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cDepartemento de Informática, Pontif́ıcia Universidade Católica do Rio de Janeiro, Brazil

Abstract

Two-echelon distribution systems are attractive from an economical standpoint and help to

keep large vehicles out of densely populated city centers. Large trucks can be used to deliver

goods to intermediate facilities in accessible locations, whereas smaller vehicles allow to reach

the final customers. Due to their reduced size, pollution, and noise, multiple companies consider

using an electric fleet of terrestrial or aerial vehicles for last-mile deliveries.

Route planning in multi-tier logistics leads to notoriously difficult problems. This difficulty

is accrued in the presence of an electric fleet since each vehicle operates on a smaller range and

may require planned visits to recharging stations. To study these challenges, we introduce the

electric two-echelon vehicle routing problem (E2EVRP) as a prototypical problem. We propose a

large neighborhood search (LNS) metaheuristic as well as an exact mathematical programming

algorithm, which uses decomposition techniques to enumerate promising first-level solutions in

conjunction with bounding functions and route enumeration for the second-level routes. These

algorithms produce optimal or near-optimal solutions for the problem and allow us to evaluate

the impact of several defining features of optimized battery-powered distribution networks.

We created representative E2EVRPs benchmark instances to simulate realistic metropolitan

areas. In particular, we observe that the detour miles due to recharging decrease proportionally

to 1/ρx with x ≈ 5/4 as a function of the charging stations density ρ; e.g., in a scenario where

the density of charging stations is doubled, recharging detours are reduced by 58%. Finally,

we evaluate the trade-off between battery capacity and detour miles. This estimate is critical
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for strategic fleet-acquisition decisions, in a context where large batteries are generally more

costly and less environment-friendly.

1. Introduction

High population densities, globalization of production, the widespread use of home deliveries,

and many other factors all demand an effective supply chain planning within cities. The

resulting topic, called city logistics, has been the subject of an abundant literature in the past

years. In city centers, the space is limited; and noise or pollution have adverse effects on many

residents. Therefore, jointly accounting for supply chain efficiency and other externalities (e.g.,

noise, congestion, pollution) is essential.

A city supply chain is usually organized into several levels relying on distinct vehicle types.

Indeed, large trucks tend to be more adequate for intercity transportation, whereas small

and quiet vehicles are preferred for deliveries within city centers. The two-echelon layout is

a classical example of such a strategy, which has been abundantly studied in the operations

research literature. Over the years, many optimization algorithms have been proposed to solve

the two-echelon vehicle routing problem (2EVRP) and produce efficient delivery itineraries.

Nowadays, as technology for electric mobility progresses, multi-tier delivery schemes are

naturally destined to make use of electric vehicles, and multiple companies have, in practice,

already operated this transition (Foltyński 2014). Yet, a utilization of electric vehicles also poses

specific challenges, in relation to their limited autonomy, smaller capacity, and the possible need

of planned visits to charging stations. Moreover, whereas early charging technologies required

several hours for a full recharge, recent developments of fast-charging or battery-swap stations

(Yang and Sun 2015, Hof et al. 2017, Keskin and Çatay 2018) allow energy replenishment

in approximately half an hour. The growing adoption of these technologies allows en-route

recharging (e.g., during lunch breaks) in metropolitan distribution systems, as well as the

use of cheaper lightweight vehicles with smaller batteries. Last but not the least, the study

on battery-powered distribution is not limited to terrestrial vehicles, but also meets critical

applications in last-mile distribution using aerial vehicles (i.e., drones – Poikonen et al. 2017

and Wang et al. 2017b).
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To focus on these challenges, we introduce the E2EVRP as a prototypical problem. It is

a natural extension of the 2EVRP in which electric vehicles are used on the second echelon.

Given a geographically-dispersed set of customers demanding an amount of a single commodity,

a set of satellites (intermediate facilities), a set of charging stations, and a central depot

where the commodity is kept, the E2EVRP seeks least-cost delivery routes to transport the

commodity from the depot to the satellites with conventional vehicles (first-level), and from the

satellites to the customers using an electric fleet (second-level). Some additional assumptions

must also be satisfied:

• Each first-level route originates at the depot, visits a sequence of satellites, and returns to

the depot;

• Each satellite can be served by multiple first-echelon routes;

• Not all satellites have to be used, and each satellite has a maximum capacity of goods which

can be transferred between vehicles;

• Each second-level route originates at a satellite, visits a sequence of customers and possibly

some recharging stations, and returns to the same satellite;

• Each customer is visited once: therefore no split deliveries are allowed on the second level;

• No direct shipping from the depot to a customer is allowed;

• The number of available vehicles at each satellite is limited;

• Electric vehicles have a limited driving range, which can be fully replenished at a charging

station;

• Each satellite also hosts a charging station at its location;

• Charging stations can be used multiple times, but a consecutive visit to two charging stations

in a second-level route is prohibited.

The cost of the solution, to be minimized, includes a fixed cost for each vehicle in use, as well

as driving costs proportional to the distance traveled.

From a combinatorial optimization viewpoint, the E2EVRP represents a formidable chal-

lenge for heuristic and exact methods alike, not only because it is an generalization of the

capacitated vehicle routing problem and therefore NP-hard, but essentially because it combines

many interdependent combinatorial decision classes: the selection of satellites, the choice of a
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fleet size for each satellite, the routes at each level, and finally the selection of visits to charging

stations.

To solve this problem, we introduce a LNS-based metaheuristic which combines a restricted

set of destruction and reconstruction operators, a local search procedure, and a fast labeling

algorithm to optimize the visits to charging locations. We also propose an exact mathematical

programming algorithm, which uses a decomposition technique to enumerate promising first-

level solutions along with bounding functions and route enumeration for the second level, using

problem-tailored pricing algorithms. These two methods can be viewed as extensions of the

approaches of Breunig et al. (2016) and Baldacci et al. (2013) for the classical 2EVRP, in

which specialized route evaluation techniques, labeling algorithms and dominance strategies

have been integrated to efficiently manage the selection of recharging stations for the electric

vehicles.

Not only do these algorithms allow to find optimal or near-optimal solutions for the E2EVRP,

and thus respond to the need of advanced algorithm for future city-logistics planning, but they

also open the way to an analysis of several defining features of optimized battery-powered

city-distribution networks. To that end, we created additional datasets which simulate the

general characteristics of a metropolitan area, and examine the impact of the density of the

charging station network and the capacity of the vehicles’ batteries on the cost-efficiency of

the optimal solutions of the problem.

The remainder of this paper is organized as follows. Section 2 reviews the related literature

and Section 3 formally describes the problem. Then, Sections 4 and 5 describe, respectively,

the proposed exact and heuristic algorithms. Section 6 reports our computational experiments

and sensitivity analyses, and Section 7 concludes.

2. Related Literature

This section provides an overview of the recent and related literature, concentrating first

on solution methods for two-echelon vehicle routing problems, and then reviewing studies

dedicated to routing optimization for vehicles with alternative fuels.

Several studies focused on mathematical programming solution techniques for the 2EVRP.

Gonzalez-Feliu et al. (2008) were the first to describe a branch-and-cut algorithm based on a
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commodity flow formulation that solved instances with up to 32 customers and 2 satellites.

The method of Gonzalez-Feliu et al. (2008) was improved by Perboli et al. (2010) and Perboli

et al. (2011) by adding valid inequalities in a cutting plane fashion. Optimal solutions for

instances with up to 32 customers and 2 satellites were found by the method of Perboli et al.

(2011). Jepsen et al. (2012) described a branch-and-cut algorithm based on a new mathematical

formulation and different valid inequalities. Exact algorithms were also designed by Baldacci

et al. (2013) and by Santos et al. (2015). Santos et al. described a branch-and-cut-and-price

algorithm for the 2EVRP that relies on a reformulation based on the q-routes relaxation

proposed for the capacitated vehicle routing problem (CVRP) by Christofides et al. (1981).

Baldacci et al. proposed an exact method for solving the 2EVRP based on a set partitioning

formulation with side constraints. They described a bounding procedure that is used by the

exact algorithm to decompose the problem into a limited set of multi-depot capacitated vehicle

routing problems (MDCVRPs) with side constraints. The optimal 2EVRP solution is obtained

by solving the set of MDCVRPs generated. The method was tested on 207 instances, taken

both from the literature and newly generated, with up to 100 customers and 6 satellites. The

results obtained by Baldacci et al. (2013) show that their exact algorithm outperforms the

existing methods from the papers described above.

The number of publications focused on the 2EVRP has rapidly grown over the last two

decades. The survey by Cuda et al. (2015) captures well the breadth of this line of research,

and we refer to it for a detailed analysis of solution methods. It covers different two-echelon

structured transportation problems: two-echelon location routing problems (2ELRPs), 2EVRPs

and truck and trailer routing problems (TTRPs). Based on their findings we will focus on

more recent publications.

Some additional recent papers have appeared since then. Zeng et al. (2014), in particular,

proposed a greedy randomized adaptive search procedure with a route-first cluster-second

splitting algorithm and a variable neighborhood descent for the 2EVRP. Their results are

promising, but the algorithm was only tested on the smaller benchmark instances with up to

50 delivery points. Breunig et al. (2016) introduced a LNS for 2EVRPs and the two-echelon

location routing problem with single depot (2ELRPSD). The method uses six destroy and one

repair operator as well as some well-known local search procedures. It finds or improves 95%
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of the best known solutions for the classical benchmark instances. Given the efficiency and

the effectiveness of this method, the same general structure has been used for the heuristic

proposed in this paper, in addition with multiple improvements and adaptations to account

for the specificities of electric vehicles. Later on, Wang et al. (2017a) studied an extension

of the 2EVRP with stochastic demands, described as a stochastic program with recourse. A

genetic algorithm was proposed, and the results on the problem with stochastic demands were

compared to the best known deterministic solutions.

Over the last decade, research has rapidly progressed on vehicle routing problems (VRPs)

with alternative propulsion modes: electric or hybrid.

Conrad and Figliozzi (2011) were amongst the first to consider electric vehicles and possible

recharging stops. In the proposed recharging VRP, batteries can be charged at customer

locations subject to additional costs. Other studies were focused on VRPs considering different

aspects of environment-friendly transport. In particular, Erdogan and Miller-Hooks (2012)

proposed the green vehicle routing problem (GVRP), involving battery-powered vehicles

with possible en-route recharging at dedicated stations, and evaluated the implications of

refueling-stations availability and dispersion.

After these seminal works, the literature progressed towards more intricate problem variants

and solution methods. In particular, Schneider et al. (2014) introduced additional time-window

constraints for customer deliveries as well as recharging delays. New benchmark instances

were introduced, and solved by means of a hybrid heuristic combining variable neighborhood

search (VNS) and tabu search (TS). Desaulniers et al. (2016) developed an exact method

based on branch-price-and-cut, and presented computational results for the same benchmark

instances.

Finally, to progress towards real applications and improve the accuracy of the studies,

other important characteristics of real delivery networks have been considered. Heterogeneous

fleets with different propulsion modes were studied in Felipe et al. (2014), jointly with a

heterogeneous set of recharging stations with different cost and recharging time. Goeke and

Schneider (2015) considered a mix of conventional and electric vehicles, evaluating the energy

consumption of an electric vehicle as a function of speed, gradient and cargo load distribution.
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Hiermann et al. (2016) proposed the electric fleet size and mix problem with fixed costs

and time windows (EFSMFTW), in which the deliveries can be performed with a mix of

vehicle types, differing in their acquisition cost, freight capacity, and battery size. Experiments

were conducted with a branch-and-price algorithm and a hybrid heuristic. This research was

extended in Hiermann et al. (2018) to study the impact of additional plug-in hybrid vehicles.

Keskin and Çatay (2016) introduced an adaptive large neighborhood search (ALNS) for a

problem variant in which partial recharging is allowed. We also refer to Pelletier et al. (2016)

as well as Montoya (2016) for a more extensive analysis of other recent problem variants and

solution methods.

The present study follows the same goal as the aforementioned papers: bridging the gap

between academic electric VRPs and real problem attributes. The current literature on electric

vehicles has only considered simplified delivery networks with a single depot and a single

echelon, but it is well known that city logistics usually involve richer configurations, with

interconnected echelons and transportation modes. Moreover, the restricted range of the

electric vehicles and their possible need for en-route recharging bring new challenges which

have to be considered when selecting intermediate facilities (i.e., satellite) locations. We

therefore propose to study the impact of electrical fleets in second-level routes, in a two-echelon

delivery setting, where electric vehicles are likely to be needed.

3. Problem Description

The E2EVRP addressed in this paper can be formally described as follows.

A mixed graph G = (N,E,A) is given, where the vertex set N is partitioned as N =

{0}∪NS ∪NC ∪NR. Vertex 0 represents the depot, NS = {1, 2, . . . , ns} represents ns satellites,

NC = {ns + 1, . . . , ns + nc} represents nc customers, and NR = {ns + nc + 1, . . . , ns + nc + nr}

represents nr charging stations. The edge set E is defined as E = {{0, j} : j ∈ NS} ∪ {{i, j} :

i, j ∈ NS, i < j} and the arc set A as A = {(i, j) : i, j ∈ NS ∪NC ∪NR, i 6= j} \ {(i, j) : i, j ∈

NS} \ {(i, j) : i, j ∈ NR}. A travel or routing cost dij is associated with each edge {i, j} ∈ E

and with each arc (i, j) ∈ A.

Each customer i ∈ NC requires a supply of qi units of goods to be delivered from the depot

using the following two types of vehicles. A fleet of m1 vehicles of capacity Q1 located at depot
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0 and a fleet of mk vehicles of capacity Q2 < Q1 located at satellite k ∈ NS. Moreover, at

most m2 ≤
∑

k∈NS
mk second-level vehicles can be used.

A 1st-level vehicle route is a simple cycle in G passing through the depot and a subset of

satellites such that the total demand delivered is less than or equal to Q1. A satellite k ∈ NS

can be visited by more than one 1st-level route and has a capacity Bk that limits the demand

that can be delivered to it.

A 2nd-level route is a circuit in G passing through a satellite and a subset of customers and

charging stations and such that the total demand of the visited customers does not exceed

the vehicle capacity Q2 and the following charging station constraints are respected. Each

vehicle on the 2nd-level has a maximum battery capacity L, and a battery consumption cij is

associated with each arc (i, j) ∈ A; the maximum battery consumption of a vehicle without a

visit to a charging station is therefore equal to L. Charging stations can be visited right after

or before a satellite, or in between customers, and, whenever a charging station is visited, a

vehicle is fully charged up to level L. In the scope of this short-haul problem, we prohibit a

consecutive visit to two charging stations.

Fixed costs U1 and U2 are also associated with the use of 1st-level and 2nd-level vehicles,

respectively. The cost of a route (1st-level or 2nd-level) is equal to the sum of the costs of the

the traversed edges or arcs plus the fixed cost.

The problem asks to design both 1st-level and 2nd-level routes so that the quantity delivered

from each satellite is equal to the quantity received from the depot, each customer is visited

exactly once, and the total cost of the routes is minimized.

Multigraph reformulation. The E2EVRP can be reformulated as a routing problem on a

multigraph G′ = (N ′, E ′, A′), where N ′ = {0} ∪NS ∪NC is the vertex set, E ′ = {{0, j} : j ∈

NS} ∪ {{i, j} : i, j ∈ NS, i < j} is the edge set and A′ is the arc set. Arc set A′ is used to

represent 2nd-level routes and is defined as A′ = {(i, j) : i, j ∈ NS ∪NC , i 6= j} \ {(i, j) : i, j ∈

NS}. The arc set A′ also contains the following set of arcs:

• With each arc (i, j) ∈ A′ are associated h(i, j) arcs representing the different paths that

a 2nd-level vehicle can take to go from vertex i to vertex j with at most one charging

station visited in between vertices i and j.
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• A cost d(i, j, p), a consumption c(i, j, p) and a charging station s(i, j, p) ∈ NR are

associated with each arc (i, j, p), p = 1, . . . , h(i, j), ∀(i, j) ∈ A′. We assume that

s(i, j, p) = 0 if arc (i, j, p) represents the direct path (i, j) without any charging station

visited in between i and j.

• The cost d(i, j, p) and the consumption c(i, j, p) of arc (i, j, p) are defined as follows:
d(i, j, p) = dij, c(i, j, p) = cij, if s(i, j, p) = 0

d(i, j, p) = dik + dkj, c(i, j, p) = ckj, if k = s(i, j, p) 6= 0.

Multigraph G′ does not contain any arc (i, j, p) such that s(i, j, p) = 0 and cij > L, or

k = s(i, j, p) 6= 0 and cik > L or ckj > L. Notice that for arc (i, j, p) with s(i, j, p) 6= 0 value

L − c(i, j, p) represents the battery level of the vehicle after arriving at vertex j whereas if

s(i, j, p) = 0, i.e., no charging station is visited in between i and j, the battery level at vertex

j is equal to b− c(i, j, p), where b is the battery level at vertex i.

A 2nd-level route for satellite k ∈ NS in graph G′ is a simple circuit in G′ passing through a

satellite and a subset of customers and such that (i) the total demand of the visited customers

does not exceed the vehicle capacity Q2 and (ii) the vehicle leaves satellite k with a consumption

equal to 0 (or, equivalently, the vehicle is fully charged) and its consumption at each visited

vertices does not exceed the maximum battery capacity L.

The following proposition holds.

Proposition 1. There is a one-to-one correspondence between 2nd-level routes in G and

2nd-level routes routes in G′.

Moreover, the set of arcs A′ can be reduced by means of the following dominance rule.

Proposition 2. An optimal E2EVRP solution cannot contain an arc (i, j, r1) if there exists

another arc (i, j, r2), r1 6= r2, such that:

1. i ∈ NS: d(i, j, r1) ≥ d(i, j, r2) and c(i, j, r1) ≥ c(i, j, r2);

2. i ∈ NC: d(i, j, r1) ≥ d(i, j, r2) and c(i, j, r1) ≥ c(i, j, r2), and cik1 ≥ cik2, k1 = s(i, j, r1),

k1 6= 0, and k2 = s(i, j, r2), k2 6= 0.
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4. Solving the E2EVRP to Optimality

The method used to solve the E2EVRP to optimality is based on the exact method proposed

by Baldacci et al. (2013) for the 2EVRP. More precisely, we tailored the method described by

Baldacci et al. to handle the multigraph G′ described in Section 3. The exact method consists

of the following two main steps.

1. The set of all 1st-level routes is generated and a lower bound LB0 on the E2EVRP is

computed. The computation of LB0 is based on a integer relaxation that results in a

multiple-choice knapsack problem. In computing lower bound LB0, we extended the

ng-routes relaxation used in Baldacci et al. to the case of our multigraph G′ (see below).

2. The set of all possible subsets of 1st-level routes that could be used in any optimal

E2EVRP solution is generated. For each subset of 1st-level routes the following steps are

executed:

(i) Lower bound LB0 is computed by fixing the selected set of 1st-level routes in solution.

If the resulting lower bound is greater than or equal to the cost of the best incumbent

E2EVRP solution, then the current subset is rejected, otherwise the next step is

executed;

(ii) The E2EVRP problem obtained by considering only the selected set of 1st-level

routes is solved to optimality. The resulting problem is a MDCVRP, that is

solved using the method proposed by Baldacci and Mingozzi (2009). The optimal

solution cost of the E2EVRP corresponds to the minimum solution cost of such

MDCVRPs. In solving problem MDCVRP, we extended the procedure used to

generate elementary routes described in Baldacci and Mingozzi (2009) to the case

of our multigraph G′.

The procedure is initialized with the best upper bound computed by the heuristic algorithm

described in Section 5. In the computational results of Section 6, we will denote with LB1

(LB2) the minimum of the lower bounds computed at Step 2-(i) (Step 2-(ii)) over the set of

subsets of 1st-level routes. Lower bound LB2 is computed using the lower bounds provided by

the method of Baldacci and Mingozzi (2009).
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In the following, we describe how we extended the ng-routes relaxation to graph G′ and, for

sake of space, we omit the details of the procedure used to generate elementary routes, which

is indeed a straightforward adaptation of the procedure used by Baldacci and Mingozzi (2009).

Pricing ng-routes. The computation of the lower bounds at steps 1, 2-(i) and 2-(ii) and the

procedure used to generate elementary routes rely on the use of the ng-routes relaxation. In

this section, we describe the extension of the relaxation described in Baldacci et al. (2011)

to multigraph G′. We describe the relaxation for a generic satellite k ∈ NS that, for sake of

notation, is denoted with the index 0 in the description reported below.

Let Ω(w, j, i, p) be the subset of battery consumption values from vertex j to arrive at

vertex i with a consumption equal to w, with w ≤ L, when j is visited immediately before i

using arc of index p of arc (j, i) ∈ A′. Set Ω(w, j, i, p) is defined as follows:

Ω(w, j, i, p) =


{w − cji} if s(j, i, p) = 0 and cji ≤ w

{w′ : 0 ≤ w′ + cjk ≤ L} if s(j, i, p) = k 6= 0 and cki = w

∅ otherwise.

(1)

Let Ni ⊆ NC be a set of selected customers for vertex i such that Ni 3 i and |Ni| ≤ ∆(Ni)

(∆(Ni) is an a priori defined parameter). The sets Ni allow us to associate with each

forward path P = (0, i1, . . . , ik) in G′ the subset Π(P ) ⊆ V (P ), V (P ) = {0, i1, . . . , ik−1, ik},

containing customer ik and every customer ir, r = 1, .., k − 1, of P that belongs to all sets

Nir+1 , . . . , Nik associated with the customers ir+1, . . . , ik visited after ir. The set Π(P ) is

defined as: Π(P ) = {ir : ir ∈
⋂k
s=r+1Nis , r = 1, . . . , k − 1} ∪ {ik}.

A ng-path (NG, q, w, i) is a non-necessarily elementary path P = (0, i1, . . . , ik−1, ik = i)

starting from the satellite 0 with an initial consumption equal to 0, visiting a subset of customers

(even more than once) of total demand equal to q such that NG = Π(P ), ending at customer i

with a total consumption equal to w, and such that i /∈ Π(P ′), where P ′ = (0, i1, . . . , ik−1) is

an ng-path. We denote by f(NG, q, w, i) the cost of the least cost ng-path (NG, q, w, i). An

(NG, q, w, i)-route is an (NG, q, w, 0)-path where i is the last customer visited before arriving

at the satellite.
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Functions f(NG, q, w, i) can be computed using dynamic programming (DP). The

state space graph H = (E ,Ψ) is defined as follows: E = {(NG, q, w, i) : qi ≤

q ≤ Q2,∀NG ⊆ Ni s.t. NG 3 i,
∑

j∈NG qj ≤ Q2,∀i ∈ {0} ∪ NC ,∀w, 0 ≤ w ≤

L}, Ψ = {((NG′, q′, w′, j), (NG, q, w, i))p : ∀(NG′, q′, w′, j) ∈ Ψ−1(NG, q, w, j, i, p), p =

1, . . . , h(j, i), ∀(j, i) ∈ A′,∀(NG, q, w, i) ∈ E }, where Ψ−1(NG, q, w, j, i, p) = {(NG′, q −

qi, w
′, j) : ∀NG′ ⊆ Nj s.t. NG′ 3 j and NG′ ∩Ni = NG \ {i}, ∀w′ ∈ Ω(w, j, i, p)}.

The DP recursion for computing f(NG, q, w, i) is:

f(NG, q, w, i) = min
(j,i)∈A′, 1≤p≤h(j,i)

(NG′,q′,w′,j)∈Ψ−1(NG,q,w,j,i,p)

{f(NG′, q′, w′, j) + d(j, i, p)} ,∀(NG, q, w, i) ∈ E , (2)

using as initial state f({0}, 0, 0, 0) = 0 and f({0}, q, w, 0) =∞ for q > 0 and w > 0. In the

computational experiments (Section 6), we set ∆(Ni) = 12, ∀i ∈ NC , and Ni contains i and

the 11 nearest customers to i.

From the experimental analysis presented in Section 6, we observed that this mathematical

programming algorithm can solve small and medium size instances to optimality and provide

good lower bounds otherwise. Yet, this method requires a good initial upper bound to be

truly effective, especially when the problem size grows. To produce these upper bounds, the

following section introduces a metaheuristic based on large neighborhood search.

5. Large Neighborhood Search

Our metaheuristic, called LNS-E2E, follows the basic principles of ruin and recreate (Shaw

1998). At each iteration, some parts of the solution are destroyed by a selected destroy operator

(Section 5.1), and then repaired again (Section 5.2) with a three-steps repair operator which

reconstructs, in turn, the 2nd-level routes, the 1st-level routes, and completes the reconstruction

with an optimal insertion of visits to charging stations. Subsequently, a sophisticated local

search (Section 5.3) is applied to improve the resulting solution. During the local search, the

labeling algorithm is used in combination with the moves to evaluate their impact.

The general structure of the method is presented in Algorithm 1. The sequence of

destruction, reconstructions and local search is repeated until imax iterations have been

performed without improvement of the incumbent solution (Lines 4–8). Once this termination
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criterion is attained, the best solution is stored (Lines 9–10) and the method performs a restart

from a new random initial solution. This process repeats until a maximum time Tmax is

attained (Lines 2–10).

Algorithm 1: LNS-E2E

1 Sbest ← ∅
2 while CPU time < Tmax do

3 S ← LocalSearch(Repair(∅)) /* (re-)start: new solution */

4 for i← 0 to imax do

5 Stemp ← LocalSearch(Repair(Destroy(S)))

6 if Cost(Stemp) < Cost(S) then

7 S ← Stemp /* accept better solution */

8 i← 0

9 if Cost(S) < Cost(Sbest) then

10 Sbest ← S /* store best solution */

11 return Sbest

In contrast with the adaptive large neighborhood search of Pisinger and Ropke (2007),

LNS-E2E makes uses of a very limited number of destroy operators, and a single repair operator.

Moreover, the probabilities of use of each operator are fixed, i.e., the method does not rely on

adaptive mechanisms. This design is in line with the study of Breunig et al. (2016), where it

was observed that the algorithm with a simple fixed probability selection equaled its adaptive

counterpart on the 2EVRP. The following subsections now describe each component of the

method in deeper details.

5.1. Destroy operators

At each iteration, one out of three destroy operators is selected with equal probability:

• A) Related nodes removal. A seed customer is randomly chosen. A random number of

its Euclidean closest customers as well as the seed customer are removed from the current

solution and added to the list of nodes to re-insert. This operator receives a parameter p1,

which denotes the maximum percentage of nodes to remove. At most dp1 · nce nodes are

removed.

• B) Random routes removal. Randomly selects routes and removes the associated

customers visited, adding them to the list of nodes to re-insert. This operator randomly

13



selects a number of routes in the interval [0, dp2 · qtotQ2
e]. The last term gives a lower bound

on the number of routes needed to serve all customers.

• C) Close satellite. Chooses a random satellite. If the satellite can be closed and the

remaining open ones still can provide sufficient capacity for a feasible solution, the chosen

satellite is closed temporarily. All customers that are assigned to it are removed and added to

the list of nodes to re-insert. The satellite stays closed until it is opened again in a later phase.

Moreover, the following two other operators may be applied right after one of the destroy

operators described above:

• D) Open all satellites. With a probability of p̂3, all currently closed satellites are set to

be available again in future repair phases.

• E) Remove single customer routes. This operator removes all routes which contain

only one single customer. Typically, a complete solution does not often contain any route

matching this criterion, but this can happen after a partial destruction. Therefore, with

a probability of p̂4, all those customers which remain on a single node route after the

destruction phase are also added to the list to re-insert. As there is a limit on the number of

vehicles available, removing short routes also allows to use a vehicle originating from another

satellite in the next repair phase.

5.2. Repair operator and initial solution construction

We propose a repair operator based on three steps, which first reinserts customer-visits in

2nd-level routes, then reconstructs 1st-level routes, and finally completes the solution with

recharging stations visits. Note also that the creation of the initial solution can be seen as a

totally destroyed or empty solution (∅), and therefore follows the same principle.

Reinsertion of customer visits. The classic cheapest insertion calculates every possible

insertion position for every node to insert and selects the least-cost one. LNS-E2E uses a

simplified version of this greedy heuristic with lower complexity, which iteratively inserts the

first node from the insertion list in its cheapest position, until all nodes have been inserted. As

a consequence, the outcome of the reconstruction depends on the order of the nodes in the list,

favoring diversification.
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The order of nodes in the list is randomly shuffled prior to insertions. In the exceptional

case where this method fails to generate a feasible solution, another construction is attempted,

this time ordering the nodes in the list by decreasing demand quantity. Such an ordering

has a better chance to result in a feasible solution with respect to the capacity (i.e., packing)

constraints, since no split deliveries are allowed on the second level. Overall, this first phase of

the 2nd-level routes reconstruction respects all constraints of the problem except those related

to charging levels and recharging stations visits.

Construction of first level tours. After itineraries for the 2nd-level routes have been found,

the quantities needed at the satellites are known. With this information, the 1st-level routes

can be reconstructed. We opted for a complete reconstruction, as the number of satellites

is usually small and the 2nd-level routes can very significantly change from one iteration to

another. On the first level, split deliveries are not only allowed, but sometimes also necessary

to find a feasible solution. Depending on the customers associated to a satellite, it can occur

that the requested quantity at the satellite is larger than a full truckload. Therefore, we use a

simple preprocessing step: for any satellite with a demand larger than a full truckload, we

create a back-and-forth trip from the depot, until the remaining demand is smaller than

a truck’s capacity. The simplified cheapest insertion is then used to complete the 1st-level

solution. In practical settings with up to 10 or 20 satellite facilities, this method finds optimal

1st-level routes in a majority of cases in a very limited computational effort.

Optimal insertion of charging stations visits. At this point, the algorithm has recon-

structed a solution which is feasible in terms of load capacities but usually infeasible in

terms of battery capacities. To restore feasibility, it uses a DP algorithm which finds the

optimal charging stations positions for each 2nd-level route. The problem of inserting charging

stations visits in a route σ = (σ0, σ1, . . . , σK) can be reduced to a shortest path problem

with resource constraints (SPPRC) in a directed acyclic multigraph H̄ = (N̄ , Ā), such that

N̄ = {0} ∪ {1, . . . , K − 1} ∪ {K}. The nodes 0 and K correspond to depot visits (such that

σ0 = σK = 0), while the other nodes represent customer visits. Each arc (i, i + 1, rk) ∈ Ā

corresponds to a non-dominated arc between σi and σi+1, with the same characteristics as
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(σi, σi+1, rk) ∈ A′ defined in Section 3 and possible en-route recharging. This multigraph is

illustrated in Figure 1.

 

No charging station visit 

σ1 σ2 σ0 σk-2 σk-1 σk  

 

Intermediate stop at a charging station

……
……

(0,1,r5) 

(0,1,r1) 

Figure 1: Illustration of the multigraph H̄. Non-dominated choices of charging stations visits are represented
by parallel arcs.

Solving this SPPRC can be simply done using Bellman’s algorithm in the topological

order (0, 1, . . . , K). Using the same notations as in previous sections, the state space graph

H̄ = (Ē , Ψ̄) is defined as Ē = {(w, i) : ∀w, 0 ≤ w ≤ L,∀i ∈ N̄} and Ψ̄ = {((w′, i− 1), (w, i))p :

∀(w′, i− 1), w′ ∈ Ω(w, σi−1, σi, p), p = 1, . . . , h(σi−1, σi),∀(w, i) ∈ Ē }. Defining f(w, i) as the

minimum cost of a path starting from 0 and reaching node i with battery consumption w, the

DP recursion can be expressed as:

f(w, i) = min
1≤p≤h(σi−1,σi)
w′∈Ω(w,σi−1,σi,p)

{f(w′, i− 1) + d(σi−1, σi, p)},∀(w, i) ∈ Ē , (3)

and the initial state is set as f(0, 0) = 0 and f(w, 0) =∞ for w > 0.

In the rare case where no feasible path can be found at the end of the DP recursion, a second

execution of the DP algorithm is done, with a minor modification of the label propagation

function allowing to use and penalize battery capacity excesses. In this case, any consumption

over the battery level w > L is converted into a proportional penalty of M × (w−L), where M

is a large constant. Therefore, the method seeks a route with the smallest penalty in priority,

and then the shortest distance. Due to its large impact on the objective, this infeasibility will

generally be resolved in the next steps of the method: the local search or the next destroy and

repair phase.

5.3. Local search with systematic charging stations relocations

After solution reconstruction, LNS-E2E applies a local search procedure on the 2nd-level

routes based on 2-opt, 2-opt*, Relocate, Swap and Swap2-1 moves (see, e.g.,
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Vidal et al. 2013, for a detailed description of these neighborhoods). The 2-opt* moves

are only tested between routes originated from the same satellite. Moreover, when testing

moves that involve routes from different satellites, the algorithm checks that enough capacity is

available in the satellites and the associated 1st-level routes. The moves are tested in random

order and a first-improvement acceptance policy is used, i.e., any move which results in an

improvement in terms of cost is directly applied, until no more improvement can be found.

Similarly to the granular search by Toth and Vigo (2003), the moves are limited to node pairs

(i, j) such that j belongs to one of the Γ closest vertices from i.

Most modification of the sequence of customer visits or their assignment to vehicles induce

some necessary changes in the planning of charging stations visits. Ideally, one would like

to apply the labeling algorithm described in Section 5.2 to obtain the exact cost of each

move, with an optimal placement of recharging stations in each newly-created route. Such an

evaluation would be, however, prohibitive in terms of computational effort. To speed up the

method with only a minimal impact on solution quality, we propose some heuristic move filters,

which are quite similar in principle to the techniques used by Taillard et al. (1997) for the

VRP with soft time windows. We first evaluate each move without the labeling algorithm to

obtain an approximation of its impact on the total distance. When doing this calculation, the

current locations of the charging stations are unchanged. Any move which is feasible in terms

of load capacity and does not deteriorate the total distance by more than 3% is then evaluated

exactly in combination with the labeling algorithm, so as to find better charging stations

locations which may lead to an improvement. After this exact evaluation, any improving move

is applied.

6. Computational Experiments

We first generated a variety of benchmark instances for the E2EVRP. The generation

process and the characteristics of these instances will be described in Section 6.1. After a

parameter calibration described in Section 6.2, we conducted extensive experimental analyses

with the aim of:

1. Evaluating the performance of the proposed methods, and measuring the benefit of

integrated routing and planning of recharging stations (Section 6.3);

17



2. Measuring the contribution of some important building blocks of the algorithms (Section

6.4);

3. Analyzing the impact of two defining features of electric-fueled city-distribution networks:

the density of charging stations in a city, and the vehicles’ battery capacities (Section

6.5).

The mathematical programming algorithm was coded in Fortran 77, and run on a single

thread of a 3.6 GHz Intel i7-4790 CPU with 32GB of RAM. It relies on CPLEX 12.5.1 for

the resolution of the linear programs and some integer subproblems. The metaheuristic

was coded in Java (JRE 1.8.0–151), and run on a single thread of a 3.4 GHz Intel i7-3770

CPU. All benchmark instances used in this paper are available for download at https:

//www.univie.ac.at/prolog/research/electric2EVRP.

6.1. Benchmark instances

Our benchmark instances for the E2EVRP were derived from the 2EVRP instances known

as Set 2 and 3 by Perboli et al. (2011), Set 5 by Hemmelmayr et al. (2012), and Set 6 by

Baldacci et al. (2013). The depot, satellite and customers locations remain unchanged. The

new information is associated to the electric vehicles (maximum charging level and energy

consumption) and to the charging stations (coordinates). For the sake of simplicity, the energy

consumption per distance unit is always set to 1 (dij = cij).

The selection of charging stations follows the guidelines of Schneider et al. (2014) (in-

stances of the electric vehicle routing problem with time windows and recharging sta-

tions (EVRPTWRS)) and Desaulniers et al. (2016). The ratio between charging stations

and customers is chosen between 1/10 and 1/5. Firstly, every depot and satellite location

provides charging abilities vehicles. To pick the remaining locations, we defined a grid of

100 × 100 candidate locations based upon the range of x- and y-axis coordinates from the

existing 2EVRP instances. For each location, we counted the number of customers in “close

proximity”, defined as half the average tour length in the best known 2EVRP solution. The

more customers one candidate location has in proximity, the more likely it is selected as a

charging station. This was achieved by a roulette wheel selection of the remaining charging

stations among those 10,000 locations. Finally, all distances are calculated as Euclidean and
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rounded to the nearest integer value. To reduce the effect of rounding, all x- and y-coordinates

from the classical 2EVRP instances have been multiplied by a factor ten.

6.2. Parameters calibration

To produce suitable values for the new parameters of the algorithm, we used a preliminary

meta-calibration based on the covariance matrix adaptation evolution strategy (CMA-ES) of

Hansen (2006). During meta-calibration, the parameters are considered to be the decision

variables, and the associated objective corresponds to the average solution quality of LNS-E2E

over ten runs on a set of training instances. This training set includes six larger-scale instances

from Set 5: {100-5-1, 100-5-2b, 100-10-1, 100-10-2b, 200-10-1, 200-10-2b}.

Table 1 lists the method parameters, the allowed range for each parameter, and the final

values found by the meta-calibration process. These values will be used for the rest of the

experiments.

Table 1: Range of parameters used during meta-calibration, and final values found

Parameter Search interval Final value

p1 Related removal (%) 0–100 11
p2 Random route removal (%) 0–100 37
p̂3 Open all satellites (%) 0–100 12
p̂4 Remove single customer routes (%) 0–100 18
τ Granularity threshold for move evaluations 0–40 25

imax Number of non-improving iterations before restart 0–1000 385

6.3. Performance analysis

After calibration, we evaluated the proposed mathematical programming algorithm and

the metaheuristic on the complete set of benchmark instances. The termination criterion of

LNS-E2E has been set to Tmax = 150 seconds for the small instances of Sets 2, 3 and 6a, and

900 seconds for the large-scale instances of Set 5.

Small instances. Table 2 reports the results on the smaller instances of Set 2 and Set 3

with 21 customers. The leftmost group of columns reports the characteristics of the instances:

number of customers nc, satellites ns, trucks m1, (electric) second level vehicles m2 and

charging stations nr. The next group of columns shows the performance of the mathematical
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programming algorithm. The column UB reports the best upper bound at the end of the

algorithm, and the solutions marked with an asterisk are proven optimal. The lower bounds

obtained at different steps of the exact method are also displayed along with the associated

CPU time values, using the same notations as described in Section 4. The next group of

columns reports the performance of LNS-E2E: the average (Avg) and best (Best) solution

quality over five runs, the average computational time per run (T(s)), and the average time

per run needed to reach the final solution of the run (T*(s)). The overall best known solution

(BKS) found during all experiments (including calibration and testing) is reported in the

rightmost column.

The exact algorithm produced optimal solutions (marked with an asterisk) for all instances

except one. A notable improvement is visible when comparing LB2, obtained by repeated

resolutions of MDCVRP with side constraints, with LB0 and LB1. The CPU time of the

method remains below one minute for 4/12 instances, but can rise up to six hours in other

cases, illustrating the difficulty of the E2EVRP, as the presence of the battery capacity

constraints significantly increases the time needed for route enumeration. For these instances,

the metaheuristic always found the optimal solutions in at least one run out of five. Still,

we observe some variance in the results of different independent runs. This is due to the

combination of multiple classes of decision variables (two-echelon routing, satellite selection

and charging stations selection), which make the problem very intricate and favors the creation

of many local minima. The LNS-E2E remains nonetheless accurate, with an average deviation

of 1.18% from the optimal solutions (
∑N

n
1
N
∗ Avgn−UBn

UBn
). The time taken to attain the final

solution of the run varies from 2 to 132 seconds, depending on the instance.

Medium instances. Table 3 displays the results on the medium instances of Sets 2, 3 and

6a, containing between 32 to 75 customers. The same convention as the previous table is

used. For this scale of instances, the mathematical programming algorithm does not generate

proven optimal solutions in the allotted time and was stopped after the computation of bound

LB1. The average optimality gap between the best solution found by LNS-E2E and the bound

LB1, for this group of instances, amounts to 3.57%, demonstrating the good accuracy of both

approaches. As usual when comparing exact algorithms with metaheuristics, the difference of
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CPU time between the two methods becomes more marked for larger instances. For some

instances with 75 customers, the time needed to compute LB1 grows as high as 25 hours,

whereas the termination of the heuristic is guaranteed after 150 seconds.

Large instances – Impact of integrated routing and recharging stations optimiza-

tion. The larger instances of Set 5 contain 100 or 200 customer visits. To the best of our

knowledge, only 3/18 instances have been solved to proven optimality for the classical 2EVRP

(without considering electric vehicles and recharging stations). The E2EVRP appears to be

even harder to solve, and our exact approach could not produce optimal solutions or good lower

bounds in reasonable time. For this set of instances, we therefore concentrate our analysis on

the results of the metaheuristic, with the aim of assessing the performance of the algorithm

and the impact of an integrated optimization of routing and recharging stations decisions. To

that end, we compared four algorithms. The first two algorithms solve the 2EVRP without

electric vehicles:

• LNS-2E: the algorithm presented in Breunig et al. (2016) (LNS-2E), which produces the

current state-of-the-art results for that problem;

• LNS-E2E ∞: the proposed algorithm, in which the range of the electric vehicles is set to

∞ to make recharging-stations visits unnecessary.

The two other solution methods are designed for the problem with electric vehicles:

• LNS-2E post: resolution of the classical 2EVRP (disregarding battery constraints) with

LNS-2E, followed by a post-optimization using the labeling algorithm to insert charging-

stations visits;

• LNS-E2E: the proposed algorithm, with integrated routing and planning of charging

stations.

Each method was run until a time limit of 15 minutes, and the same rounding convention

(integer distances) have been adopted to allow direct solution comparisons. Table 4 reports

the average (Avg) and best (Best) solution quality of each method over ten runs, as well as

the average CPU time to reach the final solution of each run (T*(s)). For future reference, the

BKS found on Set 5 for the LNS-E2E during preliminary calibration and testing are also listed

in the rightmost column.
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Table 3: Performance analysis on medium-scale instances of Set 2, 3 and 6a

Characteristics Lower Bounds LNS-E2E

Instance nc ns m1 m2 nr UB %LB0 LB0 TLB0(s) %LB1 LB1 TLB1(s) Avg Best BKS T(s) T*(s)

Set 2

n33-k4-s1-9 32 2 3 4 5 7617 98.46% 7499.4 73.3 98.46% 7499.4 149.4 7751.0 7617 7617 150 75.3

n33-k4-s2-13 32 2 3 4 5 7925 94.81% 7513.4 44.7 94.81% 7513.4 112.7 8025.0 7925 7925 150 103.3

n33-k4-s3-17 32 2 3 4 5 8090 92.88% 7514.2 69.7 92.88% 7514.2 181.3 8280.2 8090 8090 150 107.0

n33-k4-s4-5 32 2 3 4 5 8870 93.84% 8323.8 79.2 93.84% 8323.8 257.1 8925.2 8870 8870 150 91.0

n33-k4-s7-25 32 2 3 4 5 8318 95.51% 7944.1 77.0 95.74% 7963.3 168.9 8374.8 8318 8318 150 92.7

n33-k4-s14-22 32 2 3 4 5 8621 98.42% 8484.4 218.5 98.42% 8484.4 529.5 8680.4 8621 8621 150 90.2

Average 8240.2 95.65% 7879.9 93.7 95.69% 7883.1 233.1 8339.4 8240.2 8240.2 150 93.3

Set 3

n33-k4-s16-22 32 2 3 4 6 7561 91.60% 6926.2 89.4 91.60% 6926.2 328.4 7656.2 7561 7561 150 94.5

n33-k4-s16-24 32 2 3 4 6 7501 94.77% 7108.5 168.4 94.77% 7108.8 607.1 7520.0 7501 7501 150 102.7

n33-k4-s19-26 32 2 3 4 6 7212 94.42% 6809.5 98.6 94.42% 6809.5 253.4 7223.2 7212 7212 150 47.3

n33-k4-s22-26 32 2 3 4 6 7334 95.81% 7027.0 290.5 96.85% 7103.1 738.5 7498.4 7334 7334 150 131.3

n33-k4-s24-28 32 2 3 4 6 7443 95.40% 7100.5 234.2 96.80% 7204.6 569.9 7371.6 7443 7443 150 116.2

n33-k4-s25-28 32 2 3 4 6 7429 93.68% 6959.7 258.4 93.68% 6959.7 579.8 7490.4 7429 7429 150 108.3

Average 7413.3 94.28% 6988.6 189.9 94.69% 7018.6 512.9 7460.0 7413.3 7413.3 150 100.0

Set 6a

A-n51-4 50 4 2 50 5 7663 95.27% 7300.8 121.9 98.76% 7568.0 762.9 7879.4 7663 7663 150 109.4

A-n51-5 50 5 2 50 6 8268 95.77% 7918.0 98.4 98.16% 8116.0 2783.6 8386.4 8268 8268 150 64.5

A-n51-6 50 6 2 50 7 7795 93.08% 7255.9 117.1 98.18% 7653.4 15723.7 7943.8 7795 7795 150 106.0

A-n76-4 75 4 3 75 7 10599 95.40% 10111.7 214.9 97.23% 10305.4 6463.9 10692.0 10599 10599 150 97.0

A-n76-5 75 5 3 75 7 11178 95.18% 10638.9 175.5 98.17% 10973.6 16406.4 11242.4 11178 11178 150 88.8

A-n76-6 75 6 3 75 7 10156 95.60% 9709.2 242.2 98.92% 10046.1 85538.4 10250.0 10156 10156 150 110.7

B-n51-4 50 4 2 50 5 6589 97.20% 6404.4 163.2 97.96% 6454.8 342.4 6791.2 6589 6589 150 111.6

B-n51-5 50 5 2 50 6 7252 94.73% 6869.8 116.3 95.53% 6928.0 1859.6 7446.4 7252 7240 150 90.8

B-n51-6 50 6 2 50 7 6583 95.02% 6255.0 256.0 97.51% 6419.3 3054.1 6787.6 6583 6583 150 61.4

B-n76-4 75 4 3 75 7 9945 95.99% 9546.7 198.4 98.02% 9748.0 2184.4 9995.8 9945 9943 150 99.5

B-n76-5 75 5 3 75 7 9139 94.70% 8655.1 210.4 98.26% 8980.0 9903.7 9209.2 9139 9139 150 71.9

B-n76-6 75 6 3 75 7 8238 94.44% 7780.1 427.0 97.80% 8056.5 79962.3 8287.6 8238 8238 150 82.4

C-n51-4 50 4 2 50 5 8407 94.57% 7950.2 137.0 95.74% 8048.5 888.4 8596.2 8407 8407 150 80.4

C-n51-5 50 5 2 50 6 8810 94.99% 8368.3 261.1 95.77% 8437.3 1346.5 9276.0 8810 8810 150 82.4

C-n51-6 50 6 2 50 7 8160 93.73% 7648.6 180.3 95.83% 7819.7 7092.7 8390.6 8160 8160 150 72.9

C-n76-4 75 4 3 75 7 12162 94.61% 11506.7 199.0 98.30% 11955.7 3996.1 12381.2 12162 12147 150 99.3

C-n76-5 75 5 3 75 7 13033 92.00% 11990.5 402.2 93.33% 12163.4 38723.3 13247.0 13033 13033 150 79.3

C-n76-6 75 6 3 75 7 11808 93.28% 11014.5 285.0 97.11% 11466.6 93643.4 12129.8 11808 11806 150 92.8

Average 9210.3 94.75% 8718.0 211.4 97.25% 8952.2 20593.1 9385.1 9210.3 9208.6 150 88.9
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Firstly, these results highlight the good accuracy of the proposed LNS-E2E, even for the

particular case of the 2EVRP without electric vehicles. In comparison with the current state-

of-the-art algorithm LNS-2E, better average quality solutions are found on all 200-customer

instances, with improvements rising up to 2.41%, while solutions of slightly lower quality are

obtained on the 100-customer test cases.

Secondly, we observe the large benefits of an integrated routing and charging stations visits

planning. Even when starting with good 2EVRP solutions, a post-ex insertion of charging

stations results in solutions of poor quality for the E2EVRP in comparison with the integrated

LNS-E2E approach. The average gain related to an integrated optimization in comparison to

post-optimization amounts to 3.28%, and can reach as high as 7.93% for instance 100-10-2b.

Finally, in terms of computational effort, we observe that the proposed LNS-E2E approach

finds solutions in a similar time as LNS-2E, despite the joint optimization of charging stations.

This is essentially due to the heuristic move filters described in Section 5.3, allowing to evaluate

and discard a large proportion of non-promising local search moves without a call to the

labeling algorithm. The next section will study in deeper details the impact of some of these

method components.

6.4. Sensitivity analysis – Algorithmic components

We conducted additional experiments to measure the contribution of each operator of the

LNS-E2E. Starting from the current algorithm (baseline configuration), we deactivated one

separate destroy operator listed in Section 5.1, in turn, and measured the solution quality of

resulting algorithm. In the specific case of the configuration “No open”, all candidate satellites

are made available again (re-opened) at each restart, instead of using this component as a

destroy operator. These experiments were conducted on the 18 large instances of Set 5, using

10 independent runs and a time limit Tmax = 15 minutes. The solution quality is reported as

an average percentage gap from the baseline. Table 5 summarizes the results.

Table 5: Sensitivity analysis on the contribution of each operator.

Baseline A) No related B) No route C) No close D) No open E) No single

11829.8 2.70% 2.44% 1.52% 3.10% 1.61%
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From these results, we first observe that the “open all satellites” operator (D in Section

5.1) is essential for the performance of the method, as it allows to control the frequency of

the exploration of different satellite configurations. Without the explicit use of a dedicated

operator to re-open satellites, the solutions are 3.10% worse on average. The operator “closes

satellite” (C) has a smaller but still very significant impact on the overall solution quality, with

a deviation of 1.52% from the baseline when deactivated. Therefore, forcing the elimination of

some satellite choices at different phases of the method is essential to evaluate structurally

different solutions which would not be attained otherwise by the cheapest insertion repair

heuristic.

No related measures the deterioration due to the deactivation of the related nodes destruction

operator (A), which destroys specific areas around a seed customer. Analogously, no route

measures the performance deterioration when the operator targeting random routes (B) is

deactivated, and column no single shows the impact of not using the destruction operator

which removes single-customer routes (E). All these operators appear to contribute significantly

to the performance of the method, and the deactivation of any of these elements leads to an

overall drop of method performance.

We finally tested a version of the method without a restart process after each imax iterations

without improvement. In this configuration, the loop of Algorithm 1, Line 4–8 is executed until

reaching a maximum time of Tmax. We observed a deterioration of solution quality of 1.90%

with respect to the baseline, demonstrating again the importance of diversification components,

in this case the restarts mechanism, for the E2E-VRP.

6.5. Sensitivity analysis – Density of charging stations and battery capacity

Our last set of experiments focuses on the impact of two defining features of battery-powered

distribution networks: the density of the charging stations, and the range of the vehicles. To

that extent, we created two additional sets of instances with nc = 50 customers and ns = 4

satellites each, approximating as closely as possible real delivery conditions in a metropolitan

area while pertaining to the E2EVRPs class. Set 7 contains 10 groups of 20 instances with a

number of charging stations nr ∈ {2, 3, 5, 10, 15, 20, 25, 30, 40, 50} (in addition to the satellites)

and a battery capacity L = 1000, whereas Set 8 contains 10 groups of 20 instances with nr = 20

charging stations and a battery capacity L ∈ {800, 900, 1000, . . . , 1700}. When varying the
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number of charging stations or the battery capacity, all other instance characteristics (satellite

locations, customers locations and demands as well as the existing charging stations locations)

are kept identical.

In each instance, 40 customers have been located randomly (with uniform probability) in

an ellipse X1 centered in (1000,500), with x-axis of dimension 800 and y-axis of dimension 400,

and 10 additional customers have been located randomly in an ellipse X2 with the same center,

an x-axis of dimension 1000 and y-axis of dimension 500. The locations of the satellites are

picked randomly in the area formed by X2 −X1, and the depot is fixed in position (300,0).

Moreover, 80% of the charging stations are randomly located in X1, and 20% in X2. The

demand quantity of each customer is randomly selected in [1,25]. Six 1st-level vehicles with

capacity Q1 = 250 are available, and ten 2nd-level electric vehicle with capacity Q2 = 125 are

available at each satellite.

Considering that one distance unit in each instance corresponds to 0.1km on a map, the

area considered for the location of customers and charging stations covers 15708 km2, a size

similar in magnitude with the metropolitan area of Paris. A baseline of L = 1000 for the

vehicles is equivalent to a range of 100km, which matches the specifications of a Renault

Kangoo Zoe or Nissan Leaf 2015/2016 minus a safety range of 30km. Varying these parameters

allows to evaluate the impact of the evolution of different car models on operational costs.

For each instance, we performed five independent runs of the proposed LNS-E2E to register

the best upper bound, and then computed bound LB0 using the mathematical programming

algorithm. We solved in the same way the same instances without battery restrictions (as

2E-VRP instances). In average, we obtained an optimality gap of 4.02% over all tests (UB−LB0
LB0

),

therefore guaranteeing the reliability of the solutions used in this sensitivity analysis.

Figure 2 depicts the evolution of the operational costs as a function of the number of

charging stations nr, and Figure 3 represents the impact of the battery capacity L. The

results are expressed as percentage gaps from the cost of the 2E-VRP solution without battery

restrictions (i.e. percentage detour miles due to recharging), and averaged over all 20 instances

of each class. The average number of visits to charging stations in the solutions is also

represented on each graph.
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Figure 2: Impact of the number of available charging stations on the detour costs due to recharging and the
number of visits to stations.

These experiments highlight the significant impact of the charging stations density and

vehicles batteries capacities in the instances under study. As the number of charging stations

grows, the detour costs due to recharging stations visits rapidly decreases: e.g., from 5.45% in

average when nr = 5 to 1.53% when nr = 15. Conducting a power-law regression of the form

f(nr) = α/nβr (least-squares regression of an affine function on the log-log graph), the extra

detours due to recharging diminish proportionally to 1/ρ1.24. In these conditions, doubling the

number of charging stations allows to reduce extra recharging costs by approximately 58%.

Interestingly, the number of visits to charging stations tend to slightly increase with nr:

from 9.5 in average when nr = 2 to 11.75 when nr = 50. Indeed, when the recharging station

network is sparse, most detour options to recharging stations involve significant extra costs,

and the vehicle routing algorithm tends to reduce to a strict minimum the number of such

detours. In contrast, in the presence of a dense recharging stations network, the solutions

converge more closely towards the optimal 2E-VRP cost (disregarding battery constraints) as

there are always multiple options of charging stations on the way.

The vehicles’ range (i.e., battery capacity), has an even larger impact (see Figure 3). For

most of the considered instances, a range below 700 distance units (= 70km) would lead to an

infeasible problem, as it becomes impossible to travel between some pairs of customers and find

adequate recharging locations en-route. Therefore, adequate battery technology is a key factor
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Figure 3: Impact of the vehicle range (i.e., battery capacity) on the detour costs due to recharging and the
number of visits to stations.

for the viability of battery-powered delivery networks. The extra costs due to recharging and

number of visits to recharging stations tend to be high when considering vehicles’ ranges close

to the feasible limit (L = 800). These values then rapidly decrease to become close to zero

when the range L exceeds 1500 (i.e., 150km), a value which will be soon attained by lightweight

electric trucks. Once this regime is attained, the battery capacity becomes sufficient to do

most tours of the E2E-VRP optimal solutions without en-route recharging visits.

7. Conclusions

In this paper, we have formulated the E2EVRP, an extension of the 2EVRP involving

electric vehicles for second-echelon deliveries, battery capacity constraints, and possible visits to

charging stations, and used it as a prototypical problem for the study of multi-echelon battery-

powered supply chains. We introduced an efficient exact algorithm, based on the enumeration

of candidate solutions for the first echelon and on bounding functions and route enumeration

for the second echelon, along with a problem-tailored large neighborhood search metaheuristic

(LNS-E2E). A comparison of the solutions found by the LNS-E2E with lower bounds and

optimal solutions produced by the mathematical programming algorithm demonstrates the

excellent performance of both algorithms. In particular, all known optimal solutions for

small instances were retrieved by the LNS-E2E, and an average optimality gap of 3.57%
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between the best known upper and lower bounds was obtained on medium-scale instances. The

metaheuristic was also evaluated on the classical 2EVRP (without electric vehicles), producing

new state-of-the-art solutions on large-scale instances with 200 customers. Finally, thanks

to the use of efficient heuristic move filters in the local search and labeling algorithms, the

computational effort of LNS-E2E remains comparable with that of previous metaheuristics for

the classical 2EVRP.

Beyond the usefulness of these optimization algorithms for the operational planning of

electric fleets, this paper brought new managerial insights related to the incorporation of

electric vehicles into two-echelon delivery networks and to the recharging-stations infrastructure

required for an efficient supply chain. For this additional study, we created 400 additional test

instances simulating typical requests patterns and delivery infrastructures in a metropolitan

area with varying density of charging stations vehicles’ battery capacities. We observed that

the detour miles due to recharging decrease in O(1/ρx) with x ≈ 5/4 as a function of the

number of charging stations. Moreover, the range of the electric vehicles has an even bigger

impact: an increase of battery capacity to a range of 150km helps performing the majority of

suburban delivery tours without need for en-route recharging, but a battery capacity below

80km render electric deliveries unviable in our setting. Between these two extremes, the extra

costs due to recharging quickly decrease as a function of the battery capacity.

The future research perspectives are multiple. Firstly, we recommend to pursue the study

of exact methods and metaheuristics for multi-echelon electric vehicle routing problems. These

optimization problems involve a large number of decision classes, related to satellite choices,

recharging stations choices, and vehicle routing at two levels, posing a formidable challenge for

exact and heuristic algorithms alike. With the rapid development of battery-powered vehicles

and green supply chains, efficient algorithms for large scale problems are critically needed, but

the current methods still need to be improved in terms of accuracy, scalability, and generality,

e.g., considering possible extensions to multi-echelon electric delivery schemes arising in city

logistics (Cattaruzza et al. 2017), other vehicle routing attributes (Vidal et al. 2013) and

stochastic settings.

Secondly, our sensitivity analyses on electric vehicles characteristics and other strategic

decisions (number and placement of charging stations) could be extended further. One
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limitation of the current study relates to the placement of the charging stations, which is

randomized in a fixed area. However, during urban planning, recharging stations are placed in

strategical locations to meet the needs of the population, or based on competitive location

approaches. Solving this strategic location optimization problem may be necessary for a more

accurate sensitivity analysis. Yet, it is an intricate problem, which can be viewed as a variant of

location-routing problem (Schiffer and Walther 2017b,a), or modeled as a bilevel optimization

problem and congestion game (Xiong et al. 2015). To this date, the optimization of charging

stations locations has never been considered in the context of a multi-echelon delivery network,

forming a promising research avenue.
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