919 CpG loci resulting 
hypermethylated in tumoral tissues at the nominal p-value 
threshold 5.0E-02 (differential score above 13). 640 of 
them were also significant with p-value below 1.0E-02, 
and 449 below 1.0E-03. On the other side, 1544 loci were 
significantly hypomethylated in cancer samples (p-value 

< 5.0E-02), of which 933 under 1.0E-02 and 609 under 
1.0E-03. 

Although the number of samples analyzed was quite 
small, we divided PA patients into two subgroups according 
to two selection criteria: topographic criterion and age of 
onset criterion in order to test whether these parameters 
may correlate with different methylation patterns. 
According to the topographic criterion, 50% of PAs 
(10/20) had a supratentorial localization and the other half 
of tumors (10/20) were located in the infratentorial region. 
The differential methylation analysis between the two 
clusters revealed 1931 CpG loci resulting hypermethylated 
in the supratentorial PAs at the nominal p-value threshold 
5.0E-02. 1276 of them were also significant with p-values 
below 1.0E-02, and 859 below 1.0E-03. On the other 
side, 1381 loci were significantly hypomethylated in the 
supratentorial PAs (p-value < 5.0E-02), of which 843 under 
1.0E-02 and 519 under 1.0E-03. 

Next, we tested the hypothesis whether the age of 
onset correlated with the DNA methylation pattern. Since 
brain tumors in children under 3 years of age differ in 
clinical presentation and biological behavior from those 
in older patients, cases were grouped as follows: 45% of 
tumors (9/20) with onset before 3 years of age (≤3 yrs) 
and 55% of PAs (11/20) developed after 3 years of age 
(>3 yrs). The differential methylation analysis revealed 
2645 CpG loci resulting hypermethylated in the >3 yrs 
subgroup, at the nominal p-value threshold 5.0E-02. 1506 
of them were also significant with p-values below 1.0E-
02, and 899 below 0.001. On the other side, 2312 loci 
were significantly hypomethylated in the >3 yrs subgroup 
(p-value < 5.0E-02), of which 1403 under 1.0E-02 and 828 
under 1.0E-03. 

The Unsupervised Hierarchical Clustering (UHC), 
performed by comparing the methylation value of each 
sample for each locus, demonstrates that the relevant 
methylated loci (p-value < 0.01) allow to distinguish 
two major clusters for each category, infratentorial 
vs supratentorial (Figure 1A) and age ≤ 3 vs age > 3  
(Figure 1B) mostly reflecting the subgroups established a 
priori. In particular, PAs segregated clearer based on tumor 
location than age groups; in fact, only two supratentorial 
tumors clustered with the infratentorial PAs. 

We conducted Ingenuity Pathway Analysis in order 
to classify genes associated with differentially methylated 
loci thus identifying pathways potentially involved in 
gliomas oncogenesis.  

IPA revealed that genes associated to significantly 
differently methylated CpG loci in the case-control 
study (p-value < 1.0E-03) belong to the following 
networks: Gαi Signaling; RhoGDI Signaling; CMP-N-
acetylneuraminate Biosynthesis I (Eukaryotes); cAMP-
mediated signaling; Synaptic Long Term Depression. 
The analysis also suggested which cellular and molecular 
circuits were mainly affected, including: cancer 
mechanisms, neurological diseases, molecular transport, 



Oncotarget13809www.impactjournals.com/oncotarget

cellular growth and proliferation, cell cycle, DNA 
replication, recombination and repair, tissue development, 
cell to cell signaling and interaction, etc. As expected, 
the highest number of genes with altered methylation 
belongs to pathways involved in the development, 
growth and proliferation of cells and tissues, including 
the mechanisms of cell death, survival, and cancer. The 
involvement of these networks is supported by quite 
strong statistical evaluation (p-value < 2.0E-04). 

Then, analyzing by IPA, the list of genes whose CpG 
loci are differentially methylated between supratentorial 
vs infratentorial tumors, we identified these pathways: 
cAMP-mediated signaling; G-Protein Coupled Receptor 
Signaling; LXR/RXR Activation; Maturity Onset Diabetes 
of Young (MODY) Signaling; FXR/RXR Activation. 

Finally, by entering into IPA, the list of CpG 
loci differently methylated between ≤3 yrs and >3 yrs 
subgroups, the molecular pathways that appear to be 
most affected are: p53 Signaling; Intrinsic Prothrombin 
Activation Pathway; Sphingosine-1-phosphate Signaling; 
α-tocopherol Degradation; Role of IL-17A in Psoriasis. 

Calibration of an integrated DNA methylation 
analysis approach: the EN2 case 

To validate and increase the robustness of 
HumanMethylation 27 data taking advantage of the wider 
epigenome coverage provided by the 450K array, we 
performed a probe enrichment (see methods and Figure 2)  
of our data using the 450K data obtained by Lambert  

Figure 1: Unsupervised hierarchical clustering analysis of significantly differently methylated CpG Islands related to 
the two subgroups considered in the study: tumor location and age at onset. (A) infratentorial and supratentorial samples (248 
CpG Islands); (B) age at onset ≤ 3 or > 3 (360 CpG Islands).
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et al. analyzing 62 PA samples (GEO repository of NCBI 
[GSE44684]) [5]. 

First of all, we were able to validate the 
hypermethylation of EN2, key result in Lambert et al. 
[5]. In particular, as reported by Lambert et al. [5], this 
gene shows an extensive gene body hypermethylation, 
including the regions upstream and downstream the gene, 
except the region around the transcription start site (TSS) 
(Figure 3). 

To examine the influence of DNA methylation on 
gene expression, EN2 expression analysis was assessed 
by qRT-PCR, revealing that its expression was higher in 
infratentorial than in supratentorial PAs by almost 6-fold 
(Figure 4A). 

We compared the expression levels of EN2 observed 
in our tumor samples with patterns of expression in 
commercially available human normal brain samples 
(Figure 4B) and in different normal brain sites using gene 
expression data retrieved from the GTExPortal, showing 

that its expression level in the tumoral samples is in line 
with that observed in the normal tissues (Figure 4C).

Identification of novel biomarkers

Since our prominent results emerged from the 
differential methylation analysis between the two PA 
localizations, we focused our validation process only on 
these results. 

The list of genes validated is reported in 
Supplementary Tables 1 and 2.

We focused on the genes IRX2 and TOX2 to verify 
whether a differential DNA methylation may correlate 
with different gene expression profiles between the two 
tumoral localizations. Due to the limited amount of RNA 
available from our samples, six genes were selected based 
on 27K absolute mean differential methylation value 
greater or equal to the 10%. The feasibility of the assay 
design, that guaranteed reproducibility and reliability of 

Figure 2: Flowchart describing the selection, annotation, probe enrichment and validation of the methylation 
alterations relative to the Supratentorial/Infratentorial differential methylation comparison.
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the gene expression data, led to the selection of IRX2 and 
TOX2 for subsequent qRT-PCR analysis.

The IRX2 and TOX2 hypermethylation in the 
supratentorial PAs was validated (Figures 5, 6). In 
particular IRX2 showed a hypermethylation, apart from 
the region around the TSS, of a CpG island that spans 
the promoter region and the gene body (Figure 5); while 
TOX2 showed a promoter CpG island hypermethylation, 
except for the region around the TSS (Figure 6). 

qRT-PCR revealed a significantly decreased 
expression of IRX2 (Figure 4A) and almost significant of 
TOX2 (Figure 4A) (by nearly 35 fold and by about 4 fold 
respectively) in supratentorial compared to infratentorial 
PAs. 

IRX2 and TOX2 gene expression levels in tumor 
samples (Figure 4A) were compared to commercially 
available human normal brain samples (Figure 4B) and 
to GTEx expression data observed in different normal 
brain sites (Figure 4C). The expression level of IRX2 
in the tumor samples resulted in line with that observed 
in the normal brain sites. On the other hand, TOX2 
expression level in the PA samples is in contrast to the 
gene expression level observed in the normal brain sites.

Prognostic value of the identified biomarkers

Since the results obtained showed a differential 
methylation and expression of TOX2 and IRX2 between 

supratentorial and infratentorial PAs, we decided to 
evaluate the putative prognostic implications of TOX2 and 
IRX2 expression using a web-tool called PROGgeneV2 
[6] on in silico data. Patients were classified as high-
expression or low-expression groups to generate Kaplan-
Meier plots (Figure 7A, 7B) using gene expression data of 
adult LGG from TCGA [TCGA-LGG]. The results showed 
very significant differences in the survival rate between 
patients with different expression of TOX2 (Figure 7A) 
and IRX2 (Figure 7B).

DISCUSSION

DNA methylation plays a key role during 
embryogenesis and differentiation. Alterations in DNA 
methylation have been linked to several human diseases 
including gliomas.

In this study we performed the following differential 
methylation analyses in PAs:  1) tumors vs normal brain, 
2) ≤3yrs vs >3yrs subgroups and 3) infratentorial vs 
supratentorial. In addition, we performed in silico functional 
and interaction analyses of differently methylated loci using 
IPA software. The results obtained suggest an involvement 
of different pathways depending on the specific analysis. 
As expected, by comparing the methylation pattern of 
tumor DNA vs non-neoplastic brain cells, the cellular and 
molecular circuits mainly represented included mechanisms 
of cell death, survival, and tumorigenesis.

Figure 3: 27K/450K enrichment and comparison. CpG Islands found significantly altered in PAs analyzed in the present study 
(using the HumanMethylation27 beadchip), were compared and enriched in silico with PA data analyzed by Lambert and colleagues 
(HumanMethylation450K beadchip). Here is the example of the EN2 gene.
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On the other hand, IPA identified inflammatory 
response mechanisms and immune cell trafficking as 
the top cellular and molecular networks related to PA 
topography i.e. infratentorial vs supratentorial. 

It is noteworthy that p53 signaling results to be 
involved at a very significant level (p-value = 4.35E-06), 

with 21 altered genes on 95, in the age groups comparison. 
Although previous studies have reported a lower TP53 
mutations frequency in high grade glioma patients 
under the age of 3 years than older children, suggesting 
that there may be two distinct pathways involved in the 
tumorigenesis [7, 8], TP53 mutations have been rarely 

Figure 4: EN2, IRX2, TOX2 gene expression profile. (A) Differential expression obtained by qRT-PCR on the PA samples collected 
in the present study, calculated using the ΔΔCT method and expressed as fold change relative to the supratentorial mean expression value; 
(B) Differential expression obtained by qRT-PCR on commercially available normal brain RNA, calculated using the ΔΔCT method and 
expressed as fold change relative to the lowest expression value; (C) Gene expression in normal brain tissue, according to GTEx portal 
(Genotype-Tissue Expression portal). Expression value are shown in log10(RPKM) (Reads Per Kilobase of transcript per Million mapped 
reads), calculated from a gene model with isoforms collapsed to a single gene. In orange: supratentorial localization and related brain 
regions; in yellow: infratentorial localization and related brain regions.
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Figure 5: 27K/450K enrichment and comparison. CpG Islands found significantly altered in PAs analyzed in the present study 
(using the HumanMethylation27 beadchip), were compared and enriched in silico with PA data analyzed by Lambert and colleagues 
(HumanMethylation450K beadchip). Here is the example of the IRX2 gene.

Figure 6: 27K/450K enrichment and comparison. CpG Islands found significantly altered in PAs analyzed in the present study 
(using the HumanMethylation27 beadchip), were compared and enriched in silico with PA data analyzed by Lambert and colleagues 
(HumanMethylation450K beadchip). Here is the example of the TOX2 gene.
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Figure 7: In silico LGG survival curves of patients classified by. (A) TOX2 and (B) IRX2 expression in the indicated dataset 
[TCGA-LGG] (x-axis: survival time in days; y-axis: overall survival). Samples were divided into high and low expression groups 
bifurcating at median expression value for mRNA expression. 
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reported in PA [9]. Similarly, in our study, none of the 
tumor samples showed immunohistochemical expression 
of p53, which when mutated, accumulates in the nucleus 
due to prolonged half-life.

Among the genes differentially methylated 
between PA patients younger and older than 3 years, KL 
gene resulted hypermethylated in the >3yo subgroup. 
Interestingly, the promoter of this gene has been found to 
be methylated and consequently downregulated in other 
tumors [10–14].

These results highlighted specific brain-region and 
age-related methylation patterns, suggesting that different 
molecular pathways may be involved in the pathogenesis 
of PA. 

This finding was supported by the identification 
of distinct gene expression [5, 15–20] and methylation 
profiles [5, 20, 21] between tumors having different 
localizations. Sharma et al. [16] described a specific 
gene expression pattern discriminating infratentorial 
and supratentorial PAs. They also observed that these 
signatures are specific of tumoral and normal astrocytes 
or neuronal stem cells from the same brain region, 
suggesting that these molecular patterns may be connected 
to the specific brain site where the tumor arises. The 
differentially expressed genes identified by Sharma 
and colleagues [16] are implicated in the development 
of the forebrain and the hindbrain. One of these genes, 
IRX2, was found differentially expressed [16, 18, 20] 
and differentially methylated between infratentorial 
and supratentorial PAs in our and other studies [5, 20].  
In particular, Jeyapalan et al. [20] identified an 
intergenic CpG site associated to IRX2 that resulted to be 
differentially methylated between the two tumor groups; 
whereas we detected a differential methylation of a CpG 
island that spans the promoter region and part of the 
gene body of IRX2. In our sample set, IRX2 gene showed 
a hypermethylation and an expected downregulation 
in supratentorial PAs compared to the infratentorial 
PAs (Figure 4A), confirming the gene expression 
profile observed by the other studies [16, 18, 20].  
The expression level of this gene was in line with that 
observed in the normal tissues (Figure 4B and Figure 4C), 
suggesting that its downregulation is probably more of 
a reflection of where the tumor develops rather than the 
onset of PA per se. In fact, IRX2 is implied in vertebrate 
embryos development and is expressed in the developing 
hindbrain. During normal development DNA methylation 
targets genes that are already repressed in order to 
facilitate gene repression instead of directly cause gene 
silencing [22]. Our results support the evidence that DNA 
methylation in cancer occurs in normally downregulated 
genes [23–26]. Hence, the expression of some genes 
seemed to be finely regulated by DNA methylation and, 
in agreement to the model proposed by Timp et al., these 
epigenetic alterations may disrupt the functions of genes 
that regulate the epigenome itself [27].

The possible involvement of IRX2 in cancer 
development is also supported by the fact that IRX2 
may act as a metastasis suppressing protein since its 
low expression has been found to be correlated with less 
differentiated and more aggressive breast cancer tumors. 
Furthermore, it has been revealed that it may be a repressor 
of chemokines expression, thus its low expression levels 
may lead to a sustained chemokines expression and a 
consequent mobilization of tumoral cells [28]. 

Other members of the Iroquois (IRO/IRX) family, 
IRX1, IRX3 and IRX5 have been found differentially 
methylated [5, 20] and/or expressed [5, 16, 18, 20] 
between supratentorial and infratentorial PAs, suggesting 
that these genes may have an important role in specific 
location cancer development. 

Another developmental gene, EN2, showed 
a differential methylation and expression between 
supratentorial and infratentorial PAs.

EN2 resulted to be hypermethylated and upregulated 
in the infratentorial PAs (Figure 4A). This result is in line 
with an unusual positive correlation, evidenced by Lambert 
et al., [5] between non-TSS based hypermethylation 
and gene expression (i.e: high methylation values- 
upregulation; low methylation values–downregulation), of 
genes showing a differential methylation within the gene 
body and/or in regions upstream/downstream (within 10 
kb) of the genes.

Interestingly, the expression levels of EN2 in the 
normal cerebellar hemisphere is the highest among all 
brain sites according to commercially available RNA from 
human normal brain samples (Figure 4B) and to GTEx 
gene expression annotations (Figure 4C). EN2 is involved 
in the control of pattern formation during development of 
the central nervous system. 

An interesting result of our study regards TOX2 
gene that showed a differential methylation between 
supratentorial and infratentorial tumors with the exception 
of the region around the TSS of the longest isoform showing 
no significant difference between the two localizations. 
TOX2 was hypermethylated in supratentorial PAs and 
qRT-PCR revealed that it was also downregulated in this 
subgroup than infratentorial PAs (Figure 4A). This condition 
is in contrast to the gene expression level observed in the 
normal tissue according to commercially available RNA 
from human normal brain samples (Figure 4B) and to GTEx 
expression annotations (Figure 4C), suggesting its potential 
role as a tumoral biomarker. 

This gene was found to be frequently hypermethylated 
in the 5′-end in a series of astrocytomas of different grades, 
including PA (grade I) [29]. Furthermore, by analyzing in 
silico methylation data from glioblastomas (GSE19391), we 
have been able to confirm that the methylation alteration 
near TOX2 gene is also present in high grade gliomas 
[29]. The methylation difference between glioblastomas 
and non-tumor tissues is about 40%, so even higher than 
that observed in PAs, both by our group and by Lambert  
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et al. [5]. The in silico analysis of these high grade gliomas 
also allowed us to point out that TOX2 hypermethylation 
in glioblastomas seems to be independent from tumor 
localization and is present in both pediatric and adult age.

TOX2 was also found to be hypermethylated and 
consequently downregulated in breast and lung cancer 
[30]. This study showed that TOX2 knockdown modulates 
different molecular pathways such as tissue remodeling, 
inflammatory response and cell differentiation. The 
molecular function of this gene is still unknown although it 
has been suggested that it might be a putative transcriptional 
activator involved in the hypothalamo-pituitary-gonadal 
system such as the TOX2 ortholog (GCX-1), identified 
from a rat granulosa cell cDNA library [31].

Tessema and colleagues [30] have identified two 
transcript variants: var.5 and var.6.  According to the 
aminoacid sequences deduced from these two transcripts, 
the isoform called var.5 presents a HMG box domain 
showing 100% homology with the HMG box domain of 
GCX-1, suggesting that TOX2 may be a transcriptional 
activator in humans. On the other hand, var.6 does not 
encode for the HMG box domain, thus this TOX2 isoform 
does not bind the DNA and may be a negative competitor 
of the other variants. In our qRT-PCR experiments, 
we designed an assay able to amplify all isoforms. It 
is known that most genes have downstream start sites 
within the gene bodies of the transcriptional units of the 
upstream promoters and methylation may be a mechanism 
for controlling alternative promoter usage [32]. Thus, it 
would be interesting to individually quantify the different 
isoforms and to study the possible impact of methylation 
alterations on alternative isoforms expression. 

To explore whether IRX2 and TOX2 may also have 
an impact on tumor prognosis, we performed a survival 
analysis using a web-tool called PROGgeneV2. This 
tool allows to select a dataset containing gene expression 
data for a gene of interest. Since the unavailability of a 
specific dataset for pediatric PAs, the Kaplan-Meier plots  
(Figure 7A, 7B) were generated using gene expression 
data of adult LGG from TCGA [TCGA-LGG]. The results 
showed a significant difference in the survival rate between 
patients with different expression of TOX2 (Figure 7A) 
and IRX2 (Figure 7B), suggesting that these genes may be 
important predictive biomarkers of survival also in adult 
patients affected by different types of LGG gliomas. 

Interestingly, gene ontology annotations related to the 
above mentioned genes include: sequence-specific DNA 
binding (EN2, and IRX2), chromatin DNA binding (TOX2), 
RNA polymerase II transcription factor binding (TOX2). 
EN2 and IRX2 contain a conserved DNA sequence encoding 
a homeodomain that specifically binds to DNA motifs. It 
has been established that the inhibition of homeobox genes 
by promoter CpGs island hypermethylation contributes 
to the inactivation of regulatory or DNA repair genes, 
concurring to tumorigenesis. Moreover, it has been 
recognized that homeobox hypermethylated genes in human 

neoplasms [33–38], including PA [5] overlapped with 
known Polycomb targets. Polycomb group proteins form 
multi-protein complexes that dynamically alter chromatin 
structure by modifying specific residues in histone tails and 
recruit DNA methyltransferases methylating DNA [39]. 
Polycomb-mediated repression is a principal mechanism 
by which HOX gene expression is tightly regulated during 
development [40]. Besides, Reddington et al. [41] speculate 
that DNA methylome reprogramming in cancer leads to 
an altered Polycomb binding landscape influencing gene 
expression regulation.

In conclusion, although we still do not functionally 
validate any of the identified genes as potentially relevant 
to the biology of PA, also because of the difficulty in 
culturing these lesions successfully, our results strongly 
suggest that PA may be related to the specific brain site 
where the tumor arises from region-specific cells of origin. 
Moreover, we found a specific topographical biomarkers 
(IRX2) confirming that different PAs segregate by tumor 
location.  More interestingly, we identified TOX2 as a 
promising tumor biomarker, suggesting its possible role in 
gliomas development, with a differential expression in PAs 
with different brain localization and a more pronounced 
hypermethylation in glioblastomas. TOX2 is involved in 
the control of cell apoptosis, growth, metastasis and DNA 
repair and is frequently deregulated in a variety of human 
malignances, however the functional role in tumors remain 
unspecified, and needed for future investigations. 

DNA methylation biomarkers with diagnostic, 
prognostic and predictive power have great potential to 
contribute to personalized medicine throughout life. 

The use of appropriate DNA methylation biomarker 
panels will prove beneficial where the disease phenotype 
is quite heterogeneous. It is also expected that the genetic 
component of disease will be further revealed, which will 
subsequently allow the strengthening of biomarker panels 
by combining genetic and DNA methylation biomarkers.

METHODS

Tumor specimens

Frozen tissue of twenty cases (n = 20) of pediatric 
(≤18 y) pilocytic astrocytomas were collected as part of 
the Italian National Program of Centralization of Pediatric 
Brain Tumor. 

Frozen tissue samples from temporal lobes of adult 
healthy individuals (n = 4) submitted to epilepsy routine 
examination, were also collected. 

The tumor samples were collected fresh at the time 
of surgery. Portions of resected tumors were snap frozen in 
liquid nitrogen and stored at –80° C until use, and the rest 
of the tissue was formalin fixed and paraffin embedded 
for routine histopathology. Haematoxylin-eosin stained 
sections of each case were reviewed carefully before they 
were selected for DNA extraction.  Tumor areas from these 
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specimens had been carefully selected by a pathologist to 
contain 60–90% neoplastic cells. This procedure allow us 
to evaluate difference in methylation between each case 
without surrounding normal tissue. 

Clinicopathological data was available for all cases, 
including tumor location (Table 1). 

Only the samples with a tumor cell content 
estimated to be ≥70% from histopathological assessment 
were included for molecular analysis.

Ethics approval and consent to participate

All procedures performed in studies involving 
human participants were in accordance with the ethical 
standards of the institutional and/or national research 
committee and with the 1964 Helsinki declaration and its 
later amendments or comparable ethical standards.

Informed consent was obtained from all individual 
participants included in the study.

DNA samples purification

To isolate DNA from fresh frozen tissue, we used a 
commercial kit, called “DNeasy Blood & Tissue Kit” from 

Qiagen. DNA samples were analyzed quantitatively and 
qualitatively through spectrophotometric reading, using 
NanoDrop, fluorometric reading, by using PicoGreen 
as DNA intercalator, and by electrophoresis in a 0.8% 
agarose gel.

Illumina infinium HumanMethylation27 
BeadChips 

20 PA samples and 4 control samples were analyzed 
using the Illumina Infinium HumanMethylation27 
BeadChips according to the manufacturer’s instructions 
(Illumina, San Diego, USA Part#11322371 Rev. A). 

DNA methylation analysis

Methylation data were visualized and analyzed 
using the GenomeStudio® software (Illumina). None 
of the samples were excluded following quality control 
steps assessed by bisulfite conversion, extension, 
staining, hybridization, target removal, negative and non-
polymorphic control probes. Methylation levels [beta 
values (β)] were estimated as the ratio of signal intensity 
of the methylated alleles to the sum of methylated and 

Table 1: Sample description

N Diagnosis Tumor location Sex Age

 1 PA Cerebellum (I) M 17
 2 PA Cerebellum (I) F 7
 3 PA Cerebellum (I) M 12
 4 PA Frontal lobe (S) F 2
 5 PA Frontal lobe (S) M 1
 6 PA Optic chiasm (S) M 1
 7 PA Cerebellum (I) F 13
 8 PA Cerebral hemisphere (S) F 7
 9 PA Cerebellum (I) M 11
10 PA Optic chiasm (S) M 2
11 PA Cerebellum (I) F 9
12 PA Temporal lobe (S) F 10
13 PA Cerebellum (I) F 3
14 PA Cerebellum (I) M 11
15 PA Hypothalamus (S) M 5
16 PA Cerebellum (I) M 3
17 PA Cerebellum (I) M 5
18 PA Hypothalamus (S) M 3
19 PA Frontal lobe (S) F 3
20 PA Hypothalamus (S) F 1

PA: pilocytic astrocytomas.
I: infratentorial.
S: supratentorial.
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unmethylated intensity signals of the alleles. The β values 
vary from 0 (no methylation) to 1 (100% methylation). 
CpG sites with a detection p-value > 0.05 were removed 
from analysis. Differential methylation levels (Δβ) 
between the groups of interest were calculated with the 
Illumina Custom model, as implemented in the Illumina 
GenomeStudio software, and DiffScores were computed. 
For a p-value of 0.05, DiffScore = ± 13; For a p-value of 
0.01, DiffScore = ± 22; For a p-value of 0.001, DiffScore 
= ± 33. To account for multiple testing, the Illumina 
Custom Error Model with the False Discovery Rate (FDR) 
corrections was applied; we ran 1000 permutations and 
included FDR up to 20%.

The differential methylation probes were selected 
based on a DiffScore ≥ |22| and annotated according to the 
HumanMethylation450 (450K) manifest. The annotated 
probes on sex chromosome were excluded and only those 
present on a CpG Island were used for the subsequent 
analysis. 

The corresponding CpG Islands were searched 
through the GSE44684 dataset [5] annotated according 
to the 450K, to perform the probe enrichment. This 
method (Figure 2) takes advantage of the wider coverage 
provided by the 450K to increase the number of probes 
for each significantly differently methylated CpG islands 
found with the HumanMethylation27 BeadChips. This 
allows, at the same time, an increase of the robustness of 
HumanMethylation27 results and their validation. The 
validation of our HumanMethylation27 results, based on 
the 450K data, was performed selecting those CpG Islands 
whose direction of methylation change was consistent 
between the two BeadChips. Furthermore, we established 
to select the CpG islands for which the percentage of 
probes, whose differential methylation value was greater 
or equal to the corresponding CpG island differential 
methylation mean value, was greater or equal to 30%. 
Only those CpG islands, with a mean absolute differential 
methylation value ≥ 0.05 and with at least 3 probes were 
considered. The list of genes validated is reported in  
Supplementary Tables 1 and 2.

The database NCBI Gene Expression Omnibus 
(GEO) portal (http://www.ncbi.nlm.nih.gov/geo/) was used 
to retrieve the in silico glioblastoma dataset under accession 
numbers GSE19391. For each CpG sites interrogated in the 
region of interest, processed data were used.

Bioinformatics

The Gene Set Enrichment Analysis (GSEA) of the 
significant differently methylated loci were conducted by 
the Ingenuity Pathway Analysis (IPA) Software (Ingenuity 
Systems, Redwood City, CA, USA; www.ingenuity.com) 
from which are derived the information on the pathways 
potentially involved.

Gene expression data of normal brain tissues were 
retrieved from the Genotype-Tissue Expression (GTEx) 

Project (http://www.GTExportal.org), which contains data 
from gene expression microarrays and RNA sequencing.

The analysis of PA survival was performed using the 
ProGgeneV2 Prognostic Database (http://www.compbio.
iupui.edu/proggene/) [6]. The Kaplan-Meier survival plots 
were constructed on in silico data using low-grade glioma 
survival data from TCGA [TCGA-LGG].

qRT-PCR

RNA extraction from 3 supratentorial and 11 
infratentorial tumor PA tissue samples stored in RNA 
later was performed using the RNeasy Mini Kit (Qiagen, 
Germany) following manufacturer’s instructions. Pooled 
normal brain total RNAs from different human brain areas 
were purchased from Clontech, in particular: Human 
Brain, Cerebellum Total RNA (636535) and Human Brain, 
Cerebral Cortex Total RNA (636561). Retro-transcription 
was performed starting from 1μg RNA/sample using the 
High Capacity Kit (Applied Biosystems, Carlsbad, CA, 
USA). Gene expression, conducted using ABI Prism 7500 
Sequence Detection System (Applied Biosystems, Foster 
City, CA), was assessed by RT qPCR using SsoAdvanced™ 

Universal SYBR® Green Supermix (Bio-Rad) for each 
gene tested and for the endogenous TFRC. Supplementary 
Table 3 summarized primers used in this study to conduct 
qRT-PCR. Gene expression data were analyzed using the 
ΔΔCT method. Statistical analyses were done using R 
function “t.test”. 
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