Supporting Information

$\mathbf{P P h}_{3} A u T F A$ catalyzed in the dearomatization of 2-naphthols with allenamides

Juzeng An, ${ }^{\text {a }}$ Lorenzo Lombardi, ${ }^{\text {a }}$ Stefano Grilli ${ }^{\text {a }}$ and Marco Bandini*a
${ }^{\text {a }}$ Dipartimento di Chimica "G. Ciamician", Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 4016, Bologna, Italy.

Table of Contents

General methods	S2
Preparation of MeO-1a	S3

Preparation of MeO-1aS3

General procedure for gold-catalyzed dearomatization of 2-naphthols with N-allenyl amides
S3
Synthesis of the 1 H -benzochromene 4aa S10
Hydrogenation of 3aaS11
Preparation of $\mathrm{PPh}_{3} \mathrm{AuTFA}$ S12
References S12

General Methods.

${ }^{1} \mathrm{H}$-NMR spectra were recorded on Varian $400(400 \mathrm{MHz})$ spectrometers. Chemical shifts are reported in ppm from TMS with the solvent resonance as the internal standard (deuterochloroform: 7.24 ppm). Data are reported as follows: chemical shift, multiplicity ($s=$ singlet, $d=$ doublet, $t=$ triplet, $q=$ quartet, sext = sextet, sept = septet, $p=$ pseudo, $b=$ broad, $m=$ multiplet), coupling constants (Hz). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded on a Varian $400(100 \mathrm{MHz}$) spectrometers with complete proton decoupling. Chemical shifts are reported in ppm from TMS with the solvent as the internal standard (deuterochloroform: 77.0 ppm). Monodimensional NOE experiment ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$) was performed by using a DPFGSE-NOE sequence, with a 50 Hz pulse and a mixing time of 1.5 s . Irradiation at the frequency of proton $\mathrm{H}^{1}(5.65 \mathrm{ppm})$ showed strong positive NOE response of the H^{4} frequency, confirming the sin-relationship. Weaker NOE effects were also observed for the equatorial H^{2} and the axial H^{3} protons.

GC-MS spectra were taken by El ionization at 70 eV on a Hewlett-Packard 5971 with GC injection. They are reported as: m / z (rel. intense). LC-electrospray ionization mass spectra were obtained with Agilent Technologies MSD1100 single-quadrupole mass spectrometer. Chromatographic purification was done with 240-400 mesh silica gel. Other anhydrous solvents were supplied by Sigma Aldrich in Sureseal ${ }^{\circledR}$ bottles and used without any further purification. Commercially available chemicals were purchased from Sigma Aldrich, Stream and TCI and used without any further purification. Melting points were determined with Bibby Stuart Scientific Melting Point Apparatus SMP 3 and are not corrected. Agilent Technologies LC/MSD Trap 1100 series (nebulizer: 15.0 PSI, dry Gas: $5.0 \mathrm{~L} / \mathrm{min}$, dry Temperature: $325^{\circ} \mathrm{C}$, capillary voltage positive scan: 4000 mA , capillary voltage negative scan: 3500 mA). Preparation of β-naphthols $\mathbf{1}^{[1]}$ and N-allenyl amides ${ }^{[2]}$ were accomplished following the reported procedures.

Preparation of MeO-1a

An oven-dried two-necked flask was charged with $\mathbf{1 a}$ ($80 \mathrm{mg}, 0.5 \mathrm{mmol}$) and NaH ($37 \mathrm{mg}, 2.0$ equiv) in a sequence and left stirring for 30 min at $0^{\circ} \mathrm{C}$. Mel ($85.6 \mathrm{mg}, 1.2$ equiv) was then added and the mixture kept stirring until 1a was completely converted (monitored by TLC). Then, water was added and the mixture extracted with ethyl acetate. At last, organic phase was collected and dried with anhydrous sodium sulfate. After removing the organic solvent under vaccun, the reaction crude was transferred to silica gel column chromatography ($c \mathrm{Hex}: E t O A c=40: 1$) to afford compounds MeO-1a.

MeO-1a. Colorless oil, yield $=75 \%(70 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=\delta 7.93$ (d, J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.74 ($\mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.54 (s, 1H), $7.48-7.39(\mathrm{~m}, 1 \mathrm{H}), 3.81$ (s, 3H), $2.63(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=155.14,132.77$, 131.20, 131.04, 127.69, 127.51, 125.20, 124.68, 124.61, 123.93, 60.65, 17.19, 11.51. GC-MS (m/z): 186. Anal. Calc. for ($\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}: 186.25$): C, 83.83; H, 7.58; found: C, 83.65, H, 7.41.

General procedure for gold-catalyzed dearomatization of 2-naphthols with N -allenyl amides.

An oven-dried two-necked flask was charged with anhydrous chlorobenzene (1 ml), $\mathrm{Ph}_{3} \mathrm{PAuCl}$ (1.2 $\mathrm{mg}, 5 \mathrm{~mol} \%$) and AgTFA ($0.6 \mathrm{mg}, 5 \mathrm{~mol} \%$). After stirring for 15 min , substrate $\mathbf{1}(0.05 \mathrm{mmol})$ and $\mathbf{2}$ (0.1 mmol) were added under dark atmosphere. Then, the reaction was kept stirring at room temperature until 1 was completely consumed (TLC). At last, the solution was directly transferred into silica gel column chromatography ($c \mathrm{Hex}: E t O A c=40: 1 \rightarrow 15: 1$) to afford compounds 3.

1 mmol (1a) scale reaction. An oven dried two-necked flask was charged with anhydrous chlorobenzene (15 ml), $\mathrm{Ph} h_{3} \mathrm{PAuCl}(12.3 \mathrm{mg}, 2.5 \mathrm{~mol} \%$) and AgTFA ($5.5 \mathrm{mg}, 2.5 \mathrm{~mol} \%$). After stirring for 15 min , substrate $\mathbf{1 a}(1 \mathrm{mmol})$ and $\mathbf{2}(1.5 \mathrm{mmol})$ were added under dark atmosphere. Then, the reaction was kept stirring at room temperature until 1a was completely consumed (TLC). At last, the solution was directly transferred into silica gel column chromatography (cHex:EtOAc $=40: 1 \rightarrow$ $15: 1$) to afford compounds 3 aa ($0.88 \mathrm{mmol}, 403 \mathrm{mg}, 88 \%$).

$(+/-)-3 a a$. Colorless oil, yield $=98 \%(22 \mathrm{mg}, 3 \mathrm{~h}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.32-7.18(\mathrm{~m}, 10 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 6.67$ $-6.65(\mathrm{~m}, 2 \mathrm{H}), 6.58(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.78(\mathrm{~m}, 1 \mathrm{H}), 2.63(\mathrm{dd}, \mathrm{J}=$ $12,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{dd}, \mathrm{J}=8.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{~d}, \mathrm{~J}=$ $1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=203.90,145.09$, $143.69,141.68,136.65,135.98,132.56,131.15,130.33,130.11(2 \mathrm{C}), 129.61(2 \mathrm{C}), 129.23(2 \mathrm{C})$, $128.95,128.80,128.37,127.50(2 \mathrm{C}), 126.75,126.56,106.73,51.85,45.04,25.53,21.74,15.76$. LC$\mathrm{MS}(\mathrm{m} / \mathrm{z})$: 481. Anal. Calc. for $\left(\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}\right.$: 457.59): C, 73.50 ; $\mathrm{H}, 5.95$; found: $\mathrm{C}, 73.66, \mathrm{H}, 6.05$.

(+/-)-3ba. Colorless oil, yield $=95 \%(21 \mathrm{mg}, 2 \mathrm{~h}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.38-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.16(\mathrm{~m}, 8 \mathrm{H}), 6.65(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.83(\mathrm{~m}$, $1 \mathrm{H}), 2.67$ (dd, $J=13.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{dd}, \mathrm{J}=8.0,3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=203.91,145.78$, 145.03, 143.71, 136.60, 135.94, 131.53, 130.10, 130.06(2C), 129.60(2C), 129.34, 129.27(2C), 128.86, 127.54(2C), 126.88, 126.84, 125.24, 121.87, 106.59, 52.24, 44.42, 25.63, 21.7. LC-MS (m/z): 288, 155. Anal. Calc. for ($\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}: 443.56$): C, 73.11; H, 5.68 ; found: C, $73.00, \mathrm{H}, 5.89$.
 $\mathrm{Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.55-0.98(\mathrm{~m}, 2 \mathrm{H}), 0.87-0.73(\mathrm{~m}, 2 \mathrm{H}), 0.68(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=204.20,145.19,144.79,143.65,136.63,136.00,131.37,131.05,130.18$, $130.05(2 \mathrm{C}), 129.58(2 \mathrm{C}), 129.27,129.21(2 \mathrm{C}), 128.80,127.55(2 \mathrm{C}), 126.76,126.71,126.20,106.32$, $56.91,45.07,41.38,27.07,23.11,21.75,13.86$. LC-MS (m/z): 485.6. Anal. Calc. for $\left(\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{~S}\right.$: 485.64): C, 74.20 ; H, 6.43; found: C, 74.01, H, 6.21.

$-7.14(\mathrm{~m}, 7 \mathrm{H}), 6.62-6.59(\mathrm{~m}, 3 \mathrm{H}), 5.95(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.78(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{dd}, \mathrm{J}=13.2$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{dd}, \mathrm{J}=13.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.76(\mathrm{~m}, 1 \mathrm{H})$, $0.43(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=204.24,145.26,144.39,143.65,136.61$, 135.95, 131.35, 130.18, 130.03(2C), 129.58(2C), 129.29, 129.22(2C), 128.80, 127.53(2C), 126.79, $126.75,126.27,121.88,106.42,57.59,44.65,34.48,21.75,9.19$. LC-MS (m/z): 480.5. Anal. Calc. for ($\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}: 457.59$): C, 73.50; H, 5.95; found: C, 73.21, H, 5.69.

(+/-)-3ea. Colorless oil, yield $=68 \%(16 \mathrm{mg}, 24 \mathrm{~h}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.41-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.14(\mathrm{~m}$, $8 \mathrm{H}), 6.65-6.59(\mathrm{~m}, 3 \mathrm{H}), 5.93(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-5.13(\mathrm{~m}, 1 \mathrm{H})$, $4.81-4.70(\mathrm{~m}, 2 \mathrm{H}), 3.86-3.78(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=13.6,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.73 (dd, $J=13.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=13.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}$, $3 \mathrm{H}), 2.42-2.38(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=203.26,145.22$, 143.93, 143.69, 136.58, 135.93, 132.81, 131.62, 130.10, 130.02(2C), 129.59(2C), 129.38, $129.24(2 \mathrm{C}), 128.84,127.54(2 \mathrm{C}), 127.15,126.88,126.00,121.90,118.11,106.07,56.66,45.35$, 43.92, 21.76. LC-MS (m/z): 492. Anal. Calc. for ($\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}: 469.60$): $\mathrm{C}, 74.17$; $\mathrm{H}, 5.80$; found: C , 74.25, H, 5.45.

(+/-)-3fa. Colorless oil, yield $=77 \%(20 \mathrm{mg}, 5 \mathrm{~h}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.03(\mathrm{~m}$, $10 \mathrm{H}), 6.98-6.91(\mathrm{~m}, 3 \mathrm{H}), 6.66-6.70(\mathrm{~d}, \mathrm{~J}=16 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}$, $3 \mathrm{H}), 5.77(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.06(\mathrm{~d}, \mathrm{~J}=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=13.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J$ $=13.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=203.35,145.06,143.64,136.59$, $136.42,135.88,131.71,131.12,129.94(2 \mathrm{C}), 129.85,129.64(2 \mathrm{C}), 129.56(2 \mathrm{C}), 129.32,129.19(2 \mathrm{C})$, 128.77, 127.71(2C), 127.64, 127.51(2C), 126.89, 126.37, 126.02, 121.88, 106.33, 57.93, 48.04, 43.33, 21.73. LC-MS (m/z): 542.2. Anal. Calc. for $\left(\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}: 519.66\right)$: C, 76.27; H, 5.63; found: C, 76.12, H, 5.35 .

(+/-)-3ga. Yellow solid, yield $=62 \% ~(18 \mathrm{mg}, 3 \mathrm{~h}) . \mathrm{Mp}=78-82{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.78(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 2 \mathrm{H})$, $7.30-7.14$ (m, 9H), 6.99 (d, J = $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.74$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $6.70(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.57-6.55(\mathrm{~m}, 2 \mathrm{H}), 5.77(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.84-3.76 (m, 1H), 3.54 (d, J = $13.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.14 (d, $J=13.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.94 (dd, $J=13.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), $2.60(\mathrm{dd}, J=13.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $2.41(\mathrm{~s}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=202.60,146.69,145.43,144.41$, 143.79, 142.93, 136.45, 135.86, 132.14, 131.03, 130.38(2C), 130.25, 129.96(2C), 129.69, 129.60(2C), 129.27(2C), 128.90, 127.53(2C), 127.44, 127.38, 126.03, 122.96(2C), 105.23, 57.72, 47.03, 44.17, 21.75. LC-MS (m/z): 587. Anal. Calc. for ($\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}: 564.66$): C, 70.20; H,5.00; found: C, 70.41, H, 5.21.

(+/-)-3ha. Colorless oil, yield = 95\% (25 mg, 3 h$).{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.36-7.16(\mathrm{~m}, 11 \mathrm{H}), 6.65(\mathrm{~d}, \mathrm{~J}=6.8,2 \mathrm{H}), 6.63(\mathrm{~d}, \mathrm{~J}=5.6$, $1 \mathrm{H}), 5.94(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.83(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.42$ $(\mathrm{s}, 3 \mathrm{H}), 2.42-2.40(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 203.90, 145.78, 145.02, 143.71, 136.61, 135.95, 131.53, 130.09, $130.06(2 \mathrm{C}), 129.59(2 \mathrm{C}), 129.34,129.26(2 \mathrm{C}), 128.85,127.54(2 \mathrm{C}), 126.87,126.83,125.24,121.87$, 106.60, 52.24, 44.41, 25.63, 21.75. LC-MS (m/z): 546. Anal. Calc. for ($\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{BrNO}_{3} \mathrm{~S}: 522.46$): C , 62.07; H, 4.63; found: C, 61.96, H, 4.51 .

(+/-)-3ia. Light yellow oil, yield = 45\% (13 mg, 15 h$).{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=8.02(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{td}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.20(\mathrm{~m}, 9 \mathrm{H})$, $7.3(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.71$ (dd, $J=8.4,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{~d}, J=14.0 \mathrm{~Hz}$, 1 H), 3.82-3.75 (m, 1H), 2.63 (dd, J = 13.6, 7.6 Hz, 1H), 2.42 (s, 3H), 2.35 (dd, J = 13.2, 8.0 Hz, 1H), $1.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ $197.32,154.22,145.60,143.78,136.47,135.87,131.82,131.14,130.68,130.14(2 \mathrm{C}), 129.73(2 \mathrm{C})$, $129.44(2 \mathrm{C}), 128.95,128.75,127.56(2 \mathrm{C}), 127.15,126.86,105.48,101.93,53.33,45.81,25.84,21.79$. LC-MS (m/z): 592. Anal. Calc. for ($\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{INO}_{3} \mathrm{~S}$: 569.46): C, 56.95; H, 4.25; found: C, 56.70, H, 4.31.

(+/-)-3ja. Light yellow oil, yield = 40\% (11 mg, 24 h$).{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.48-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.22(\mathrm{~m}, 9 \mathrm{H})$, 7.12-7.17 (m, 4H), $7.01(\mathrm{t}, \mathrm{J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.67-6.63(\mathrm{~m}, 3 \mathrm{H}), 3.97-$ $3.90(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=13.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.98(\mathrm{~m}$, 1 H), 1.48 ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=202.23,163.98,145.40$, $143.74,142.47,136.58,135.98,134.42,131.51,130.49\left(\mathrm{~d},{ }^{1} J_{C F}=8.0 \mathrm{~Hz}\right.$, 1C), 130.22, 130.11(2C), 129.97, 129.88, 129.61(2C), 129.56, 129.54, 129.34(2C), 128.83, $127.47(2 \mathrm{C}), 126.84\left(\mathrm{~d},{ }^{2}{ }_{C F}=43 \mathrm{~Hz}, 2 \mathrm{C}\right), 115.16\left(\mathrm{~d},{ }^{3} J_{C F}=22 \mathrm{~Hz}, 2 \mathrm{C}\right), 106.35,52.83,45.26,25.12$, 21.75. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-113.87-113.93(\mathrm{~m}, 1 \mathrm{~F})$. LC-MS (m/z): 560. Anal. Calc. for $\left(\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{FNO}_{3} \mathrm{~S}: 537.65\right)$: C, 73.72; H, 5.25; found: C, $73.62, \mathrm{H}, 5.11$.

(+/-)-3ka. Colorless oil, yield $=72 \%$ ($19 \mathrm{mg}, 6 \mathrm{~h}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.56-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.441(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, 2H), $7.30-7.14(\mathrm{~m}, 10 \mathrm{H}), 7.11-7.04(\mathrm{~m}, 4 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 6.66-6.62$ (m, 3H), $3.85-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.51$ (dd, J = 72.0, $16.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.64 (dd, J $=13.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta=203.03,144.96,143.79,141.88,139.02,136.69,135.90,135.89,134.55$, $134.42,131.41(2 \mathrm{C}), 130.07(2 \mathrm{C}), 129.64(2 \mathrm{C}), 129.34(2 \mathrm{C}), 129.26(2 \mathrm{C}), 129.19,128.92,128.81$, 128.64(2C), 127.53(2C), 126.74, 126.53, 126.41, 106.70, 52.08, 44.81, 35.22, 25.52, 21.72. LC-MS (m/z): 556.2. Anal. Calc. for $\left(\mathrm{C}_{34} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{~S}: 533.69\right)$: C, $76.52 ; \mathrm{H}, 5.86$; found: C, 76.31, $\mathrm{H}, 5.65$.

(+/-)-3la. Colorless oil, yield $=87 \%$ ($21 \mathrm{mg}, 4 \mathrm{~h}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.32-7.15(\mathrm{~m}, 11 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.67-6.64(\mathrm{~m}, 2 \mathrm{H}), 6.58$ $(\mathrm{d}, \mathrm{J}=12 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.78(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$, 2.35 (dd, J = 8.0, $4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.26-2.15 (m, 2H), 1.39 (s, 3H), $0.95(\mathrm{t}, \mathrm{J}=$ $8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=203.45,144.92,143.68$, 139.95, 137.91, 136.64, 135.97, 131.20, 130.38, 130.11(2C), 129.60(2C), 129.24(2C), 128.92, $128.81,128.57,127.50(2 \mathrm{C}), 126.75,126.50,106.66,51.87,45.04,25.43,22.27,21.74,12.60$. LC$\mathrm{MS}(\mathrm{m} / \mathrm{z})$: 494.2. Anal. Calc. for $\left(\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}: 471.62\right)$: C, $73.86 ; \mathrm{H}, 6.20$; found: C, 73.70, H, 6.09.

(+/-)-3ma. Colorless oil, yield $=94 \%(24 \mathrm{mg}, 6 \mathrm{~h}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.34-7.11(\mathrm{~m}, 11 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.54(\mathrm{~d}, J=14 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.71(\mathrm{~m}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=13.2,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.42(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{dd}, \mathrm{J}=13.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.80-$ $1.72(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.13-1.01(\mathrm{~m}, 2 \mathrm{H}), 0.76-0.61(\mathrm{~m}, 1 \mathrm{H}), 0.67$ $(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=207.07,204.10,144.01,143.63,141.98,136.63$, $135.95,133.32,131.53,130.97,130.07(2 \mathrm{C}), 129.59(2 \mathrm{C}), 129.17(2 \mathrm{C}), 129.04,128.74,128.31$, 127.46(2C), 126.59, 126.43, 106.48, 56.50, 45.45, 41.25, 31.06, 23.10, 21.73, 15.58, 13.87. LC-MS (m/z): 522.6 Anal. Calc. for $\left(\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{~S}: 499.67\right)$: C, $74.52 ; \mathrm{H}, 6.66$; found: C, 74.27, $\mathrm{H}, 6.35$.

(+/-)-3na. Colorless oil, yield $=92 \%(22 \mathrm{mg}, 3 \mathrm{~h}) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.37(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 8 \mathrm{H}), 7.02$ $(\mathrm{m}, 1 \mathrm{H}), 6.68-6.64(\mathrm{~m}, 3 \mathrm{H}), 5.92(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.82(\mathrm{~m}$, 1 H), 2.67-2.61 (m, 1H), 2.59 (t, J=8.0 Hz 2H), 2.42 (s, 3H), 2.35 (dd, $\mathrm{J}=11.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.61-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.37-1.30$ $(\mathrm{m}, 2 \mathrm{H}), 0.93(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=204.23,145.29,143.71,142.93$, $141.46,136.69,135.98,131.36,130.28,130.06(2 \mathrm{C}), 129.59,129.57(2 \mathrm{C}), 129.25,129.22(2 \mathrm{C})$, 128.77, 127.56(2C), 126.76, 125.11, 107.07, 51.93, 44.21, 35.12, 33.58, 25.60, 22.46, 21.75, 14.09. LC-MS (m/z): 523. Anal. Calc. for $\left(\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{~S}: 499.67\right)$: C, 74.52; H, 6.66; found: C, 74.31, H, 6.41 .

(+/-)-3oa. Colorless oil, yield $=86 \%(22 \mathrm{mg}, 3 \mathrm{~h}) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.36(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.13(\mathrm{~m}, 6 \mathrm{H}), 7.08$ (dd, J = 8.0, 1.6 Hz, 1H), $7.04(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{dd}, J=8.0$, $1.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{~d}, \mathrm{~J}=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.78(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.56$ $(\mathrm{m}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{dd}, J=13.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{~d}, J=1.2$ $\mathrm{Hz}, 3 \mathrm{H}), 1.53-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.36-1.28(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl} 3) \delta=204.19,143.70,142.26,141.94,141.30,136.75,136.05,132.35,130.98$, 130.11 (2C), 130.09, 129.58(2C), 129.20(2C), 129.14, 128.72, 128.31, 127.53(2C), 126.45, 107.25,
51.56, 44.84, 35.20, 33.60, 25.49, 22.46, 21.74, 15.81, 14.11. LC-MS (m/z): 536.7. Anal. Calc. for $\left(\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{NO}_{3} \mathrm{~S}: 513.70\right)$: C, 74.82; H, 6.87; found: C, $74.62, \mathrm{H}, 6.61$.

(+/-)-3pa. Colorless oil, yield $=44 \% ~(12 \mathrm{mg}, 6 \mathrm{~h}) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.47(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.31(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.15(\mathrm{~m}, 7 \mathrm{H}), 6.68-6.63(\mathrm{~m}$, $3 \mathrm{H}), 5.98(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.80(\mathrm{dd}$, $J=13.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 3.37-3.32(\mathrm{dd}, J=13.6,8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=203.05,144.53,143.93,143.28,136.53,135.80$, $132.67,131.81,131.76,130.04(2 \mathrm{C}), 129.67(2 \mathrm{C}), 129.36(2 \mathrm{C}), 129.00,128.68,127.48(2 \mathrm{C}), 126.39$, 121.91, 120.50, 106.08, 52.15, 44.09, 25.69, 21.80. LC-MS (m/z): 287,155, 80. Anal. Calc. for $\left(\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{BrNO}_{3} \mathrm{~S}: 522.46\right): \mathrm{C}, 62.07 ; \mathrm{H}, 4.63$; found: C, 62.21, $\mathrm{H}, 4.42$.

$(+/-)-3 a b$. Yellow solid, yield $=91 \%(24 \mathrm{mg}, 30 \mathrm{~h}) . \mathrm{Mp}=62-$ $67^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.23(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.81(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=$ $3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.03(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{~d}, \mathrm{~J}=$ $14.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.20(\mathrm{~m}, 1 \mathrm{H})$, 3.30 (dd, J = 140, $1.4 \mathrm{~Hz}, 2 \mathrm{H}$), $3.15-3.09$ (m, 1H), 2.75 (dd, $J=13.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=202.33,145.60,143.65,142.88$, $142.57,131.19,130.44,130.42(2 \mathrm{C}), 130.15,130.00,128.59,128.21(2 \mathrm{C}), 127.77,127.25,126.21$, 124.54, 124.43(2C), 122.97(2C), 106.36, 57.54, 48.83, 42.36, 32.32. LC-MS $=412,136$. Anal. Calc. for ($\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}: 533.55$): C, 60.78; H, 4.34; found: C, $60.55, \mathrm{H}, 4.21$.

(+/-)-3ac. Colorless oil, $c \mathrm{Hex}: \mathrm{EtOAc}=40: 1 \rightarrow 20: 1$, yield $=54 \%$ (12 mg, 24 h$).{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.25-8.22(\mathrm{~m}$, $2 \mathrm{H}), 7.65-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}$, $1 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.48(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.25$ (m, 1H), 2.87 (ddd, J = 14.0, 7.2, 1.2 Hz, 1H), 2.61 (s, 3H), 2.52 (ddd, $J=14.0,8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.91 (d, $J=1.6 \mathrm{~Hz}, 3 \mathrm{H}$), $1.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=203.54,150.13,144.88,143.07,141.66,132.61,130.38$, 129.34, 129.18, 128.84, 128.20(2C), 127.01, 126.40, 124.43(2C), 108.05, 51.88, 42.39, 32.40, 27.81, 15.93. LC-MS (m/z): 449.0. Anal. Calc. for ($\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$: 426.49): C, 61.86; H,5.20; found: C, 61.61, H, 5.01.

(+/-)-3ad. Yellow solid, cHex:EtOAc $=40: 1$, yield $=63 \%(18 \mathrm{mg}, 10 \mathrm{~h})$ $\mathrm{Mp}=57-63^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.85-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.50$ (d, J = $8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.35 (d, J = $8.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.30-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.16-$
$7.09(\mathrm{~m}, 3 \mathrm{H}), 6.98-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.54(\mathrm{dd}, J=36.0,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.36$ (ddd, $J=59.2,8.0,1.6 \mathrm{~Hz}$, 1 H), $3.70-3.58(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.40-2.33(\mathrm{~m}, 1 \mathrm{H}), 1.78$ (dd, J $=27.2,0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.38(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=203.99$ (203.79), 145.03 (144.75), 144.11 (143.91), 142.06 (141.85), 140.83 (140.73), 139.41, 136.43, 132.54 (132.22), $130.41(2 \mathrm{C}), 130.38$ (130.24), 130.28 (130.15), 129.88 (129.72), 129.80 (2C) (129.76(2C)), 128.89(2C), 128.68, 128.42, 127.84 (127.73), 126.76 (126.70), 126.68 (126.55), 107.67 (107.21), 102.48 (102.34), 51.77 (51.67), 44.39 (44.04), 25.88, 21.80 (21.76), 15.98 (15.74). LC-MS (m/z): 606.6. Anal. Calc. for ($\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{INO}_{3} \mathrm{~S}$: 538.48): C, $57.64 ; \mathrm{H}, 4.49$; found: C, $57.41, \mathrm{H}, 4.31$.

(+/-)-3ae. Colorless oil, cHex:EtOAc $=40: 1 \rightarrow 20: 1$, yield $=98 \%(19 \mathrm{mg}$, $3 \mathrm{~h}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.39(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.33$ (m, 2H), 7.27-7.17 (m, 5H), 6.50 (d, J = $14.0 \mathrm{~Hz}, 3 \mathrm{H}$), $4.20-4.13$ (m, 1H), 2.79-2.74(m, 1H), $2.56(\mathrm{~s}, 3 \mathrm{H}), 2.50-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H})$, $1.89(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$ 203.81, 145.05, 143.61, 141.57, 134.76, 132.64, 130.34, 130.22, 129.76(2C), 129.06, 128.67, 127.03(2C), 126.87, 126.46, 105.49, 51.88, 43.48, 32.15, 26.63 21.67, 15.91. LC-MS (m/z): 418.0. Anal. Calc. for $\left(\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}: 395.51\right)$: $\mathrm{C}, 69.84 ; \mathrm{H}, 6.37$; found: $\mathrm{C}, 69.66, \mathrm{H}, 6.51$.

(+/-)-3af. Colorless oil, $\mathrm{cHex}: E t O A c=40: 1 \rightarrow 20: 1$, yield $=82 \%$ ($12 \mathrm{mg}, 15$ h). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.34-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 3 \mathrm{H})$, $6.65(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.45-4.37(\mathrm{~m}, 1 \mathrm{H}), 3.28-3.17(\mathrm{~m}, 2 \mathrm{H}), 2.77$ (dd, $J=13.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dd}, J=15.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{t}, J=8.8 \mathrm{~Hz}$, 2 H), $2.00-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=203.95,172.91,145.14,141.58,132.56,130.26,129.10$, 128.67, 126.90, 126.48, 125.97, 106.60, 51.91, 45.21, 43.60, 31.28, 26.08, 17.37, 16.04. LC-MS (m/z): 318.0. Anal. Calc. for ($\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2}$: 295.38): C, 77.26; $\mathrm{H}, 7.17$; found: C, 77.01, $\mathrm{H}, 7.31$.

(+/-)-3ag. Colorless oil, $c \mathrm{Hex}: E t O A c=40: 1 \rightarrow 20: 1$, yield $=88 \%(13 \mathrm{mg}$, $10 \mathrm{~h}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.34(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.26-$ $7.21(\mathrm{~m}, 3 \mathrm{H}), 6.43(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.25(\mathrm{~m}, 3 \mathrm{H}), 3.47-3.36(\mathrm{~m}$, 2 H), 2.79 (dd, J = 14.0, $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.49 (dd, J = 10.0, $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.97 (s, 3 H), $1.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=203.84,155.23,145.02$, 141.64, 132.57, 130.27, 129.17, 128.73, 126.98, 126.44, 126.23, 105.55, 62.09, $51.88,43.04,42.53,26.42,16.03$. LC-MS (m/z): 320.2. Anal. Calc. for $\left(\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{3}: 297.35\right)$: C, 72.71; H, 6.44; found: C, 72.55, H, 6.21.

$(+/-)-3 a h$. Yellow oil, yield $=54 \%(11 \mathrm{mg}, 48 \mathrm{~h}) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.30-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.17(\mathrm{~d}, \mathrm{~J}=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.85(\mathrm{~m}, 2 \mathrm{H})$,
$3.73-3.65(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=13.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{dd}, J=12.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.39$ $(\mathrm{s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=204.13,176.02,145.11,141.78,140.32,133.70$, 132.51, 130.25(2C), 129.04(2C), 128.90, 128.30, 128.16, 126.73, 126.60, 120.08, 108.99, 51.81, 45.75, 29.13, 27.80, 24.88, 15.86. LC-MS (m/z): 410. Anal. Calc. for ($\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NO}_{2}$: 387.52): C, 80.59; H, 7.54; found: C, 80.50, H, 7.22.

(+/-)-3ai. Colorless oil, yield $=92 \%(19 \mathrm{mg}, 3 \mathrm{~h}) .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.33-7.14(\mathrm{~m}, 5 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 6.49(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 4.12(\mathrm{~s}$, $1 \mathrm{H}), 2.59(\mathrm{~s}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=204.28,201.33,153.21,145.03,141.77,132.31,130.37$, 129.42, 128.72, 128.51(2C), 126.76, 126.53(2C), 126.47, 103.82, 103.42, 81.36, 51.81, 39.85, 33.91, 29.83, 28.55, 28.35, 25.25. LC-MS (m/z): 440.2. Anal. Calc. for $\left(\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{NO}_{3}\right.$: 417.55): C, 77.67; H, 7.48; found: C, 77.51, H, 7.37.

Synthesis of the $\mathbf{1 H}$-benzochromene 4aa:

3aa

1

A one-necked flash was charged with reagent grade methanol (2 ml), racemic 3aa (0.1 mmol) and $\mathrm{NaBH}_{4}(0.15 \mathrm{mmol})$ in a sequence. The reaction was stirred at rt for 0.5 h at rt . The solvent was removed under vacuum, then water was added and the product extract three times with AcOEt. After dryness with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ the volatiles were removed under vacuum. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum was collected on the crude mixture $(d r=5: 1)$. Finally, the product was purified by flash chromatography (combined yield = 92\%, 42.3 mg).

4aa-(major isomer), colorless oil, cHex:EtOAc $=40: 1 .{ }^{1} \mathrm{H} N M R(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.47(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.09-6.83(\mathrm{~m}, 10 \mathrm{H}), 6.25(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.63$ (dd, J = 11.2, $2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.67 ($\mathrm{s}, 1 \mathrm{H}$), $2.44(\mathrm{dt}, \mathrm{J}=14.4,3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.72(\mathrm{td}, \mathrm{J}=13.2,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.44-1.41(\mathrm{~m}, 4 \mathrm{H}), 1.28-1.07(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $143.06,138.78,136.97,136.07,133.43,133.19,131.01(2 \mathrm{C}), 128.80(2 \mathrm{C}), 128.51(2 \mathrm{C}), 128.07(2 \mathrm{C})$, 128.00, 127.22, 126.90, 126.05, 125.91, 123.92, 85.87, 82.57, 37.07, 32.53, 26.88, 26.58, 22.15,
21.67. LC-MS (m/z): 482.0. Anal. Calc. for ($\left.\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}: 459.60\right)$: C, 73.17; H, 6.36; found: C, 73.01, H, 6.29.

4aa-(minor isomer), colorless oil, cHex:EtOAc $=40: 1 .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.64(\mathrm{dd}, \mathrm{J}=8.4,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.03(\mathrm{~m}, 10 \mathrm{H}), 6.96(\mathrm{~d}, \mathrm{~J}=$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $6.34(\mathrm{~s}, 1 \mathrm{H}), 5.71$ (dd, J = 10.8, $3.2 \mathrm{~Hz}, 1 \mathrm{H}$), $4.40(\mathrm{~s}, 1 \mathrm{H}), 2.39$ $(\mathrm{s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.04-2.02(\mathrm{~s}, 2 \mathrm{H}), 1.50-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.37$ ($\mathrm{m}, 1 \mathrm{H}$), 1.27 ($\mathrm{s}, 3 \mathrm{H})$. LC-MS (m/z): 482.0.

Hydrogenation of 3aa:

An oven-dried two-necked flask was charged with ethanol (3 ml), 3aa ($27 \mathrm{mg}, 0.06 \mathrm{mmol}$) and $\mathrm{Pd} / \mathrm{C}(8.2 \mathrm{mg}, 25 \mathrm{wt} \%)$. The flack was subjected to H_{2} atmosphere (1 atm , balloon) and the reaction was stirred at room temperature for 48 h . Then, the mixture was then filtrated through celite and concentrated under reduced pressure. The residue was purified via flashchromatography on silica gel ($\mathbf{c H e x}: A c O E t=20: 1$) to afford compound 5aa and 5aa'.

5aa, colorless oil, yield $=45 \%(13 \mathrm{mg}), c \mathrm{Hex}: E t O A c=40: 1 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.45(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.22$ (d, J = $8.0 \mathrm{~Hz}, 3 \mathrm{H}$), $7.12(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.06(\mathrm{~m}, 3 \mathrm{H}), 7.02(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.63-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.44(\mathrm{~s}, 1 \mathrm{H}), 2.64-2.60(\mathrm{~m}, 2 \mathrm{H})$, $2.40(\mathrm{~s}, 3 \mathrm{H}), 2.12-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.51(\mathrm{~m}$, $2 \mathrm{H}), 1.05(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=143.42,142.91,139.46$, 135.37, 135.00, 129.49(2C), 129.12(2C), 128.98, 128.89(2C), 127.95, 127.91(2C), 126.98, 126.50, $125.74,75.98,51.51,42.00,35.34,32.49,28.99,28.96,23.11,21.69,18.83$. LC-MS (m/z): 463. Anal. Calc. for ($\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{~S}: 463.63$): C, 72.54; $\mathrm{H}, 7.17$; found: C, 72.25, $\mathrm{H}, 7.05$.

$5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.68-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.01-0.91(\mathrm{~m}, 1 \mathrm{H}), 0.84-$ $0.71(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=215.23,143.12,141.77,138.75,135.64,135.37,129.78$, $129.35,129.24(2 \mathrm{C}), 128.76(2 \mathrm{C}), 127.66(2 \mathrm{C}), 127.63(2 \mathrm{C}), 126.99,126.54,126.19,51.56,50.61$, 40.51, $37.13,36.89,28.80,23.64,21.47,14.33$. LC-MS (m/z): 491.0. Anal. Calc. for $\left(\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{NO}_{3} \mathrm{~S}\right.$: 461.62): C, 72.85; H, 6.77; found: C, 72.61, H, 6.51.

Preparation of $\mathrm{Ph}_{3} \mathrm{PAuTFA}{ }^{[3]}$

An oven-dried two-necked flask was charged with anhydrous DCM (3 ml) and AuCl-SMe ${ }_{2}(39.3 \mathrm{mg}$, $0.15 \mathrm{mmol})$. Then a solution of $\mathrm{Ph}_{3} \mathrm{P}(44.2 \mathrm{mg}, 0.15 \mathrm{mmol})$ in DCM (3 ml) was added dropwise. After 1 h the solvent was removed under reduced pressure and the residue was triturate in anhydrous diethyl ether. After removing the diethyl ether under vacuum, $\mathrm{PPh}_{3} \mathrm{AuCl}$ was collected as a white powder ($59 \mathrm{mg}, 80 \%$).

A dry two-necked flask was charged with anhydrous DCM (3 ml) and $\mathrm{PPh}_{3} \mathrm{AuCl}(59 \mathrm{mg}, 0.12 \mathrm{mmol}$). The flask was covered with an aluminum foil when AgTFA ($26.4 \mathrm{mg}, 0.12 \mathrm{mmol}$) was added. After stirring at room temperature for 1 h , the solution was filtered through syringe PTFE filter (CHROMAFILM Xtra, $0.45 \mu \mathrm{~m}$). The solvent was removed under reduced pressure and the crude triturate with anhydrous diethyl ether. Upon removal of the diethyl ether under vacuum, $\mathrm{PPh}_{3} \mathrm{Au}$ TFA was collected as a white power ($59 \mathrm{mg}, 83 \%$).

PPh ${ }_{3}$ AuTFA. White powder. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta=7.59-7.51$ ($\mathrm{m}, 15 \mathrm{H}$). ${ }^{19} \mathrm{~F}$ NMR (376 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=-74.31(\mathrm{~s}, 3 \mathrm{~F}) .{ }^{31} \mathrm{P}$ NMR ($\left.160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta=30.04(\mathrm{~s})$.

References

[^0]
[^0]: [1] a) Oguma, T.; Katsuki, T. J. Am. Chem. Soc. 2012, 134, 20017-20020. b) Zhang, Y.; Liao, Y.; Hua-Liu, X.; Xu, X.; Lin, L.; Feng, X. Chem. Sci., 2017, 8, 6645-6649. c) Nan, J.; Liu, J.; Zheng, H.; Zuo, Z.; Hou, L.; Hu, H.; Wang, Y.; Luan, X. Angew. Chem. Int. Ed. 2015, 54, 2356 -2360.
 [2] a) Liu, Y.; De Nisi, A.; Cerveri, A.; Monari, M.; Bandini, M. Org. Lett. 2017, 19, 5034-5037. b) Jia, M.; Cera, G.; Perrotta, D.; Monari, M.; Bandini, M. Chem. Eur. J. 2014, 20, 9875-9878.
 [3] a) Preisenberger, M.; Schier, A.; Schmidbaur, H. J. Chem. Soc., Dalton Trans., 1999, 1645-1650. b) Zhang, Z. S.; Edward; S.; Gus, P.; Colgate, J. Sam O., Acta Crystallographica, Section C: Crystal Structure Commun., 1988, 44, 21972198.

