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Abstract

This paper studies a model for thermoelasticity where the body has a double poros-
ity structure. There are the usual pores associated to a porous body, herein called
macro pores. In addition, the solid skeleton contains cracks or fissures which give
rise to a micro porosity. The fully anisotropic situation is analyzed. We firstly estab-
lish uniqueness of a solution to the boundary-initial value problem when the elastic
coefficients are sign-indefinite and are required to satisfy only major symmetry. Fur-
thermore, in the quasi-equilibrium case, where the solid acceleration is neglected, we
demonstrate that a solution to the boundary-initial value problem with zero bound-
ary conditions will decay to zero in a certain sense, under the assumption that there
are no sources and external body force involved.
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1 INTRODUCTION

Driven by the many real life applications, elastic materials with a double porosity structure have become the subject of intensive
current research.
A double porosity elastic material is a solid which contains pores on a macro scale and pores on a much smaller scale.

These are referred to as macro pores and micro pores, respectively. There are many application areas and these are detailed in
Straughan 1 , but to give an idea of the vastness we mention oil recovery, Olusola et al. 2 ; hydraulic fracturing for gas, Kim and
Moridis 3 ; bone recovery and bone replacement, Svanadze and Scalia 4 .
In this article we focus on an anisotropic theory for a double porosity elastic material under the effect of local thermal non-

equilibrium, cf. Svanadze 5 . Local thermal non-equilibrium is where the solid and the fluid in a porous body may have different
temperatures. In studies of fluid motion in a fixed porous body this concept was introduced by Nield 6 and striking differences
have been observed by comparison with the single temperature theory, see e.g. Rees et al. 7 , see also Straughan 8 .
The basic double porosity theory we use is based on a single temperature model developed extensively by Svanadze 9,10 ,

Ciarletta et al. 11 , Svanadze and Scalia 4 , Scarpetta and Svanadze 12 , and within the local thermal non-equilibrium isotropic
theory developed and used in Svanadze 5 . Thermal effects in porous elastic material are very important since cracking may
occur due to thermally induced stress, see e.g. Siratovich et al. 13 . Thermally induced cracking in a porous elastic body is thus
intimately connected to a double porosity theory.
In the first part of the paper we establish uniqueness of a solution without requiring any sign-definiteness of the elastic

coefficients. We require only symmetry of elasticities. This is important since, for example, Xinchun and Lakes 14 and Ha et al. 15
have demonstrated that many materials have negative Poisson ratio. In fact, recent studies have abandoned positive-definiteness
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of the elastic coefficients in favour of the weaker condition of strong ellipticity, see e.g. Xinchun and Lakes 14 , Chiriţă and
Ciarletta 16 , Chiriţă et al. 17 , Chiriţă and Danescu 18 , Chiriţă and Ghiba 19 . Thus, for an anisotropic body use of only the major
symmetry is important.
In the quasi-equilibrium case where the solid acceleration is absent, see e.g. Scarpetta and Svanadze 12 , the decay in time in a

certain sense is established for a solution of the double porosity local thermal non-equilibrium problem, under the assumption
that there are no sources and external body force involved.

2 THE GOVERNING EQUATIONS

The porous elastic body consists of a solid elastic skeleton, macro pores, and micro pores in the skeleton. The temperature is
allowed to be different in the skeleton, in the fluid in the macro pores and in the fluid in the micro pores. The relevant variables
are the elastic displacement, ui, the pressure in the macro pores, p, the pressure in the micro pores, q, the temperature in the
solid skeleton, �1, the temperature of the fluid in the macro pores, �2, and the temperature of the fluid in the micro pores, �3.
Each variable is a function of x and t and the elastic body occupies a bounded domain Ω ⊂ ℝ3, which has boundary sufficiently
smooth to allow application of the divergence theorem.
The basic equations for a double porosity thermoelastic body in local thermal non-equilibrium are derived in the isotropic

case by Svanadze 5 . We here generalize this and present the fully anisotropic system of equations, namely
�üi =

(

aijℎkuℎ,k
)

,j −
(

�ijp
)

,j −
(

ijq
)

,j

−
(

a(1)ij �1
)

,j
−
(

a(2)ij �2
)

,j
−
(

a(3)ij �3
)

,j
+ �fi ,

�ṗ =
(

kijp,j
)

,i − �ij u̇i,j − (p − q) + �s1 ,

�q̇ =
(

mijq,j
)

,i − ij u̇i,j + (p − q) + �s2 ,

a1�̇1 =
(

�ij�1,j
)

,i
− a(1)ij u̇i,j − d1(�1 − �2) − d2(�1 − �3) + �r1 ,

a2�̇2 =
(

!ij�2,j
)

,i
− a(2)ij u̇i,j + d1(�1 − �2) − d3(�2 − �3) + �r2 ,

a3�̇3 =
(

�ij�3,j
)

,i
− a(3)ij u̇i,j + d3(�2 − �3) + d2(�1 − �3) + �r3 ,

(1)

where a superposed dot denotes )∕)t, standard indicial notation is employed with ,i denoting )∕)xi, and fi, s1, s2, r1, r2, r3 are
the body force, sources for the pressure and externally supplied heat sources, respectively. The coefficients may all depend on
x, with � > 0 being the density of the solid elastic skeleton and also �, �,  , d1. d2, d3, a1, a2 and a3 are positive. The tensors
�ij , ij , a

(1)
ij , a

(2)
ij , a

(3)
ij are all symmetric. Likewise the coefficients kij , mij , �ij , !ij and �ij are all symmetric tensors.

Equations (1) hold on Ω × (0, T ] for some T <∞. The boundary of Ω is denoted by Γ and on Γ the conditions are
ui = ℎi(x, t) , p = pB(x, t) , q = qB(x, t) ,
�1 = �1(x, t) , �2 = �2(x, t) , �3 = �3(x, t) ,

(2)

holding on Γ × [0, T ], where ℎ1, pB , qB , �1, �2, �3 are prescribed functions. In addition, the following initial conditions hold

ui(x, 0) = vi(x) , u̇i(x, 0) = wi(x) ,
p(x, 0) = P (x) , q(x, 0) = Q(x) ,
�1(x, 0) = Θ1(x) , �2(x, 0) = Θ2(x) , �3(x, 0) = Θ3(x) ,

(3)

with x ∈ Ω and for given functions vi, wi, P , Q and Θ� , � = 1 , 2 , 3.
The boundary-initial value problem given by (1)–(3) is denoted by  .

3 UNIQUENESS

In this section we require the elastic coefficients to satisfy the symmetries

aijℎk = ajiℎk = aℎkij , (4)
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although we stress that no definiteness is required, and we require that kij , mij , �ij , !ij and �ij are semi-positive-definite.
To establish uniqueness we let (u�i , p

� , q� , ��1 , �
�
2 , �

�
3 ), � = 1, 2 be two solutions to  which satisfy (2) and (3) for the same

boundary and initial functions ℎi, pB , qB , �1, �2, �3, vi, wi, P , Q, Θ1, Θ2, Θ3, and which satisfy (1) for the same body force fi
and for the same source terms s1, s2, r1, r2, r3. Define the difference solution Λ = (ui, p, q, �1, �2, �3) by

ui = u1i − u
2
i , p = p1 − p2 , q = q1 − q2 ,

�1 = �11 − �
2
1 , �2 = �12 − �

2
2 , �3 = �13 − �

2
3 .

By subtraction one verifies that Λ satisfies the equations
�üi =

(

aijℎkuℎ,k
)

,j −
(

�ijp
)

,j −
(

ijq
)

,j

−
(

a(1)ij �1
)

,j
−
(

a(2)ij �2
)

,j
−
(

a(3)ij �3
)

,j
,

�ṗ =
(

kijp,j
)

,i − �ij u̇i,j − (p − q) ,

�q̇ =
(

mijq,j
)

,i − ij u̇i,j + (p − q) ,

a1�̇1 =
(

�ij�1,j
)

,i
− a(1)ij u̇i,j − d1(�1 − �2) − d2(�1 − �3) ,

a2�̇2 =
(

!ij�2,j
)

,i
− a(2)ij u̇i,j + d1(�1 − �2) − d3(�2 − �3) ,

a3�̇3 =
(

�ij�3,j
)

,i
− a(3)ij u̇i,j + d3(�2 − �3) + d2(�1 − �3) ,

(5)

in Ω × (0, T ], together with the homogeneous boundary conditions
ui = 0 , p = 0 , q = 0 ,
�1 = 0 , �2 = 0 , �3 = 0 ,

(6)

on Γ × [0, T ], and the homogeneous initial conditions
ui(x, 0) = 0 , u̇i(x, 0) = 0 ,
p(x, 0) = 0 , q(x, 0) = 0 ,
�1(x, 0) = 0 , �2(x, 0) = 0 , �3(x, 0) = 0 ,

(7)

for x ∈ Ω.
The uniqueness proof proceeds by a logarithmic convexity argument.
We firstly define the variables �(x, t), � (x, t), �(x, t),  (x, t), �(x, t) by

� =

t

∫
0

p(x, s)ds , � =

t

∫
0

q(x, s)ds ,

� =

t

∫
0

�1(x, s)ds ,  =

t

∫
0

�2(x, s)ds , � =

t

∫
0

�3(x, s)ds .

In terms of the variables �, � , �,  and � we may integrate (5)2−6 to derive the equations

�p =
(

kij�,j
)

,i − �ijui,j − (� − � ) ,

�q =
(

mij�,j
)

,i − ijui,j + (� − � ) ,

a1�1 =
(

�ij�,j
)

,i − a
(1)
ij ui,j − d1(� −  ) − d2(� − �) ,

a2�2 =
(

!ij ,j
)

,i − a
(2)
ij ui,j + d1(� −  ) − d3( − �) ,

a3�3 =
(

�ij�,j
)

,i − a
(3)
ij ui,j + d3( − �) + d2(� − �) .

(8)

We denote by < ⋅ > integration over Ω, e.g.
< f >= ∫

Ω

fdx .
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Then define the functional F by

F (t) = < �uiui > +

t

∫
0

< kij�,j�,i > ds +

t

∫
0

< mij�,j�,i > ds

+

t

∫
0

< (� − � )2 > ds +

t

∫
0

< �ij�,j�,i > ds

+

t

∫
0

< !ij ,j ,i > ds +

t

∫
0

< �ij�,j�,i > ds

+

t

∫
0

< d1(� −  )2 > ds +

t

∫
0

< d2(� − �)2 > ds

+

t

∫
0

< d3( − �)2 > ds .

(9)

Differentiate F to obtain

F ′(t) =2 < �uiu̇i > +2

t

∫
0

< kij�,jp,i > ds + 2

t

∫
0

< mij�,jq,i > ds

+ 2

t

∫
0

< (� − � )(p − q) > ds + 2

t

∫
0

< �ij�,j�1,i > ds

+ 2

t

∫
0

< !ij ,j�2,i > ds + 2

t

∫
0

< �ij�,j�3,i > ds

+ 2

t

∫
0

< d1(� −  )(�1 − �2) > ds + 2

t

∫
0

< d2(� − �)(�1 − �3) > ds + 2

t

∫
0

< d3( − �)(�2 − �3) > ds .

(10)

After a further differentiation one finds
F ′′(t) =2 < �u̇iu̇i > +2 < �uiüi > +2 < kij�,jp,i > +2 < mij�,jq,i >

+ 2 < (� − � )(p − q) > +2 < �ij�,j�1,i > +2 < !ij ,j�2,i >

+ 2 < �ij�,j�3,i > +2 < d1(� −  )(�1 − �2) >

+ 2 < d2(� − �)(�1 − �3) > +2 < d3( − �)(�2 − �3) > .

(11)

The next step is to multiply equation (5)1 by ui and integrate over Ω. Then multiply each of equations (8)1 to (8)5 by p, q, �1,
�2 and �3, in turn, and integrate each over Ω with integration by parts and use of the homogeneous boundary conditions. The
resulting six equations are added to yield the following equation

< �uiüi > + < kij�,jp,i > + < mij�,jq,i > + < �ij�,j�1,i >

< !ij ,j�2,i > + < �ij�,j�3,i > + < (� − � )(p − q) >

+ < d1(� −  )(�1 − �2) > + < d3( − �)(�2 − �3) >
+ < d2(� − �)(�1 − �3) >
=− < aijℎkuℎ,kui,j > − < �p2 > − < �q2 >
− < a1�21 > − < a2�

2
2 > − < a3�

2
3 > .

(12)

We now use equation (12) to substitute for the last ten terms in (11) to find
F ′′(t) =2 < �u̇iu̇i > −2 < aijℎkuℎ,kui,j > −2 < �p2 > −2 < �q2 >

− 2 < a1�21 > −2 < a2�
2
2 > −2 < a3�

2
3 > .

(13)
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The next stage involves the energy equation for (5)–(7). Define the energy as

E(t) =1
2
< �u̇iu̇i > +

1
2
< aijℎkui,juℎ,k > +

1
2
< �p2 > +1

2
< �q2 >

+ 1
2
< a1�

2
1 > +

1
2
< a2�

2
2 > +

1
2
< a3�

2
3 > .

(14)

To obtain the energy equation, one multiplies (5)1 by u̇i, (5)2−6 by p, q, �1, �2 and �3, respectively, and integrates each over Ω.
Integration by parts, taking into account the homogeneous boundary conditions, and then integrating in time, readily yields

E(t) +

t

∫
0

< kijp,jp,i > ds +

t

∫
0

< mijq,jq,i > ds +

t

∫
0

< (p − q)2 > ds

+

t

∫
0

< �ij�1,j�1,i > ds +

t

∫
0

< !ij�2,j�2,i > ds +

t

∫
0

< �ij�3,j�3,i > ds

+

t

∫
0

< d1(�1 − �2)2 > ds +

t

∫
0

< d2(�1 − �3)2 > ds +

t

∫
0

< d3(�2 − �3)2 > ds = E(0) .

(15)

From (7) it follows that E(0) = 0.
Substitute in (13) for the last six terms using (14) and (15) to see that

F ′′(t) =4 < �u̇iu̇i > −4E(t)

=4 < �u̇iu̇i > +4

t

∫
0

< kijp,jp,i > ds + 4

t

∫
0

< mijq,jq,i > ds

+ 4

t

∫
0

< �ij�1,j�1,i > ds

+ 4

t

∫
0

< !ij�2,j�2,j > ds + 4

t

∫
0

< �ij�3,j�3,i > ds

+ 4

t

∫
0

< (p − q)2 > ds + 4

t

∫
0

< d1(�1 − �2)2 > ds

+ 4

t

∫
0

< d2(�1 − �3)2 > ds + 4

t

∫
0

< d3(�2 − �3)2 > ds .

(16)

We now utilize (16), (9) and (10) to form the combination FF ′′ − (F ′)2 to see that

FF ′′ − (F ′)2 = 4S2 ≥ 0 , (17)

where S2, which is non-negative due to the Cauchy-Schwarz inequality, is given by

S2 = AB − C2,
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where the terms A, B and C have form

A = < �uiui > +

t

∫
0

< kij�,j�,i > ds +

t

∫
0

< mij�,j�,i > ds

+

t

∫
0

< �ij�,j�,i > ds +

t

∫
0

< !ij ,j ,i > ds +

t

∫
0

< �ij�,j�,i > ds

+

t

∫
0

< (� − � )2 > ds +

t

∫
0

< d1(� −  )2 > ds +

t

∫
0

< d2( − �)2 > ds +

t

∫
0

< d3(� − �)2 > ds ,

B = < �u̇iu̇i > +

t

∫
0

< kijp,jp,i > ds +

t

∫
0

< mijq,jq,i > ds

+

t

∫
0

< �ij�1,j�1,i > ds +

t

∫
0

< !ij�2,j�2,i > ds +

t

∫
0

< �ij�3,j�3,i > ds

+

t

∫
0

< (p − q)2 > ds +

t

∫
0

< d1(�1 − �2)2 > ds

+

t

∫
0

< d2(�1 − �3)2 > ds +

t

∫
0

< d3(�2 − �3)2 > ds ,

C = < �uiu̇i > +

t

∫
0

< kij�,jp,i > ds +

t

∫
0

< mij�,jq,i > ds

+

t

∫
0

< �ij�,j�1,i > ds +

t

∫
0

< !ij ,j�2,i > ds +

t

∫
0

< �ij�,j�3,i > ds

+

t

∫
0

< (� − � )(p − q) > ds +

t

∫
0

< d1(� −  )(�1 − �2) > ds

+

t

∫
0

< d2(� − �)(�1 − �3) > ds +

t

∫
0

< d3( − �)(�2 − �3) > ds .

From (17) one now deducesF ≡ 0 on [0, T ], see e.g. Straughan 1, chapter 1. Roughly, one divides (17) byF 2 to find (logF )′′ ≥ 0,
but care has to be taken since F (0) = 0. One has to use a contradiction argument involving F (�), and then let � → 0. Since
F ≡ 0 it follows from (9) that ui ≡ 0. Next, we appeal to the energy equation (15) using (14), to conclude also that

p ≡ 0 , q ≡ 0 , �1 ≡ 0 , �2 ≡ 0 , �3 ≡ 0 ,

on Ω × [0, T ] and uniqueness follows, with only the symmetry conditions (4) on the elastic coefficients.

4 DECAY

In double porosity elasticity theory several writers argue that for many applications one may dispense with the acceleration
term in equation (1)1, see e.g. Scarpetta and Svanadze 12 and the references therein. In this case the system is referred to as a
quasi-equilibrium system, cf. Scarpetta and Svanadze 12 , Svanadze 5 .
In this section we analyze the quasi-equilibrium version of equations (1) with zero source terms, and so omit the �üi term.

The boundary conditions adopted are those of (6), while the initial conditions are (3). The boundary-initial value problem thus
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defined is denoted by. We retain the symmetries of (4), but now we require aijℎk to be positive definite, i.e.

aijℎk"ℎk"ij ≥ a0"ij"ij , (18)

for all "ij , where a0 > 0 is a constant. In addition we impose the (realistic) bounds on the coefficients,

�ij�ij , ijij ,  , a(1)ij a
(1)
ij , a(2)ij a

(2)
ij , a(3)ij a

(3)
ij ≤M , (19)

for some constantM , where (19) hold ∀x ∈ Ω.
Furthermore, for positive constants �0, �0, â1, â2, â3, �̃0, �̃0, ã1, ã2, ã3, k1, m1, �1, !1, �1, we require

�0 ≤ � ≤ �̃0 , �0 ≤ � ≤ �̃0 , â1 ≤ a1 ≤ ã1 , â2 ≤ a2 ≤ ã2 , â3 ≤ a3 ≤ ã3 , (20)

and
kij"j"i ≥ k1"i"i , mij"j"i ≥ m1"i"i , �ij"j"i ≥ �1"i"i ,
!ij"j"i ≥ !1"i"i , �ij"j"i ≥ �1"i"i ,

(21)

∀x ∈ Ω and for all "i.
We shall establish that a solution to decays to zero in an appropriate manner. To do this we commence by multiplying the

quasi-equilibrium version of (5)1 by ui and then integrate over Ω and use the homogeneous boundary conditions to derive

< aijℎkuℎ,kui,j >= < �ijpui,j > + < ijqui,j >

+ < a(1)ij �1ui,j > + < a
(2)
ij �2ui,j > + < a

(3)
ij �3ui,j > .

(22)

We next employ the Cauchy-Schwarz and arithmetic-geometric mean inequalities on the terms on the right of (22). After, using
the bounds (19) and (20) one may readily deduce the inequality

1
2
< aijℎkuℎ,kui,j >≤ C∗

[

< �p2 > + < �q2 > + < a1�21 > + < a2�
2
2 > + < a3�

2
3 >

]

, (23)

where
C∗ = 5MK

2â3a0
with

K =
â3
�0
+
â3
�0
+
â3
â1
+
â3
â2
+ 1 .

The next step is to multiply the quasi-equilibrium version of (5)1 by u̇i and integrate over Ω, and then multiply (5)2–(5)6 by p,
q, �1, �2 and �3, respectively, and integrate each over Ω. Denote by Ee and Ed the expressions

Ee =
1
2
< aijℎkuℎ,kui,j > ,

Ed =
1
2
< �p2 > +1

2
< �q2 > +1

2
< a1�

2
1 > +

1
2
< a2�

2
2 > +

1
2
< a3�

2
3 > ,

corresponding to the elastic energy and to the (thermo-bidispersive) dissipative term. By adopting the procedure above one may
show

d
dt

(

Ee + Ed
)

= −f (t) , (24)
where

f (t) = < kijp,jp,i > + < mijq,jq,i > + < �ij�1,j�1,i >

+ < !ij�2,j�2,i > + < �ij�3,j�3,i > + < (p − q)
2 >

+ < d1(�1 − �2)2 > + < d2(�1 − �3)2 > + < d3(�2 − �3)2 > .

(25)

Upon integration, we see from (24) with E = Ee + Ed

0 ≤ E(t) = E(0) −

t

∫
0

f (s)ds . (26)
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Next, using Poincaré’s inequality together with (21) and the definition of E, from (26) we may deduce

Ed(t) ≤E(t) = E(0) −

t

∫
0

f (s)ds

≤E(0) − �1

t

∫
0

(

k1 < p
2(s) > +m1 < q2(s) > +�1 < �21(s) > + < !1 < �

2
2(s) > + < �1 < �

2
3(s) >

)

ds ,

(27)

�1 being the first eigenvalue in the membrane problem for Ω.
Therefore, using the upper bounds of (20), we may obtain

Ed(t) ≤ E(0) − �1

t

∫
0

(

k1
�̃0

< �p2(s) > +
m1
�̃0

< �q2(s) > +
�1
ã1
< a1�

2
1(s) > +

!1
ã2

< a2�
2
2(s) > +

�1
ã3

< a3�
2
3(s) >

)

ds

≤ E(0) − k

t

∫
0

Ed(s)ds ,

(28)

where
k = 2�1min

{

k1
�̃0
,
m1
�̃0
,
�1
ã1
,
!1
ã2
,
�1
ã3

}

.

We integrate (27) with the aid of an integrating factor to find
t

∫
0

Ed(s)ds ≤
E(0)
k

(

1 − e−kt
)

, ∀t > 0 ,

so ∞

∫
0

Ed(s)ds ≤
E(0)
k

. (29)

However, from inequality (23) we see that
Ee
2C∗

≤ Ed .

Hence, from (29) we may show
∞

∫
0

E(s)ds ≤ 1 + 2C∗
k

E(0) . (30)

Therefore, E(t) ∈ L1(0,∞) and from (24) E′(t) ≤ 0, ∀t > 0. Thus,

lim
t→∞

E(t) = 0 . (31)

Relation (31) shows that the solution to  decays to zero in time in the measure E(t).

5 CONCLUSIONS

In this paper we have introduced a set of partial differential equations to model the evolutionary behaviour of an anisotropic
elastic body which contains a double porosity structure under conditions of local thermal non-equilibrium. We have proved that
a solution to the displacement boundary initial value problem is unique under the weak requirement of symmetry of the elastic
coefficients. In addition, we have demonstrated that the solution to the equivalent problem for a quasi-equilibrium theory decays
to zero in time in a precise sense, when there are no sources and external body force involved.
It is still an open problem to know the rate of decay, even in the quasi-equilibrium theory. It would also be very interesting

to know properties of decay for the full theory along the lines of analogous results for classical linear thermoelasticity by
Dafermos 20 and Lebeau and Zuazua 21 . Given that the decay rate even for thermoelasticity may be polynomial or exponential
depending on the geometry, it is natural to expect something similar in the present more complicated model. In fact, in equation
(1) there are two potential sources of damping. One is the analogous one from thermoelasticity involving the �ij , ij , a

(s)
ij ,



F. FRANCHIi ET AL 9

s = 1, 2, 3, terms. However, a second source of damping could arise from the interaction terms between the macro and micro
pressures, the terms involving  , and between the temperatures, the d� , � = 1, 2, 3, terms. Since the  terms involve the difference
p − q, and d� terms involve �� − �� , this has some resemblance to the situation for a mixture of two elastic solids where the
dissipation involves the difference of velocities, a problem resolved by Dafermos 22 .
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