
09 May 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Person Re-identification by Iterative Re-weighted Sparse Ranking / LISANTI, GIUSEPPE; MASI, IACOPO;
BAGDANOV, ANDREW DAVID; DEL BIMBO, ALBERTO. - In: IEEE TRANSACTIONS ON PATTERN ANALYSIS
AND MACHINE INTELLIGENCE. - ISSN 0162-8828. - STAMPA. - 37:(2015), pp. 1629-1642.
[10.1109/TPAMI.2014.2369055]

Published Version:

Person Re-identification by Iterative Re-weighted Sparse Ranking

This version is available at: https://hdl.handle.net/11585/654599 since: 2019-01-11

Published:
DOI: http://doi.org/10.1109/TPAMI.2014.2369055

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

https://hdl.handle.net/11585/654599
http://doi.org/10.1109/TPAMI.2014.2369055


This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

 

 

 

 

 

This is the final peer-reviewed accepted manuscript of:  

G. Lisanti, I. Masi, A. D. Bagdanov and A. D. Bimbo, "Person Re-Identification by 
Iterative Re-Weighted Sparse Ranking," in IEEE Transactions on Pattern Analysis and 
Machine Intelligence, vol. 37, no. 8, pp. 1629-1642, 1 Aug. 2015. 

The final published version is available online at: 
http://dx.doi.org/10.1109/TPAMI.2014.2369055 

 

Rights / License: 

The terms and conditions for the reuse of this version of the manuscript are specified in the 
publishing policy. For all terms of use and more information see the publisher's website.   

 

https://cris.unibo.it/
http://dx.doi.org/10.1109%2FTPAMI.2014.2369055


1

Person Re-identification by
Iterative Re-weighted Sparse Ranking

Giuseppe Lisanti, Iacopo Masi, Andrew D. Bagdanov, and Alberto Del Bimbo,

Abstract—In this paper we introduce a method for person re-identification based on discriminative, sparse basis expansions of targets
in terms of a labeled gallery of known individuals. We propose an iterative extension to sparse discriminative classifiers capable of
ranking many candidate targets. The approach makes use of soft- and hard- re-weighting to redistribute energy among the most
relevant contributing elements and to ensure that the best candidates are ranked at each iteration. Our approach also leverages
a novel visual descriptor which we show to be discriminative while remaining robust to pose and illumination variations. An extensive
comparative evaluation is given demonstrating that our approach achieves state-of-the-art performance on single- and multi-shot person
re-identification scenarios on the VIPeR, i-LIDS, ETHZ, and CAVIAR4REID datasets. The combination of our descriptor and iterative
sparse basis expansion improves state-of-the-art rank-1 performance by 6 percentage points on VIPeR and by 20 on CAVIAR4REID
compared to other methods with a single gallery image per person. With multiple gallery and probe images per person our approach
improves by 17 percentage points the state-of-the-art on i-LIDS and by 72 on CAVIAR4REID at rank-1. The approach is also quite
efficient, capable of single-shot person re-identification over galleries containing hundreds of individuals at about 30 re-identifications
per second.

Index Terms—person re-identification, video surveillance, sparse methods.

F

1 INTRODUCTION

P ERSON re-identification is the task of recognizing
a person, captured by one or more cameras, over

a range of candidate targets represented as a gallery
of already-labeled subjects. This gallery may contain
imagery of known subjects from one or more sensors,
and there may be no guarantee that the unknown person
observed has already been imaged from the same point
of view or in the same conditions. In fact, some of the
main complications in person re-identification are due
to the fact that the same person is usually acquired
at different times, by different disjoint cameras, and
this can result in large variations in target appearance
because of different illumination conditions, different
poses or partial occlusions.

Person re-identification is a critical component of mod-
ern surveillance systems as it is a way of maintaining
identity information about targets in multiple views over
potentially long periods of time. This matching across
cameras is traditionally cast as a retrieval problem: given
one or more images of an unknown target, the re-
identification task is to rank all individuals in a gallery of
known target images in terms of similarity to the person
to be recognized.

Much of the research on person re-identification has
concentrated on human appearance modeling [1]–[11].
A number of descriptors of image content have been
proposed to discriminate identities while compensating
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for appearance variability due to changes in pose, il-
lumination and camera viewpoint. Re-identification has
also been cast as a learning problem in which either
metrics or discriminative models are learned. Metric
learning approaches [12]–[22] require labeled training
data and most of them also require new training data
when camera settings change. Discriminative models, on
the other hand, can suffer from lack of training data
in small gallery image sets and are often unsuitable
for ordering large numbers of candidates due to their
inability to reliably rank all but a few of the best ones.

The literature on person re-identification focuses on
several different modalities or scenarios that are recog-
nized as de facto standards for performance evaluation.
These modalities are characterized in terms of how many
images of each individual are known a priori to be in
the gallery and probe sets, and according to whether or
not it is known that multiple images in the probe set
correspond to a single target. The three most common
are: the single-versus-single (SvsS) modality where there
is a single exemplar for each person in the gallery and
at least one exemplar for each person in the probe set
(multiple exemplars of the same identity are considered
independently); the multi-versus-single (MvsS) modality
in which there is one group of multiple exemplars for
each person in the gallery and a single exemplar of
each person in the probe set; and the multi-versus-multi
(MvsM) modality in which there is a group of multiple
exemplars for each person in the gallery and group of
multiple images of each person in the probe set.

In this article we propose a robust and efficient ap-
proach to person re-identification that is applicable to
all modalities considered in the literature. Our technique
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builds on sparse basis expansions that have been demon-
strated to be a powerful tool for face recognition [23]. The
use of sparse basis expansions for recognition problems
is based on the observation that, even if data is high
dimensional, samples from the same class tend to lie on
the same low-dimensional subspace of the original fea-
ture space. If a good basis can be found, regularization
can then be used to enforce sparsity and leverage this
subspace structure to discriminate new test examples.
Since faces under changing illumination lie near a linear
subspace of the original feature space [24], sparse linear
reconstructions are able to explain both noise (through
linear reconstruction) and identity (by sparseness) in
the model. However, the approach of [23] does not
directly generalize to the person re-identification prob-
lem because, on the one hand, re-identification imagery
does not have the same benefit of controlled imaging
conditions, and on the other hand `1-regularized basis
expansions, by their very nature, can only support rank-
ing of a limited number of individuals. Our intuition,
nevertheless, is that this type of sparse, discriminative
approach can be also applied to re-identification prob-
lems after addressing these issues.

In more detail, variations in pose, changing target
appearance due to articulated motion, and illumination
changes make it unlikely that linear reconstructions of
unknown targets both explain noise in the model and
discriminate identities well. Instead of operating directly
on images, as in [23], we use a feature representation
for target appearance that approximate the desired in-
variants so that the sparse linear reconstruction model
does not have to explain both noise and target identity.
We thus propose a novel descriptor of person appear-
ance, demonstrate its robustness to pose and illumi-
nation variations, and show that its use in our sparse
discriminative framework yields state-of-the-art results.
Our descriptor has the additional advantage of requiring
no foreground/background segmentation or body part
localization.

At the same time, person re-identification is an ap-
plication where recall is often important. In fact, since
whole-body appearance is a less persistent biometric
than faces, in many re-identification scenarios recall is
important in order to maximize the likelihood of finding
the correct identity in the first ten or even twenty results.
Sparse reconstructions, however, by their very nature
can provide inadequate support for ranking more than
a few gallery individuals. We address this problem by
analyzing the reconstruction error and partially ranking
the gallery in terms of similarity to the query probe.
We then re-weight this initial solution in order to mute
the response of vectors contributing little to the initial
expansion. Through the use of this novel, iterative re-
weighting algorithm, we can then proceed to rank the
remaining gallery individuals through analysis of re-
weighted sparse basis expansions.

In the next section we review the person re-
identification literature. Our approach to describing the

visual appearance of persons is given in Sec. 3, and in
Sec. 4 we show how to perform re-identification with
sparse basis expansions. In Sec. 5 we give an extensive
comparative evaluation of our technique with respect
to the state-of-the-art on four publicly available datasets
and give a detailed analysis of each component of our
approach. Finally, in Sec. 6 we draw some conclusions
and discuss new directions for research.

2 RELATED WORK

Many recent works have addressed the problem of
person re-identification. Most focus primarily on either
new descriptors for person appearance, or on learning
techniques for person re-identification.

Descriptors for person re-identification: Much research
on person re-identification has addressed the definition
of discriminative features for person appearance. The
first work that considered the problem of appearance
models for person recognition, reacquisition and track-
ing was that of Gray et al. [1]. The authors argue that,
until then, these problems had been evaluated indepen-
dently and that there is a need for metrics that apply
to complete systems [2], [3]. They proposed a standard
protocol to compare results using the Cumulative Match
Curve (CMC) and introduced the VIPeR dataset for re-
identification. The first work based on these guidelines
was [4] in which the authors propose an algorithm that
learns a domain-specific similarity function using an
ensemble of local features and AdaBoost. Features are
raw color channels in many color spaces and texture
information captured by Schmid and Gabor filters.

Descriptors of visual appearance for person recogni-
tion can be highly susceptible to background clutter,
and many approaches to person re-identification use
background modeling [5]–[7] or part-based person ap-
pearance models [5], [8] to separate foreground from
background signals. In [5] the authors use a sophisticated
appearance model, the Symmetry-Driven Accumulation
of Local Features (SDALF) descriptor that models human
body parts by estimating the axis of symmetry of a
person and obtaining the head, torso, and legs positions.
Each part is then represented by weighted HSV color
histograms, maximally stable color region descriptors,
and recurrent highly-structured patches. This work also
applies a strong, generative background prior that en-
hances the discriminative power of the descriptor by
segmenting the person from the background [25]. In [6]
and [7] a multi-shot appearance model similar to [5]
is proposed in order to condense a set of frames of
the same individual into a highly informative signature,
which they call the Histogram Plus Epitome (HPE).
In [8] the authors employ an estimate of body pose
to guide feature extraction. They extend the Pictorial
Structure (PS) model [26] with their Custom Pictorial
Structure (CPS), which is a two-step iterative process
that alternates between estimating pose and updating
the appearance model.
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Another state-of-the-art approach with performance
similar to [8] is proposed in [9]. The authors use an
appearance model that, in contrast with [5] and [8],
does not rely on body parts. The approach is based
on a descriptor called the Mean Riemannian Covari-
ance Grid (MRCG), which is an extension of Spatial
Covariance Regions (SCR) [10], that is the covariance
of a vector of eleven cues derived from equalized RGB
colors. The MRCG descriptor is computed as a mean
of gallery examples and is only applicable to multi-shot
re-identification modalities. The person re-identification
problem was extended to groups in [11]. The authors
show that groups represent a contextual cue that can be
exploited to improve person re-identification.

Re-identification problems are often characterized by
poor and variable image quality on which it can be hard
to fit background or part-based models without relying
on scene-specific information. Our approach, on the
other hand, is able to exploit multiple gallery examples
and does not require sophisticated background or body
part modeling.

Learning-based re-identification: Among the methods
that interpret re-identification as a learning problem, the
authors of [12] propose a discriminative model created
using Partial Least Squares (PLS) which weights features
according to their discriminative power for each differ-
ent gallery instance. In [13], a metric learning framework
is used to obtain a robust Mahalanobis metric for Large
Margin Nearest Neighbor classification with Rejection
(LMNN-R). The approach in [14] is a supervised tech-
nique that uses pairs of similar and dissimilar images
and a relaxed RankSVM algorithm to rank probe im-
ages. Another metric learning approach is that of [15]
which learns a Mahalanobis distance from equivalence
constraints derived from target labels.

The Probabilistic Distance Comparison (PRDC) ap-
proach [16] introduces a novel comparison model which
aims to maximize the probability of a pair of correctly
matched images having a smaller distance than that of
an incorrectly matched pair. The same authors in [17]
model person re-identification as a transfer ranking
problem where the goal is to transfer similarity observa-
tions from a small gallery to a larger, unlabeled probe set.
A set-based discriminative ranking approach was also
recently proposed which alternates between optimizing
a set-to-set geometric distance and a feature space pro-
jection, resulting in a discriminative set-distance-based
model [18]. Camera transfer approaches have also been
proposed that use images of the same person captured
from different cameras to learn metrics [19], [20]. In [21]
the authors apply learning in a covariance metric space
using an entropy-driven criterion to select the most de-
scriptive features for a specific class of objects. Recently
saliency has been considered when matching people
across views and a novel method eSDC [22] has been
proposed in order to learn saliency parts of a human in
a unsupervised fashion.

Learning-based approaches have recently reported
higher re-identification accuracy with respect to the
state-of-the-art. However, re-identification problems are
often also characterized by a lack of reliably labeled data.
The need to label image data for each scenario, camera
configuration and parameter settings is a disadvantage
of metric learning approaches. Our approach outper-
forms the state-of-the-art at rank-1 in most modalities
without learning metrics or fitting discriminative models
to gallery image sets.

3 WEIGHTED HISTOGRAMS OF OVERLAPPING
STRIPES (WHOS)
We have designed a discriminative and efficient descrip-
tor of person appearance for re-identification based on
coarse, striped pooling of local features. It exploits a
simple yet effective center support kernel to approxi-
mately segment foreground from background. The entire
descriptor construction process is illustrated in Fig. 1.

Given an input image of a target, it is scaled to
a canonical size W × H (64 × 128 pixels in all our
experiments) and a spatial pyramid is built by dividing
the person image into overlapping horizontal stripes of
16 pixels in height.

From each stripe we extract Hue-Saturation (HS) and
RGB histograms. Each pixel’s contribution to its corre-
sponding histogram bin is weighted using Epanechnikov
kernel centered on the image:

K(x, y) =

{
3
4 (1− ( xW )2 − ( yH )2) if |( xW )2 + ( yH )2| ≤ 1

0 otherwise
(1)

where W and H are the image width and height, respec-
tively, and are the only parameters of the Epanechnikov
kernel. To the HS and RGB histograms we concatenate
a Histogram of Oriented Gradient (HOG) descriptor
computed on a grid over the image as described in [27].

The HS histograms contain 8 × 8 bins, while RGB
is quantized to 4 × 4 × 4 bins. Both the HS and RGB
histograms are computed for the 15 levels of the pyramid
(8 stripes for the first level plus 7 for the second level of
overlapping stripes). The result is a total of 1, 920 color
histogram bins. The HOG is extracted from a sub-image
obtained by removing 8 pixels from top, bottom, left
and right of the original in order to remove background
details. Each block of the HOG consists of a grid of 2×2
cells of 8×8 pixels. For each cell we compute the gradient
histogram over only 4 angular bins (to capture vertical,
horizontal and diagonal patterns) for each HOG block.
Given the canonical image size used in our experiments,
the dimension of the HOG component is 1, 040 bins, and
the final descriptor dimensionality is thus 2, 960. As the
final stage of descriptor computation, we take the square
root of all descriptor bins.
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Histogram of Oriented 
Gradients

Epanechnikov Mask

Horizontal Stripes
First Level

Horizontal Stripes
Second Level 
(Overlapped)

HS + RGB Histogram
of the first level

HS + RGB Histogram
on the second level

HOG Cell Block 
sub-division

(a) (b) (c) (d)

Fig. 1: Our feature descriptor. (a) An Epanechnikov kernel
weights the contribution of each pixel to HS and RGB his-
tograms computed on overlapping stripes (b) and (c). Over-
lapping HOG descriptors are concatenated with these (d).

The motivations for a composite descriptor such as
ours are many:

• The striped pooling model grants a degree of pose
invariance in the representation. Horizontal stripes
capture information about vertical color distribu-
tion in the image, while overlapping stripes main-
tain color correlation information between adjacent
stripes in the final descriptor.

• Color information is captured by HS and RGB his-
tograms, and local texture by the HOG component.
The use of HS histograms renders a portion of the
descriptor invariant to illumination variations, while
the RGB histograms capture more discriminative
color information, especially for dark and greyish
colors. We equalize RGB color channels before ex-
tracting histograms.

• The Epanechnikov kernel approximately segments
the foreground by diminishing the influence of
background information near the image boundary.
This avoids learning a background model for each
scenario, gaining in simplicity and efficiency com-
pared to techniques that use complex background
or part-based models.

• Taking the square root of descriptor bins is a well-
known technique in image classification [28] that
helps to reduce the “burstiness” of features by dis-
counting the effect of small changes in bins that
already have significant weight. In preliminary ex-
periments we found this to improve robustness of
Euclidean distances between descriptors.

An extensive evaluation of the performance of our de-
scriptor confirming these motivations is given in Sec. 5.2.
Though it requires no complex segmentation or fitting of
body part models, our descriptor in combination with
our sparse framework performs comparably to or better
than the state-of-the-art.

4 SPARSE BASIS EXPANSIONS FOR RE-
IDENTIFICATION

In this section, we first describe basis expansions for
classification and show how this basic approach does not
generalize in a straightforward way to problems like re-
identification due to its inability to rank all but a few
confidently classified individuals. Hence, we introduce
an iterative algorithm for ranking with sparse basis ex-
pansions that addresses these shortcomings and permits
its effective application to re-identification.

4.1 Sparse basis expansion
The main idea behind the use of basis expansions for
building discriminative classifiers is that, given sufficient
samples ti,1, . . . , ti,ni

from some class i, a test sample y
of the same class should approximately lie in the linear
span of the training samples:

y ≈ αi,1ti,1 + αi,2ti,2 + . . .+ αi,ni
, ti,ni

(2)

=

ni∑
j=1

αi,jti,j (3)

= Tiαi (4)

for some optimal choice of scalar coefficients of recon-
struction αi,j , for j = 1, . . . , ni. We use Ti to repre-
sent the matrix of basis vectors for class i, and αi =
[αi,1, . . . , αi,ni ]

T to represent the vector of reconstruction
coefficients for the same class.

The general, multi-class basis expansion for C classes
then becomes:

y ≈ [T1 T2 · · · TC ] [α1 α2 · · · αC ]T

= Tα. (5)

The basis T can be highly overcomplete, but if y is an
instance of a person we desire that the energy in the
basis expansion be concentrated in the relatively few
coefficients from the gallery examples corresponding to
the identity of y. We can impose this sparsity constraint
on the solution by formulating it as an `1-regularized
least squares problem:

α̂ = argmin
α
‖y −Tα‖22 + λ‖α‖1, (6)

where λ controls the tradeoff between minimization
of the `2 reconstruction error and the `1 norm of the
coefficients used to reconstruct y. This formulation is
known as Lasso Regression in the statistics literature and
there exist very efficient algorithms for solving it [29].

Regularized basis expansions of this type are generally
referred to as sparse because the `1 regularization term,
depending on the sparseness factor λ, tends to cause the
coefficients of reconstruction to collapse to zero except
for a few important basis vectors. The form of Eq. (6)
is particularly convenient because it represents a whole
class of solutions to the approximate reconstruction
problem of Eq. (5). When λ = 0, Eq. (6) results in a
standard least squares solution. For λ > 0, we obtain
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Fig. 2: Basis expansion for MvsS re-identification on ETHZ1.
Top: (left) probe sample, (right) the first 15 samples in the
gallery, two instances for each subject (N = 2). Bottom: recon-
struction coefficients for least squares (λ = 0), sparse (λ = 0.2)
and nearest neighbour (λ = 0.6). Each color represents a single
subject which has two instances.

solutions of increasing sparseness with increasing λ.
Eventually, as λ→∞, only a single non-zero coefficient
will be admitted in the solution of Eq. (5). We refer to
this last solution, with λ → ∞, as the nearest neighbor
solution since only the `2-closest training sample to y
will have a corresponding non-zero coefficient in α̂.
In Fig. 2 we illustrate these three types of solutions
for an MvsS re-identification problem. The top row of
Fig. 2 illustrates the probe and gallery images for a re-
identification query. The plot in the second row shows
the coefficients of a least squares solution (λ = 0),
followed by a sparse solution (λ = 0.2), and finally the
nearest neighbor solution (λ = 0.6 for this example).

We can derive a decision rule for classification by
analyzing the reconstruction error for solutions to Eq. (5)
restricted to basis vectors corresponding to individual
gallery subjects. The normalized reconstruction error
corresponding to the i-th subject is:

ei =
‖y −Tiα̂|i‖2
‖y‖2

, for i ∈ {1, . . . , C}. (7)

where α̂|i represents the sparse solution of Eq. (6) re-
stricted to the coefficients corresponding to gallery ex-
amples of class i. That is, α̂|i is equal to α̂ at coefficients
corresponding to gallery examples from individual i and
zero elsewhere.

Our decision rule is:

class(y) = argmin
i
ei. (8)

This decision rule based on sparse discriminative basis
expansion performs very well for classification prob-
lems [23]. However, as mentioned in the introduction,
recall can be critical for re-identification and it is impor-
tant to be able to rank gallery individuals. We can extend
the decision rule of Eq. (8) in a straightforward manner
to rank candidate individuals using their corresponding
residual ei.

In Fig. 3(a) we show two views of an MvsS re-
identification problem in terms of normalized recon-
struction error ei with respect to the probe y. In the
middle are illustrated the coefficients α̂ of a probe
reconstruction in terms of a multi-shot gallery. Below
are illustrated the normalized reconstruction errors ei
corresponding to each gallery individual. Each error on
the bottom thus corresponds to two coefficients in the
middle, since the gallery is multi-shot with N = 2. The
fundamental problem with using discriminative sparse
basis expansions derived from solutions to problems like
Eq. (6) is that, for many reasonable values of λ, we are
deliberately forcing the majority of coefficients to zero,
which limits the number of ranks the basis expansion
can support. In Fig. 3(a) we see that after the first
few individuals (ranks), the coefficient energy collapses
and we have no more information upon which to base
ranking decisions. The result is that beyond this point
we cannot rank the remaining gallery individuals.

A more subtle problem is that in many cases we
may be basing ranking decisions on inadequate evidence
from the basis expansion. After the first eight individuals
in Fig. 3(a), even before collapsing to zero, there is very
little coefficient energy upon which to base individual
ranking decisions. In the next section we introduce an
iterative sparse basis expansion technique that addresses
these problems of lack of sufficient ranking support in
sparse reconstructions.

4.2 Iterative sparse re-weighting
In this section we develop an iterative technique to ad-
dress the problems with applying sparse discriminative
classifiers to ranking. We arrive in the process at an al-
gorithm that is able to robustly perform re-identification
up to all ranks. Our approach is an iterative extension
of the weighting described in [30] which we use to first
re-weight basis vectors in the sparse solutions of Eq. (6)
and arrive at a more robust solution that does not rely on
basis vectors contributing little to the reconstruction. A
similar weighting approach is then used to proceed with
ranking after damping the influence of basis vectors that
have already contributed to ranking.

Soft-weighting for ranking robustness: The first refine-
ment step we perform is a sort of soft-weighting that is
used to remove those coefficients that weakly contribute
to the reconstruction of the given test sample. Assume
we have computed sparse reconstruction coefficients α̂
for a given instance of a re-identification problem. At
each iteration we define for each element in the basis
a weight that is inversely proportional to its coefficient
magnitude in the initial reconstruction:

wi,j =
1

|α̂i,j |+ ε
for i ∈ {1 . . . C} and j ∈ {1 . . . ni},

(9)
where ε is chosen to be slightly smaller than the mini-
mum nonzero coefficient of α̂ to avoid division by zero
and to not influence the solution with respect to the other



6

GalleryProbe

1 2 3 4 5 6 7 8 9 1011 1213 14 1516 1718 19 2021 2223 24 2526 2728 29 300

0.05

0.1

0.15

0.2

M
ag

ni
tu

de

No evidence at all,
ranking is by chance

Little evidence not
good for ranking

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

0.5

1

N
or

m
ali

ze
d E

rro
r Little evidence not

good for ranking

No evidence at all,
ranking is by chance

Reconstruction Coefficients

Reconstruction Error

(a) Ranking with limited information

0 20 40 60 80 100 1200
0.05
0.1

0.15
0.2

0 20 40 60 80 100 1200
0.05
0.1

0.15
0.2

0 20 40 60 80 100 1200
0.02
0.04
0.06
0.08
0.1

Soft w
eighting

H
ard w

eighting

M
ag

ni
tu

de
M

ag
ni

tu
de

M
ag

ni
tu

de

Coefficients

(b) Soft- and hard-weighting effects
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(c) Soft-weighting results

Fig. 3: (a) Ranking with limited information from a single basis expansion (MvsS, N=2). Ranking decisions must be made on the
basis of little information (low coefficient energy) or no information (zero coefficient energy). In the middle are reconstruction
coefficients, at the bottom the corresponding normalized reconstruction errors for each multi-shot probe. (b) Effects of soft-
and hard-weighting. Top: reconstruction coefficients from the first solution α̂s at iteration s; Middle: refined reconstruction
coefficients after soft-weighting α̂′s; and Bottom: coefficients α̂s+1 at iteration s + 1 after hard-weighting. (c) The effects of
soft-weighting on performance on the i-LIDS dataset.

coefficients. We then solve a weighted Lasso problem by
weighting the regularization magnitudes using the wi,j
defined above:

α̂′ = argmin
α
‖y −Tα‖22 + λ

C∑
i=1

‖diag(wi)αi‖1, (10)

where wi = [wi,1, wi,2, . . . , wi,ni
] are the weights from

Eq. (9) corresponding to the basis vectors for individual
i and diag(wi) denotes the diagonal matrix with vector
wi on its diagonal. Just like the unweighted counterpart
in Eq. (6), this convex problem can also be efficiently
solved as a linear program. The weights wi,j are free
parameters in the convex relaxation, whose values can
be used to penalize or favor specific basis vectors in the
regularized expansion. The new solution α̂′ is the refined
solution that is used to rank individuals with respect to
probe y.

Fig. 3(b) graphically illustrates this soft-weighting pro-
cedure. The initial solution contains a few dominant
coefficients that contribute most to the reconstruction of
the probe y. It also contains a number of basis vectors
that contribute little to the overall reconstruction, as
indicated by very small coefficients in the initial solution
shown in the top plot of Fig. 3(b). The refined solution
using the weights from Eq. (9) is shown in the middle
plot of Fig. 3(b). Note that this refinement eliminates
small coefficients from the solution and redistributes
their energy among more relevant basis vectors. It is not
equivalent to a simple thresholding of coefficients.

Hard re-weighting for improved recall: A more serious
problem related to using a sparse discriminative classi-
fier for re-identification is the lack of sufficient non-zero
support in sparse solutions. It is often the case that only
a few gallery individuals can be ranked by analyzing the
initial, refined sparse solution. To address this problem
a set of hard weights are maintained that are used to

exclude those elements that have already contributed to
ranking an individual against the probe y:

whi,j ←

{
∞ if α̂′i,j > 0

1 otherwise
(11)

where α̂′i,j are the coefficients from the soft-weighted
solution α̂′. The hard weights vector wh is used in
the next step of an iterative process that repeats the
soft-weighting and ranking procedure. In the bottom
plot of Fig. 3(b) we show the solution to the weighted
Lasso problem using these weights. The difference in the
distribution of coefficients between the hard-weighted
solution and the original solution in the top plot of
Fig. 3(b) is quite noticeable.

In Fig. 3(c) we give a comparison of our approach,
including soft- and hard-weighting to rank the entire
gallery, with our approach without soft-weighting and
the technique of [23]. On the iLIDS dataset, the basic
sparse reconstruction approach of [23] can rank, on
average, only about 12 gallery persons per probe with
a recognition rate of 70%. At rank 20, our approach
without soft-weighting reaches a recognition rate of about
73%, while our final approach with soft-weighting gains
another 5% in accuracy and reaches 78% recall in just
the first twenty ranks. Note also how the gain due to
soft-weighting improves for higher ranks and how soft-
weighting provides a slightly different recall at first rank.
This is because soft-weighting effectively defers the de-
cision to rank an individual with low coefficient energy
to future iterations. Without soft-weighting, persons can
be ranked on the basis of very little evidence.

As we will see in more detail in the experimental
results, the problem of lack of ranking support does
not only have an impact on very low or very high
ranks. Moreover, though low ranks are clearly the most
important, there will always be applications where recall
is also crucial.



7

Algorithm 1: R(T, Y, λ) : Iterative Sparse Ranking
Input: T = [T1 T2 · · · TC ], the gallery templates;

Y = {y1, . . . ,ym}, the probe templates; and
λ, the regularization factor.

Output: R, the ranked list of gallery individuals.
1 Initialize hard weights: whi,j ← 1.
2 Initialize iteration count: s← 1.
3 Initialize list of gallery individuals: R← ∅.
4 while |R| < C do
5 Hard-weighting:

α̂← arg min
α,y∈Y

‖y −Tα‖22 + λ‖diag(wh)α‖1
6 Soft-weighting:

wi,j ← 1
|α̂i,j |+ε for i ∈ {1 . . . C} and j ∈ {1 . . . ni}

7 α̂′ ← arg min
α,y∈Y

‖y −Tα‖22 + λ‖diag(w)α‖1
8 for α̂′i 6= 0 do
9 if person i has not yet been ranked then

10 R← R ∪ {(i, s, ei)} (ei from Eq. 7)
11 end
12 end
13 s← s+ 1

14 whi,j ←

{
∞ if α̂′i,j > 0

whi,j otherwise
15 end
16 return
17 R ordered by (i, s, e) ≤ (i′, s′, e′)⇔ s < s′ ∨ (s =
s′ ∧ e ≤ e′)

4.3 Iterative sparse person re-identification
Putting it all together, our approach to person re-
identification up to arbitrary ranks is an iterative process
of both soft- and hard-weighting of `1 regularized probes
reconstructions using gallery examples. The steps are as
follows:

1) Reconstruct probe(s) using Eq. (10) with hard
weights defined as in Eq. (11) to eliminate already
ranked persons (if any).

2) Use soft-weighting from Eq. (9) in a weighted re-
construction using Eq. (10) to eliminate coefficients
contributing little to the reconstruction of the probe
and distribute their energy among more relevant
basis vectors.

3) Rank gallery individuals who have non-zero co-
efficient energy (i.e. those individuals who have
normalized reconstruction error ei < 1, where ei
is defined as in Eq. (7)).

4) Update hard weights as in Eq. (11) to eliminate
from subsequent iterations those basis vectors con-
tributing to ranking in the current round.

5) Repeat until all gallery individuals are ranked.
Algorithm 1 formalizes each of these steps and how

they fit together to rank all individuals in the gallery.
Note that gallery individuals are not ranked by normal-
ized reconstruction error alone. The normalized recon-
struction error is used for ranking within an iteration,

but those individuals ranked in an iteration will always
be ranked higher than those in subsequent ones. Algo-
rithm 1 is designed to work with single- and multi-shot
gallery and probe sets. For this reason, the optimizations
in lines 5 and 7 differ slightly from Eq. (10) in that
they simultaneously optimize over coefficients α and all
probes y ∈ Y . In this way, Algorithm 1 can be used for
each of the re-identification modalities considered:
• SvsS re-identification For SvsS re-identification

problems, the ranked list of triples returned by
Algorithm 1 uniquely ranks each gallery individual.
As soon as a triple (i, s, e) is added to the ranked
list R, hard-weighting of the single template for
individual i in the gallery prevents it from further
consideration. The ordered list R returned by Algo-
rithm 1 thus represents the ordering of the gallery
with respect to the probe y.

• MvsS re-identification For multi-shot galleries like
MvsS in which more than one example of each
person is present, hard-weighting does not neces-
sarily eliminate a ranked individual from considera-
tion in subsequent iterations. Due to the sparseness
constraint, not all examples corresponding to one
individual are necessarily used in the regularized
basis expansion. Since hard-weighting by Eq. (11)
only eliminates those basis vectors already used for
ranking, it is possible that some templates corre-
sponding to already ranked individuals remain. The
guard in line 9 of Algorithm 1, however, guarantees
that a person only occurs once in the ordered list
R and thus the rank of each gallery individual is
unambiguously defined in the output.

• MvsM re-identification When both the gallery and
the probe sets are multi-shot the minimization over
both α and all probe templates y ∈ Y in lines 5 and 7
of Algorithm 1 uniquely defines the reconstruction
error ei in terms of the minimum error over all
probe templates. Thus, re-identification with multi-
shot probes is similar to running multiple MvsS re-
identifications (one for each probe image of each
person) and using the minimum error to represent
the overall reconstruction error for the multi-shot
probe.

5 EXPERIMENTAL RESULTS

In this section we report on an extensive set of ex-
periments performed to compare our method with the
state-of-the-art and to evaluate in detail each com-
ponent of our approach. All experiments were con-
ducted on standard, publicly available datasets (ETHZ,
VIPeR, i-LIDS and CAVIAR4REID), and we compare our
results with the following state-of-the-art approaches:
SDALF [5], HPE [6], AHPE [7], SCR [10], ELF [4],
CPS [8], MRCG [9], ContextB [11], PRDC [16], PRSVM
[14], SBDR [18], EIML [31], COSMATI [21], RPLM [20]
and eSDC [22]. Note that not all techniques report results
on all four datasets or on all three modalities (SvsS,
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ETHZ1 ETHZ2 ETHZ3
Modality: SvsS MvsM MvsM SvsS MvsM MvsM SvsS MvsM MvsM

N=5 N=10 N=5 N=10 N=5 N=10
HPE [6] – 84 85 – 81.5 79.3 – 87.3 82.6
AHPE [7] – 91 – – 90.6 – – 94 –
MRCG [9] – – 96 – – 97 – – 98.3
PLS [12] 79 – – 74.5 – – 77.5 – –
SDALF [5] 64.8 90.2 89.6 64.4 91.6 91.5 77 93.7 94.1
CPS [8] – 97.7 – – 97.3 – – 98 –
EIML* [31] 78 – – 74 – – 91 – –
RPLM* [20] 77 – – 65 – – 83 – –
eSDC* [22] 80 – – 80 – – 89 – –
ISR 79.5 99.8 99.9 76.1 99.7 100 86.2 99.9 99.9

TABLE 1: Performance at rank-1 with respect to the state-
of-the-art on ETHZ. Techniques indicated by “*” set aside a
portion of the data for metric learning. Recognition rates in %.

MvsS and MvsM). For example, with the exception of
COSMATI, metric learning approaches report results
only for SvsS scenarios. To provide the most compre-
hensive comparison possible, we test our method on
all modalities and include all reported results from the
above methods, when available.

The principal metric used for evaluating person re-
identification is the Cumulative Match Characteristic
(CMC) curve which summarizes overall performance
by reporting recall over a range of cutoff points. A
CMC curve represents the expectation of finding the
correct match in the top r matches, where r is the rank
considered in the final ranking result. Unless otherwise
noted, all results were computed by averaging over 50
random, independent splits of dataset into gallery and
probe sets, except for VIPeR where we use the ten splits
from [5]. We also report, and compare with the state-of-
the-art when available, the normalized Area Under the
Curve (nAUC). The nAUC is calculated as the total area
under a CMC divided by 100×N , where N is the total
number of gallery individuals. It gives an overall score
of how well a method performs over all ranks. For many
applications, the most important cutoff rank is one. We
thus also report a comparison of our rank-1 performance
with respect to the state-of-the-art on all datasets.

We refer to our approach as Iterative Sparse Ranking
(ISR) in all tables and figures that follow. Unless other-
wise qualified, we use our full descriptor as described in
Sec. 3. In our experiments reported in Sect. 5.3 we found
λ = 0.2 to be a good trade-off between recognition rate
and number of iterations. Accordingly, we fixed λ = 0.2
for all experiments reported here. In practice, the optimal
λ will be descriptor- and dataset-dependent and could
be cross-validated given a labeled validation set.

5.1 Comparison with the state-of-the-art
In this section we compare ISR with the state-of-the-
art on the ETHZ, VIPeR, i-LIDS, and CAVIAR4REID
datasets.

Performance on the ETH Zurich datasets: The ETH
Zurich dataset consists of three sequences used for track-
ing, from which Schwartz and Davis [12] extracted a set
of samples of each person in the videos. We performed

VIPeR iLIDS CAVIAR4REID
Modality: SvsS SvsS MvsM SvsS MvsM MvsM

N=2 N=3 N=5
HPE [6] – – 18.5 – – –
AHPE [7] – 21 32 7.5 7.5 7.5
SCR [10] – 34.5 36 – – –
MRCG [9] – – 46 – – –
ContextB [11] – 24 – – – –
SDALF [5] 19.9 28 39 7 8.5 8.3
ELF [4] 12 16 – – – –
CPS [8] 21.8 29.5 44 8.5 13 17.5
PRSVM* [14] 15 32 – – – –
PRDC* [16] 15.7 32.6 – – – –
SBDR* [18] – 37.75 – – – –
EIML* [31] 22.0 – – – – –
COSMATI* [21] – – 44 – – –
eSCD (ocsvm)* [22] 26.7 – – – – –
RPLM* [20] 27.0 – – – – –
ISR 27.0 39.5 62.9 29 75.1 90.1

TABLE 2: Performance at rank-1 with respect to the state-
of-the-art on VIPeR, iLIDS and CAVIAR4REID. Techniques
indicated with a “*” set aside a portion of the dataset for
learning. Recognition rates in %.

SvsS and MvsM experiments, varying the number of
elements in both the probe and gallery.

In table 1 we report rank-1 results for each sequence
of the ETHZ dataset for the SvsS and MvsM (N ∈
{5, 10}) modalities. ISR outperforms current methods for
MvsM, and performs comparably to others for SvsS.
More extensive results and CMC curves comparing ISR
with the state-of-the-art on ETHZ can be found in the
supplementary material accompanying this article.

Performance on the VIPeR dataset: The VIPeR dataset
consists of 632 people imaged by two non-overlapping
cameras. Image pairs exhibit viewpoint changes of up to
180 degrees and illumination changes that result in large
intra-class variations. The dataset has only two samples
of each person (one from each view), and thus can only
be used for SvsS re-identification.

On VIPeR we use the publicly available splits into
gallery and probe sets provided by the authors of
SDALF [5]. Table 2 compares the rank-1 performance of
ISR and the state-of-the-art on VIPeR. From this table
we see that ISR improves by about 6 percentage points
on the state-of-the-art performance on VIPeR, except for
learning-based methods like RPLM [20] and eSDC [22],
which perform similarly to us at rank-1.

Fig. 4(a) gives the CMC curves up to rank 50 compar-
ing ISR with the state-of-the-art. We outperform all state-
of-the-art techniques not based on metric learning up to
all but the highest ranks. After about rank-5, techniques
that learn on a part of the data like EIML [31], RPLM [20],
and eSDC [22] begin to outperform us. Note that such
techniques are not strictly comparable with ours since
they set aside a portion (up to half) of the dataset on
which to learn metrics. The gallery and probe sets are
drawn from the remaining data and thus the standard
splits cannot be used.

Performance on the i-LIDS dataset: The i-LIDS dataset
contains images from multiple camera views in a busy
airport arrival hall. As shown in Fig. 4(b), ISR outper-
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Fig. 4: Comparative performance evaluation on VIPeR and i-LIDS. (a) SvsS on VIPeR. (b) SvsS on i-LIDS. (c) MvsS on i-LIDS
(N ∈ {2, 3}). (d) MvsM on i-LIDS (N ∈ {2, 3}). Dashed curves distinguish techniques that set aside a portion of the dataset for
learning. In the legends we report the normalized area under the CMC curve (nAUC), when available.
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Fig. 5: Performance on CAVIAR4REID with respect to the state-
of-the-art. (a) SvsS. (b) MvsM for N ∈ {3, 5}. In the legends
we report the nAUC, when available.

forms the state-of-the-art at low ranks. After about rank-
4, however, techniques based on metric learning begin
to outperform us. Note that, due to having to use a
portion of available data for learning, the SBDR [18] and
PRSVM [14] methods only consider, respectively, 80 and
108 out of the 119 people in the dataset.

Table 2 summarizes the rank-1 performance of ISR
and the state-of-the-art for SvsS and MvsM on i-LIDS.
From this table we see that we slightly outperform other
approaches on SvsS, while we significantly outperform
competing methods by about 17 percentage points for
MvsM.

For MvsS and MvsM, where we are able to exploit
multiple images of each gallery individual, our improve-
ment over the state-of-the-art is dramatic. As seen in
Fig. 4(c) for MvsS (N = 2) we exceed the state-of-the-
art at rank-1 by nearly 19 percentage points. We similarly
improve for MvsS (N = 3) where we outperform SDALF
by nearly 11 percentage points at rank-1. For MvsM
we report results for N ∈ {2, 3} in Fig. 4(d) along
with results of other methods tested on this dataset. We
outperform the state-of-the-art at all ranks for the MvsM
modality.

Performance on the CAVIAR4REID dataset: The
CAVIAR4REID dataset contains 72 unique individuals
captured in a shopping center scenario. This dataset
was designed to maximize variability with respect to
resolution changes, illumination conditions, occlusions,
and pose changes.

We compare the rank-1 recognition rate of ISR and
the state-of-the-art on CAVIAR4REID in Table 2. We
significantly outperform competing methods at rank-1
in all modalities on this dataset. For MvsM we improve
on the state-of-the-art by nearly 62 percentage points for
MvsM (N = 3) and by 72.5 for MvsM (N = 5).

In Fig. 5(a) we report the CMC curves for ISR and
the state-of-the-art for SvsS on CAVIAR4REID. Our ap-
proach outperforms current methods up to about rank-
20. The improvement over the state-of-the-art at first
rank is particularly noticeable: there is a difference of
20.5 percentage points at rank-1 between our perfor-
mance and competing methods. In the legend we also
report the nAUC for each method, which gives an idea
of the trend of the curve across all ranks. Fig. 5(b) gives
CMC curves for MvsM on CAVIAR4REID for N ∈ {3, 5}.
In the MvsM modality, as for i-LIDS, we significantly
outperform the state-of-the-art at all ranks.

5.2 Evaluation of our person descriptor
In this section, we first give a comparison between our
descriptor detailed in Sec. 3 and some of the most used
descriptors from the re-identification literature. We also
quantify the contribution of our background separation
and pooling models with respect to other models used in
the literature. Then we analyze the contribution of each
component of our descriptor to the overall performance
of the method. Finally we provide an extensive evalua-
tion of the sensitivity of ISR to illumination variations,
viewpoint changes and misalignments of the person
window.

Comparison of person descriptors: We compare our
descriptor with the SDALF, PS and PRDC descriptors.
Direct, side-by-side comparison is difficult because for
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Fig. 6: Comparison with state-of-the-art descriptors and analysis of the contribution of each descriptor component. (a) State-
of-the-art descriptors in our ISR framework on i-LIDS. Solid lines represent MvsM (N=2) and dashed lines represent SvsS. (b)
ISR with different background models on VIPeR. (c) ISR with different pooling models on VIPeR. (d) The contribution of each
descriptor component on the VIPeR dataset.

some methods there is no publicly available code. Also,
SDALF and PS use HSV histograms with an MSCR
descriptor of variable-length, and is thus not suitable for
reconstruction by basis expansion. In order to embed
these descriptors into our framework, and considering
that MSCR contributes little to re-identification with
respect to the HSV histogram [8], we used only the
HSV component computed on the symmetry parts for
SDALF, and the HSV component computed on the per-
son parts for PS. For fairness of comparison, we report
performance of our full descriptor and the HS histogram
component only. In Fig. 6(a) we report performance on
i-LIDS for both SvsS and MvsM (N = 2), averaged
over ten trials. Our descriptor outperforms the others,
although it uses neither part-based modeling nor data-
driven foreground segmentation.

Comparison of background separation models: We
compare the contribution of the Epanechnikov kernel
with respect to a Gaussian center-support background
model with varying diagonal covariance and the STEL
component analysis background model, with and with-
out Gaussian weighting [25]. The performance figures
were obtained with our ISR re-identification approach
and the full descriptor with the corresponding back-
ground model.

In Fig. 6(b) we report performance on VIPeR, averaged
over ten random trials. We see that the Epanechnikov
kernel consistently outperforms Gaussian weighting,
likely due to the difficulty of tuning σx and σy to balance
the flatness (to include the subject) and peakedness
(to exclude background). The STEL component analysis
model performs similarly at high ranks. However, STEL
relies on a previously learned person model and requires
inference at re-identification time to segment the person
from the background.

Comparison of pooling models: We compare our over-
lapping striped pooling model with a non-overlapping
version of the same striped model, the symmetry-driven
SDALF model [5], and the part-based Pictorial Structures
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Fig. 7: Sensitivity to (a) illumination and (b) viewpoint changes.

model [8]. In all cases, we pool the local HS and RGB
histograms for each region and then concatenate the
HOG of the full image. We report performance on VIPeR
averaged over ten trials in Fig. 6(c). We see that our
striped pooling strategy, together with the Epanechnikov
kernel as background model, outperforms the more com-
plex part-based approaches.

Contribution of each descriptor component: In Fig. 6(d)
we show the contribution of each component of our
descriptor to overall performance: the HS histogram,
the RGB histogram, the HOG, the Epanechnikov ker-
nel and the application of square root to each bin of
the descriptor. The experiments were performed on the
VIPeR dataset, and results were averaged over ten trials.
The plots show that the addition of each component
improves performance.

Sensitivity to illumination changes: We performed a
series of experiments on VIPeR to quantify the sensitivity
of our descriptor to illumination changes. For each pair
of images in the VIPeR dataset we estimate the difference
in illumination by applying a Gaussian smoothing kernel
to the value channel in the HSV color space for each
image, weighting the filtered intensity images with the
Epanechnikov kernel, and then computing the difference
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Fig. 8: Rank-1 accuracy of ISR with our descriptor and PS over
a range of misalignment error. Images are random samples of
misaligned imagery.

in average intensity between the two images. The full set
of intensity variations between corresponding images in
the dataset was quantized in 16 bins. We then performed
leave-one-out cross validation to estimate sensitivity to
illumination changes: each image was used as a probe
and compared against all other images. Results are
shown in Fig. 7(a). The rank at which the correct gallery
image was returned is recorded as a function of illumina-
tion change. All possible ranks were also quantized into
16 bins and represented with different colors from dark
blue (bin 1) to red (bin 16). Looking at the first bin of
illumination variations, where all the image pairs have
almost equal illumination, we see that the correct image
always appears in the first ranking bin. On average, re-
identification in the first ranking bin is unaffected by
changes in illumination in about 40% of cases.

Sensitivity to viewpoint changes: We also performed
experiments to evaluate the sensitivity to viewpoint
changes, exploiting the fact that VIPeR contains ground
truth viewpoint annotations for all subjects (it is in
fact the only publicly available dataset with such an-
notations). Four different changes of viewpoints were
considered: 45, 90, 135, and 180 degrees. Also in this
case, the experiments were performed using leave-one-
out cross validation. All possible ranks were quantized
into 16 bins and represented with different colors. From
Fig. 7(b), we see that the our full descriptor is robust
to viewpoint variations and that re-identification in the
first ranking bin is approximately pose invariant in 45%
of the cases.

Sensitivity to misaligned detection windows: Finally,
we analyzed the sensitivity of the full descriptor to con-
ditions where the detection window is not well-centered
on the person. To this end we used the ETHZ datasets
because they also provide the original video frames from
which each person image was extracted. This allowed

us to artificially generate detection misalignments by
shifting the location of the person bounding box in the
original frame. Fig. 8 shows the SvsS recognition rate at
rank-1 for different degrees of misalignment applied to
the probe images. Results were averaged over ten trials,
over all person images in all three ETHZ datasets. In the
same figure we also report the performance of ISR with
the PS pooling model in the presence of misalignment.
We see that the ISR method with our descriptor (blue
curves) outperforms ISR with PS pooling (red curves)
for misalignments up to 17%. For higher misalignments
of the detection window, the adaptive PS pooling model
performs better and the additional complexity of fitting
body-part models may be warranted. Note that the HOG
component (solid lines) does not negatively affect the
overall ISR performance at any degree of misalignment.
In contrast, the HOG component appears to improve
performance of ISR with PS pooling at small misalign-
ments and affect it negatively at higher ones. From the
sample thumbnails in Fig. 8, it is anyway clear that
for misalignments beyond 30% the person image has
insufficient visual content for accurate re-identification.

5.3 Evaluation of Iterative Sparse Reconstruction
In this section we investigate how `1-regularized sparse
basis expansion aids in re-identification in comparison
to nearest-neighbor, least-squares, and nearest-subspace
classification. We also demonstrate how iteration con-
tributes to improve recall, and thus to high recognition
rates, across all ranks.

Contribution of sparse reconstruction: In Fig. 9(a) we
show the average rank-1 re-identification accuracy for
a range of solutions to the regularized least squares
problem of Eq. (6) over 10 trials on the VIPeR and i-LIDS
datasets. Shown are the least squares (λ = 0) solution,
sparse solutions for a range of λ > 0, and the nearest
neighbor solution when λ is sufficiently high to constrain
the solution to a single non-zero coefficient. The sparse
approach, for appropriate λ, outperforms the nearest
neighbor and least squares solutions on both datasets.

In Fig. 9(b) we give a comparison of ISR with
Nearest Subspace Classifier (NSC) [32] for MvsM on
CAVIAR4REID. We chose NSC as a baseline since it is
representative of linear, non-sparse approaches to recog-
nition. A drawback of NSC is that it cannot effectively
learn a subspace if the number of instances per person
is low, while ISR is robust with as few as two or three
gallery examples per person. This is especially evident
in Fig. 9(b) for N = 3 gallery images per person. We
used the CAVIAR4REID dataset for these experiments
because of the need for more than four images per
person to learn subspaces.

Contribution of iteration to recall: Iteration of our
sparse ranking algorithm is effective not only for high
ranks, but at middle and low ranks as well. Fig. 10(a)
shows the average cutoff ranks for each iteration on the
i-LIDS dataset and recognition rate (recall) across ranks.
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Fig. 9: (a) Rank-1 accuracy on VIPeR and i-LIDS for SvsS.
Accuracy is plotted for varying sparseness (λ), including least
squares (λ = 0) and the nearest neighbor (λ ≈ 0.6) solutions.
(b) Comparison of ISR with the Nearest Subspace Classifier
on CAVIAR4REID. In the legend we report the number of
instances per person (N ) and number of learned subspaces (k).
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Fig. 10: Iterative ranking and its effect on recall. (a) Average
recognition rates with cutoffs for each iteration. (b) RER and
recognition rate as function of rank.

These experiments were performed for MvsS (N = 2)
and averaged over 50 random splits. We see that with
a single iteration we can rank seven gallery persons, on
average, and achieve an average recognition rate of less
than 70%. After this point, the red curve (corresponding
to the first iteration) levels off since no more gallery per-
sons can be ranked, on average. Note how the first three
iterations yield a steep increase in average recognition
rate at low and middle ranks, leveling off on average
at rank 14 and 24, respectively. The remaining iterations
contribute more slowly to recall at higher ranks.

Fig. 10(b) shines more light on the contribution of each
iteration to recall at all ranks. This plot makes use of a
metric we introduce to quantify the expected number of
ranks Algorithm 1 returns in each iteration, on average.
The Ranking Expectation Rate RER(r, s) is the expectation
of ranking at least r elements in s iterations or less. Using
the notation of Algorithm 1 we define the RER for a
single-shot probe set Y = {y1, . . . ,ym} as:

RER(r, s) =
1

m

∣∣∣{y ∈ Y : |Rs(T, {y}, λ)| ≥ r
}∣∣∣, (12)

where Rs(T, {y}, λ) denotes the restriction of the rank-
ing of Algorithm 1 to iteration s or before:

Rs(T, {y}, λ) = {(i′, s′, e′) ∈ R(T, {y}, λ) : s′ ≤ s} . (13)

Fig. 10(b) illustrates the RER as a function of rank for
varying numbers of iterations in Algorithm 1. Superim-
posed on this plot is also the corresponding recognition
rate at each cutoff rank. Note that iteration contributes
to increased RER, and consequently recognition rate, not
only at high ranks but at all ranks. For many probes only
a few gallery persons are ranked by a single iteration,
and thus iteration contributes significantly to increasing
recall also at low ranks. We plot recall until rank 73 in
this plot, at which point it saturates after eight iterations.

5.4 Discussion

In this section we summarize our contribution terms of
performance with respect to the state-of-the-art and in
terms of computational efficiency.

General performance considerations: The trend that
emerges from the experimental evaluation is that, with
the exception of some learning-based approaches dis-
cussed below, ISR exceeds the state-of-the-art at rank-
1. This can be seen in the SvsS modality on all datasets,
but the increase in performance is dramatic on MvsS and
MvsM on i-LIDS, ETHZ and CAVIAR4REID. On these
multi-shot datasets ISR exceeds the state-of-the-art at all
ranks.

Ranking based on sparse, `1-regularized basis expan-
sions allows ISR to exploit multiple aspects of person
appearance in the multi-image galleries of the MvsS and
MvsM modalities. This is noticeable from the trend of
the curve on the i-LIDS dataset in Fig. 4(d) where we
quickly reach a 90% recognition rate at around rank-15
and on CAVIAR4REID in Fig. 5(b) where we reach 100%
accuracy around rank-20. In a simple experiment on i-
LIDS (MvsM with N = 3) to explore the effect of number
of gallery exemplars per person, we found that reducing
each gallery set to two exemplars had almost no effect
on recognition rate at all ranks, while reducing to only
one noticeably reduced performance. With one exemplar
per gallery person (and a multi-shot probe) performance
was still better than for SvsS, but the trend seems to be
that reducing the number of exemplars in the gallery
converges towards SvsS performance.

Comparison with metric learning: Some metric learn-
ing approaches outperform the ISR method at higher
ranks for SvsS on VIPeR and i-LIDS. By setting aside a
portion of the labeled data they are able to learn a metric
that better captures the intrinsic properties of the scene,
of the cameras used, and of the camera positioning and
imaging conditions. This increase in performance at high
rank comes at a cost. On VIPeR, for example, as much
as half of all available labeled data is used for metric
learning and this limits the availability of data for actual
testing. Not only does this render experimental results
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Fig. 11: Time required for re-identification. (a) Time as a function of the number of iterations of sparse re-weighted ranking on
the i-LIDS dataset. (b) Time for a desired nAUC on the i-LIDS dataset. (c) Time as a function of the total number of gallery
images on the ETHZ1 dataset for the MvsS N = 10 modality. Timings are averaged over all probes in fifty random splits.

not strictly comparable, it is also a severe limitation in
real application scenarios where no labeled data may be
available a priori. An important advantage of ISR with
respect to learning-based ones is that learned distance
metrics cannot be easily updated when camera settings
or positions change, while we can easily integrate new
instances per person and discard old gallery images.

Computational efficiency: Our approach is imple-
mented in MATLAB using the optimized SPAMS library
for sparse modeling [33]. All tests were performed on
an Intel Xeon@2.67GHz (8-core) with 12 GB RAM.1

Descriptor extraction in MATLAB requires about 0.016s
per person image and is included in all timing numbers
reported here.

In Fig. 11 we report three views of the computational
requirements of ISR. In Fig. 11(a) we vary the number
of iterations of sparse re-weighted ranking we perform
in order to quantify how computational requirements
change with increasing iterations (and increasing ac-
curacy). Fig. 11(b), on the other hand, quantifies the
relationship between the time required for performing
a single re-identification and the area under the curve.
From these curves we see that, if we are interested only
in first rank, we can perform re-identification of a single
probe in about 0.036s. In real application scenarios ISR
can thus perform rank-1 SvsS person re-identification at
about 30 re-identifications per second.

If we are interested in higher ranks, for example in an
interactive application in which a human operator will
sift through re-identification results, ISR might require
more than one iteration. From Fig. 11(b) we see that after
7 iterations we arrive at a nAUC of about 88%, requiring
0.08s to compute this result (which works out to about 12
re-identifications per second). In the MvsM modality ISR
requires about 0.14s (7 re-identifications per second), but
yields a nAUC of more than 94%. These first two tests
were carried out on the i-LIDS dataset.

In Fig. 11(c) we show how ISR scales as a function of
the gallery size. The time for a single re-identification
increases approximately linearly when increasing the

1. Source code available at: http://www.micc.unifi.it/lisanti/
source-code/re-id/

number of images in the basis up to 600 images; then
the trend becomes superlinear from 600 to 900. It is in-
teresting that this non-linearity is more pronounced with
increasing number of iterations. This test was carried out
on the ETHZ1 dataset which contains the most images,
and all measurements obtained by averaging over 50
random splits of gallery/probe image sets.

6 CONCLUSIONS

In this paper we described an approach to person re-
identification that is based on sparse, `1-regularized
basis expansions of probes in terms of a set of gallery
examples used as basis vectors. We showed how to
extend, through iteration and re-weighting, the concept
of a Sparse Discriminative Classifier to problems re-
quiring ranked output. Our algorithm is efficient and
obtains state-of-the-art performance on both multi- and
single-shot person re-identification modalities. Our re-
sults demonstrate how sparse reconstruction generally
leads to higher performance at first rank, while also
yielding higher nAUC using the proposed iterative rank-
ing. It is feature agnostic and it can be applied to any
feature that is encoded as a fixed-length vector. ISR is
also competitive with respect to metric learning-based
methods which set aside data for training.

Our approach makes use of a simple, yet discrimi-
native descriptor of person appearance. It requires no
foreground/background separation or body part seg-
mentation. It is simple and extremely efficient to calcu-
late, and the performance of our approach demonstrates
that simple descriptors can be successfully applied in re-
identification scenarios.

Iterative sparse ranking is a general approach and
can be applied to retrieval problems beyond person re-
identification. Our use of `1-regularized basis expansions
for ranking shares some similarities with iterative al-
gorithms such as LARS used to solve weighted Lasso
problems like Eq. (10). An interesting line of research
would investigate the possibility of directly incorporat-
ing soft- and hard-weighting of coefficients into a single
regularization path capable of robustly ranking many
candidates in a single iterative pass over basis vectors.

http://www.micc.unifi.it/lisanti/source-code/re-id/
http://www.micc.unifi.it/lisanti/source-code/re-id/
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