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Abstract

Although Tibetans and Sherpa present several physiological adjustments evolved to cope with selective pressures imposed by the

high-altitude environment, especially hypobaric hypoxia, few selective sweeps at a limited number of hypoxia related genes were

confirmed by multiple genomic studies. Nevertheless, variants at these loci were found to be associated only with downregulation of

theerythropoietic cascade,which represents an indirect aspectof theconsideredadaptivephenotype.Accordingly, thegenetic basis

of Tibetan/Sherpa adaptive traits remains to be fully elucidated, in part due to limitations of selection scans implemented so far and

mostly relying on the hard sweep model.

In order to overcome this issue, we used whole-genome sequence data and several selection statistics as input for gene network

analyses aimed at testing for the occurrence of polygenic adaptation in these high-altitude Himalayan populations. Being able to

detect also subtlegenomic signatures ascribable toweakpositive selectionat multiple genesof the same functional subnetwork, this

approachallowedus to infer adaptiveevolutionat loci individually showing small effect sizes, but belonging tohighly interconnected

biological pathways overall involved in angiogenetic processes.

Therefore, these findings pinpointed a series of selective events neglected so far, which likely contributed to the augmented tissue

blood perfusion observed in Tibetans and Sherpa, thus uncovering the genetic determinants of a key biological mechanism that

underlies their adaptation to high altitude.
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Introduction

Himalayan populations living at altitudes higher than 3,500 m

above sea level (a.s.l.), such as Tibetans and Sherpa, represent

one of the most iconic examples of human adaptation to a

highly challenging environment. Since the first human settle-

ment on the Tibetan Plateau, their ancestors have been sub-

jected to strong selective pressures imposed by cold

temperatures, patchy landscape, arid soil, high UV radiation,

and hypobaric hypoxia. Although these populations have

progressively mitigated most of such stresses thanks to tech-

nological improvements, no cultural adaptations can allow

them to avoid the reduction of oxygen partial pressure (and

therefore uptake) as elevation increases.

In the last decade, the genetic basis of Tibetan and Sherpa

physiological adaptation to high altitude has been investi-

gated in many population genomics and genome-wide asso-

ciation studies (GWAS) (Beall et al. 2010; Bigham et al. 2010;

Simonson et al. 2010; Yi et al. 2010; Xu et al. 2011;
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Jeong et al. 2014; Hu et al. 2017; Yang et al. 2017). Among

the genes proposed to have adaptively evolved in response to

reduced oxygen availability, EPAS1 and EGLN1 resulted the

most replicated candidates. In particular, their variants puta-

tively subjected to natural selection were proved to smooth

the erythropoietic cascade, which represents the ancestral

physiological response observed in populations evolved at

low altitude when they are exposed to hypobaric hypoxia

(Beall et al. 2010; Simonson et al. 2010; Yi et al. 2010;

Buroker et al. 2012; Lorenzo et al. 2014; Peng 2017; Tashi

et al. 2017). Accordingly, Tibetans and Sherpa maintain lower

hemoglobin concentration with respect to lowlanders who

reside for long periods at high altitude (Zhuang et al. 1996).

This protects them against the long-term harmful effects of

polycythemia due to physiological acclimatization to high al-

titude (Winslow and Monge Cassinelli 1987) and reduces their

susceptibility to chronic mountain sickness (Vargas and

Spielvogel 2006).

Nevertheless, such findings only partially explain the com-

plex Tibetan/Sherpa adaptive phenotype. In fact, these pop-

ulations present additional biological adjustments that enable

them to tolerate low inspired oxygen pressure and to live even

>4,000 m a.s.l. without experiencing severe harmful conse-

quences (reviewed in Beall 2007; Gilbert-Kawai et al. 2014).

These include modifications at different levels along the oxy-

gen transport cascade when compared with what observed in

native low-altitude individuals. Such changes range from cel-

lular adjustments (e.g., reduced number of mitochondria in

muscle cells) (Hoppeler et al. 2003) to modified physiological

functions (e.g., increased resting pulmonary ventilation to fa-

vor oxygen absorption) (Beall et al. 1997; Moore 2001).

Furthermore, Tibetans and Sherpa show an increased concen-

tration of exhaled nitric oxide, which acts as vasodilator in

lungs (Beall et al. 2001), and augmented blood flow

(Erzurum et al. 2007) especially in the brain (Jansen et al.

2007) and in uterus and placenta during pregnancy (Moore

et al. 2011; Vitzthum 2013). All these characteristics, coupled

with an increased capillary distribution in muscles (Kayser

et al. 1991), contribute to enhance blood perfusion in their

tissues. However, the genetic determinants of these key mod-

ifications remain to be elucidated, plausibly due to conceptual

and methodological limitations of selection scans imple-

mented so far and based mostly on the hard sweep model

(Scheinfeldt and Tishkoff 2013). In fact, in the last few years,

polygenic adaptation has been increasingly proposed to have

played a more substantial role than hard selective sweeps in

recent human evolution (Pritchard and Di Rienzo 2010;

Pritchard et al. 2010; Hernandez et al. 2011; Schrider and

Kern 2017), as well as in high-altitude adaptation of

Himalayan populations (Jeong and Di Rienzo 2014; Jeong

et al. 2018). This implies that in most cases positive selection

may have slightly affected many genes and variants involved

in the same biological pathway, each of which individually

exerting a limited effect on the overall adaptive phenotype.

These weak selective events produce genomic patterns

around the targeted loci that are intermediate between those

of neutrally evolving chromosomal regions and those due to

hard selective sweeps (Pritchard and Di Rienzo 2010), so that

with traditional approaches it is particularly difficult to detect

them (Jeong and Di Rienzo 2014). This explains why most of

the neutrality tests developed so far turned out to be inade-

quate to draw inferences about polygenic adaptation, sug-

gesting that hard sweeps at EPAS1 and EGLN1 represent only

a limited fraction of the evolutionary events having shaped

the Tibetan and Sherpa adaptive phenotype.

To test whether this peculiar phenotype has evolved under

polygenic adaptation, we combined the computation of mul-

tiple selection statistics with gene network analyses able to

account for the possibility that positive selection has acted at a

functional pathway or even at specific gene subnetworks in-

volved in a given biological function rather than on single loci

(Gouy et al. 2017). For this purpose, we assembled a data set

composed of a newly generated whole-genome sequence

(WGS) of a Sherpa individual from the Nepalese Rolwaling

Himal (SRH), who works as Himalayan Guide in mountaineer-

ing expeditions to 8,000 m peaks, as well as of publicly avail-

able WGS data for high-altitude Tibetan (TBN) and Sherpa

(SHP) subjects from Tibet (Lu et al. 2016). This approach en-

abled us to identify previously undetected signatures of pos-

itive selection having acted on genes belonging to highly

interconnected functional pathways with some loci showing

individually small effect sizes, but as a whole contributing to

modulate angiogenetic functions. We thus provided new ev-

idence for polygenic adaptation plausibly underlying some of

the well-known Tibetan and Sherpa adaptive traits evolved in

response to hypobaric hypoxia.

Materials and Methods

Samples Collection and DNA Extraction

A Sherpa individual from the Rolwaling Himal (Gaurishankar

Conservation Area, GCA, Dolakha District, Nepal), who was

third-generation native of the Rolwaling Sherpa community

(i.e., with both parents and grandparents born in the village of

Beding at 3,690 m a.s.l.), was chosen among those recruited

during several sampling campaigns (Gnecchi-Ruscone et al.

2017) organized in collaboration with the ExPlora Nunaat

International nonprofit organization. This subject was selected

to be representative of the Rolwaling Sherpa population, pre-

senting 100% of the “Sherpa-like” genetic component ob-

served in previous studies (Gnecchi-Ruscone et al. 2017) and a

high-altitude adapted phenotype (i.e., he is a professional

mountaineer and Himalayan Guide who have climbed

Mount Everest several times). DNA was extracted from blood

samples by means of a Salting Out modified protocol (Miller

et al. 1988) and was quantified with the Quant-iT dsDNA

Broad-Range Assay Kit (Invitrogen Life Technologies,

Gnecchi-Ruscone et al. GBE
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Carlsbad, CA). A DNA sample with a concentration of

48 ng/ll was then used for preparation of the molecular

libraries to be submitted to whole-genome sequencing.

Whole-Genome Sequencing and Variant Calling

The NEBNext Ultra DNA Library Prep protocol was used to

prepare genomic DNA libraries by implementing size selection

for paired-end massive parallel sequencing that was per-

formed with the HiSeq 4000 platform (Illumina, San Diego,

CA) available at the facilities of the Human Genetics

Department of the University of Chicago. The experiment

was designed in order to obtain 150-bp pair-end reads and

an average coverage of 20X. Base calling and quality controls

were performed with RTA v1.18.64.0 and CASAVA v1.8.2

(Illumina, San Diego, CA), while the generated reads were

mapped onto the human reference sequence (hg19) by

means of the BWA-MEM algorithm implemented in the

BWA v.0.7 tool (Li and Durbin 2010). We then used

SAMtools v1.3 (Li et al. 2009) to sort and index the obtained

raw alignments and Picard v1.98 (http://broadinstitute.github.

io/picard/; Last accessed on March 6, 2018) to mark duplicate

reads. Local realignment around insertions and deletions and

base quality score recalibration were performed with GATK

v3.5 (DePristo et al. 2011). We finally used SAMtools to re-

move low-quality reads pairs showing phred-scaled mapping

quality scores (-q) < 30 and the PCR/optical duplicates previ-

ously marked with Picard. Such a pipeline was then applied

separately on the whole-genome 150-bp pair-end reads gen-

erated for samples representative, respectively, of previously

studied SHP and TBN populations (Lu et al. 2016), to assemble

a homogenous high-altitude data set. This enabled us to re-

liably call genotypes across all nucleotide sites of our newly

generated Sherpa genome sequence and those retrieved

from literature by using the GATK UnifiedGenotyper algo-

rithm and by considering only nucleotide sites showing

phred-scaled quality scores � 30.

Data Curation

We performed the following quality control (QC) steps on the

called genotypes with PLINK v1.07 (Purcell et al. 2007). We

retained single nucleotide variants (SNVs) showing genotyp-

ing success rate >99% and no deviations from the Hardy–

Weinberg Equilibrium (P> 1.5�10�9 after Bonferroni

correction for multiple testing). This led to the generation of

a high-quality and “high-density” data set including

6,600,121 SNVs. We then created a “low-density” data set

by merging WGS data with genome-wide genotyping data

for a previously described panel of Asian populations

(Gnecchi-Ruscone et al. 2017) (supplementary table 1,

Supplementary Material online). Accordingly, it included

1,173 samples characterized for 199,679 single nucleotide

polymorphisms (SNPs) and was used to check for consistency

of the assembled sequence data with genotypes already

available for the populations of interest, as well as to perform

fine scale clustering analyses. Both the “low-density” and the

“high-density” data sets were phased to infer haplotypes

with SHAPEIT2 v2.r790 (Delaneau et al. 2013) by using de-

fault parameters and HapMap phase3 recombination maps.

Given the relatively low number of samples contained in the

“high-density” data set, WGS data generated by the 1000

Genomes Project (The 1000 Genomes Project Consortium

2015) were used as a reference panel of phased data to en-

sure more robust phasing. The overlap between the 1000

Genomes Project and the assembled “high-density” data

sets was of 4,077,599 SNVs, which was the final number of

genetic markers used for haplotypes phasing and related

downstream analyses.

Genotype-Based Population Structure Analyses

Analyses based on genotype data and aimed at dissecting

patterns of population genetic structure were performed on

the “low-density” data set after pruning variants in linkage

disequilibrium with each other (i.e., showing r2> 0.2). We ran

the ADMIXTURE clustering algorithm (Alexander et al. 2009)

on the whole “low-density” data set to test K¼ 2 to K¼ 6

putative ancestral population groups. In particular, we ran

fifty replicates with different random seeds for each K to

monitor for convergence and we calculated cross validation

(CV) errors for each K to assess which was the most reliable

number of clusters explaining the data. Only the run with the

highest log-likelihood and the K showing the lowest trend of

CV-errors were considered to evaluate admixture proportions

for the examined samples. Principal Components Analysis

(PCA) was computed on the subset of East Asian and

Tibeto-Burman populations included in the “low-density”

data set by using the smartpca method implemented in the

EIGENSOFT package v6.0.1 (Patterson et al. 2006).

Haplotype Sharing Clustering Analyses

To assess whether the considered Tibetan and Sherpa groups

form a genetically homogenous population cluster at a fine

scale of analysis, we applied the haplotype-based methods

implemented in the CHROMOPAINTER/fineSTRUCTURE pipe-

line (Lawson et al. 2012). The phased “low-density” data set

was used to run CHROMOPAINTERv2 to reconstruct patterns

of haplotype sharing of each individual by using all the other

individuals included in the data set as potential “donors,” but

excluding themselves (i.e., preventing self-copy). To account

for differences in sample sizes between genotyped popula-

tions and the WGS data set, we randomly selected a subset of

individuals per group to be submitted to the analysis.

Moreover, we restricted the analysis to East Asian populations

by removing all Tibeto-Burman groups showing signatures of

generic South Asian admixture according to previous studies

(Basu et al. 2016; Gnecchi-Ruscone et al. 2017). We esti-

mated the mutation/emission and recombination/switch rates

Polygenic Adaptation to High Altitude in Tibetan and Sherpa people GBE
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using ten steps of the Expectation Maximization algorithm on

a subset of chromosomes {4, 10, 15, 22}. The mean values

calculated across all the autosomes and then across individu-

als, weighted by the number of markers, were used to run the

final CHROMOPAINTER analysis on all the chromosomes by

using k¼ 100 to specify the number of expected chunks to

define a region. We then summed the matrix of the counts of

shared haplotype chunks across the 22 autosomes, which

was used as input for fineSTRUCTURE version fs2.1 (Lawson

et al. 2012). We ran the algorithm with 1,000,000 “burn-in”

iterations of MCMC, followed by another 2,000,000 itera-

tions and sampling the inferred clustering patterns every

10,000 runs. We finally performed 1,000,000 additional hill-

climbing steps to improve posterior probability and to merge

the identified clusters in a step-wise fashion.

Selection Scans on Tibetan/Sherpa Whole-Genome
Sequence Data

To identify genomic signatures ascribable to the action of

positive selection, we first computed two independent and

complementary statistics (i.e., the segregating sites by length,

nSL, and the derived intra-allelic nucleotide diversity, DIND) on

the phased “high-density” data set and we then used the

obtained results as input for gene network analyses (see last

section of Materials and Methods). We calculated nSL, which

was designed to detect both hard and soft sweeps by search-

ing for intrapopulation patterns of extended haplotype homo-

zygosity (Ferrer-Admetlla et al. 2014), by retrieving

information on ancestral alleles from the reconstructed

Homo sapiens ancestral sequence based on the Ensembl

Compara EPO 6 primates whole-genome alignments. nSL

scores for each SNV were then computed with the algorithms

implemented in selscan v1.1.0b (Szpiech and Hernandez

2014) by setting the maximum extension parameter to

4,500 SNVs, meaning that for each variant it was considered

a window of maximum 4,500 consecutive loci to calculate the

nSL value. In addition, we calculated DIND, which was

designed to search for the longest identical stretch of consec-

utive alleles by counting the number of differences between

any two haplotypes belonging to the same group (Fagny et al.

2014). For this reason, it focuses on the overall differences

between haplotypes carrying a derived allele and, contrarily to

nSL, is particularly suited to recognize hard selective sweeps.

After removing variants showing derived allele frequency

<0.2, which were shown to bias DIND results (Fagny et al.

2014), we calculated DIND scores for each SNV by using self-

customized Python scripts.

Selection Scans on Validation Data Sets

To validate reliability of the presented pipeline of analyses on a

larger data set, and to test whether signatures of positive

selection observed in Tibetan and Sherpa genomes were likely

ascribable to altitude-related selective pressures, we

contrasted the obtained results with those based on the com-

putation of nSL and DIND statistics on whole-genome se-

quence data available for the Han Chinese (CHB) samples

(N¼ 103) included in the 1000 Genomes Project data set

(The 1000 Genomes Project Consortium 2015). In fact, CHB

are known to share an ancient genetic ancestry with Tibetans

and Sherpa (Hu et al. 2017), but have evolved at low altitude.

Moreover, genome-wide genotyping data previously gener-

ated for Sherpa and Tamang populations from the GCA

(Gnecchi-Ruscone et al. 2017) were used as additional valida-

tion data sets to confirm genomic signatures of positive selec-

tion on a larger number of samples than those included in the

“high-density” data set. These data were merged with the

1000 Genomes Project data set (The 1000 Genomes Project

Consortium 2015), so that the final “selection SNP-chip” data

set on which we calculated the Population Brach Statistics (PBS)

(Yi et al. 2010) and the Cross-Population Extended Haplotype

Homozygosity (XP-EHH) (Sabeti et al. 2007) consisted of

378,174 SNPs. We used a customized Python script to calculate

PBS for measuring the amount of allele frequency changes

occurred after the split of two closely related populations

(i.e., the Sherpa or Tamangs and CHB) with respect to an out-

group population of European origins (CEU). The two-

population XP-EHH test was instead computed with the algo-

rithms implemented in selscan v1.1.0b and was used to detect

high-frequency alleles associated to long-range haplotypes in

the Sherpa or Tamang genomes, but not in CHB. For this pur-

pose, we retrieved information on the ancestral state of each of

the considered variants from the dbSNP database (http://www.

ncbi.nlm.nih.gov/SNP/; Last accessed on April 18, 2018) and we

phased haplotypes with SHAPEIT2 v2.r790 as described in the

Data curation section. Since PBS and XP-EHH provide indepen-

dent evidence of putative selected alleles having risen to or near

fixation in the tested population, we combined the two statis-

tics to reduce the false positives rate by calculating the Fisher Fcs

combined score (Deschamps et al. 2016) as follows: Fcs ¼ �2

[ln(PPBS) þ ln(PXP-EHH)]. Where Px were the rank P values of the

two statistics defined as their rank position divided by the total

number of unique values present in the related genomic distri-

bution (i.e., one for each SNP presenting a value for both the

statistics).

Gene Network Analyses

To explicitly test for occurrence of selective events under a

model of polygenic adaptation, which are hardly identifiable

by considering each locus independently, we used the

obtained genome-wide distributions of nSL, DIND, and Fcs

scores to apply the pipeline for gene network analysis imple-

mented in the signet R package (Gouy et al. 2017). In detail,

we applied it separately on the lists of nSL and DIND scores

calculated on the “high-density” data set, as well as on the

two lists of Fcs scores (i.e., for Sherpa and Tamangs) obtained

from the analysis of the “selection SNP-chip” data set. For

Gnecchi-Ruscone et al. GBE
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each variant, we retrieved information of the gene/genes lo-

cated within a range of 50 kb upstream and downstream their

chromosomal position. Then, for each of them, we selected

the highest score (for each statistics) among those computed

for all the SNVs/SNPs associated to it as the score representa-

tive of the gene of interest. This score was used as input for

the signet pipeline, which takes into consideration informa-

tion available for annotated biological pathways to assign

genes into their network context. In particular, we selected

the National Cancer Institute Nature Pathway Interaction

Database (Schaefer et al. 2009) to reconstruct the functional

pathways our input genes belong to. We then assessed the

distribution of scores within annotated pathways in order to

test whether they were significantly shifted toward extreme

values. The signet pipeline was developed to rely on an iter-

ative process that we set to 10,000 iterations, in which the

first step is represented by the assignment of a score to every

subnetwork of genes belonging to a wider pathway. For this

purpose, scores of each gene involved were combined and

normalized to allow for comparison of subnetworks of differ-

ent sizes. Then, for each gene network, a simulating anneal-

ing algorithm was used to identify the highest scoring

subnetwork (HSS) (Gouy et al. 2017). Finally, to calculate P

values to test whether the identified HSS were larger than

what expected by chance, we generated null distributions

of HSS for each subnetwork of a specific size. The gene scores

belonging to a network were permuted to produce gene net-

works with random scores and we repeated this process mul-

tiple times to obtain the final null distribution. In detail, we set

this iteration to 50,000 for Fcs scores and to 20,000 for nSL

and DIND (for reasons of computational complexity). We then

obtained rank P values for observed HSS by comparing them

with the HSS generated by the null distribution. The signifi-

cant subnetworks (P< 0.05) identified for each population

and according to each selection statistics were plotted with

Cytoscape v3.6.0 (Shannon et al. 2003).

Results

Assessing Representativeness of Tibetan/Sherpa Whole
Genomes

After application of stringent base calling and QC procedures

(see Materials and Methods), we obtained a “high-density”

Tibetan/Sherpa data set made up of 12 individuals character-

ized for 6,600,121 SNVs. To frame them into the context of

the overall Asian genomic landscape, we assembled a “low-

density” data set of 199,679 SNPs by merging WGS data with

genome-wide genotyping data from a previously described

panel of low-altitude and high-altitude Asian populations

(Gnecchi-Ruscone et al. 2017) (supplementary table 1,

Supplementary Material online).

We used the “low-density” data set to perform

ADMIXTURE analyses and the model showed the best

predictive accuracy (i.e., the lowest CV error) when six popu-

lation clusters (K¼ 6) were tested (supplementary fig. 1,

Supplementary Material online). The observed admixture

patterns pointed to a distribution of South Asian and

East Asian genetic components among the considered

populations that was in line with results obtained by other

studies (Jeong et al. 2014, 2016; Lu et al. 2016; Gnecchi-

Ruscone et al. 2017) (fig. 1A and supplementary fig. 2,

Supplementary Material online). In particular, the TBN

and SRH samples sequenced for the whole genome pre-

sented proportions of East Asian ancestry comparable to

those inferred according to genome-wide genotyping data

for their populations of origin. Instead, SHP showed higher

degrees of South Asian ancestral components with respect

to the other Sherpa groups, with especially two individuals

presenting a cumulative percentage of Dravidian/Austro-

Asiatic and Northern or Southern South Asian ancestry

fractions exceeding 15% (fig. 1A).

We then performed PCA on a subset of the East Asian and

Tibeto-Burman groups included in the “low-density” data set.

PC1 (accounting for 1.14% of variance) captured the main

latitudinal cline of variation previously attested for East Asian

populations (Li et al. 2008; HUGO Pan-Asian SNP Consortium

et al. 2009) (fig. 1B). PC2 (depicting 0.66% of variance)

highlighted patterns of South Asian admixture recently de-

scribed for most Tibeto-Burman groups (Basu et al. 2016;

Gnecchi-Ruscone et al. 2017), with the two SHP samples

showing appreciable Dravidian/Austro-Asiatic and Northern

or Southern South Asian ancestry components according to

ADMIXTURE analyses occupying an intermediate position

along this axis of variation (supplementary fig. 3,

Supplementary Material online). PC3 (accounting for 0.59%

of variance) instead described the genetic differentiation be-

tween Northern East Asians and high-altitude Himalayan pop-

ulations (fig. 1B), thus confirming findings already pointed out

by several studies (Jeong et al. 2014, 2016, 2017; Lu et al.

2016; Gnecchi-Ruscone et al. 2017; Zhang et al. 2017). WGS

samples turned out to be encompassed within the range of

variability shown by their respective ethnic groups, with the

sole exception of the two outlier SHP individuals mentioned

earlier. In detail, TBN clustered together with the other

Tibetan samples from literature and the bulk of SHP subjects

lay along the previously described Tibetans to Sherpa gradient

of decreasing gene flow and increasing drift (Gnecchi-

Ruscone et al. 2017; Jeong et al. 2017). The SRH sample

was located at the end of the cline observed for the other

Nepalese Sherpa from the Rolwaling Himal, Thame, and

Khumjung (fig. 1B and supplementary fig. 3, Supplementary

Material online).

Overall, results from ADMIXTURE and PCA suggested that

the selected Tibetan and Sherpa individuals were highly rep-

resentative of the gradient of genetic diversity observable for

these Himalayan groups and enabled us to refine the WGS

data set by filtering out two SHP subjects showing unusual
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Dravidian/Austro-Asiatic and Northern or Southern South

Asian ancestry components.

Testing for a Homogeneous Tibetan/Sherpa Genetic
Cluster

To deepen the dissection of the Tibetan/Sherpa cline of vari-

ation pointed out by ADMIXTURE and PCA, we obtained

high-resolution estimation of haplotype sharing between

these populations by applying the CHROMOPAINTER/

fineSTRUCTURE pipeline (Lawson et al. 2012). For this pur-

pose, we considered a representative subset of East Asian

individuals included in the “low-density” data set by ex-

cluding Tibeto-Burman groups showing appreciable pro-

portions of Dravidian/Austro-Asiatic and Northern or

Southern South Asian ancestry components (see Materials

and Methods). This enabled us to take into account the fact

that a gradient of genetic variation could hide fine scale

population structure, which is not identifiable with tradi-

tional genotype-based analyses (Leslie et al. 2015), and

therefore to explicitly test whether the considered Tibetan

and Sherpa groups form a genetically homogenous popu-

lation cluster.

This approach led to the identification of 23 potential sub-

clusters confirmed among the performed MCMC runs (sup-

plementary fig. 4, Supplementary Material online) and that

could be grouped into three main clades: South East Asians,

North East Asians and Tibetans/Sherpa one (fig. 1C). This latter

group was composed of seven subclusters, but with three of

which being represented by a single individual. Moreover, the

four remaining subclusters were composed of both Tibetans

and Sherpa, and the WGS samples turned out to be distrib-

uted in all the Tibetan/Sherpa subclusters (supplementary fig.

5, Supplementary Material online). This further supported the

FIG. 1.—Population structure analyses performed on the “low-density” data set. (A) K¼6 ADMIXTURE analysis was performed on 1,173 individuals (for

simplicity a subset of 520 individuals are plotted) belonging to the Asian groups included in the “low-density” data set. South Asian populations are labelled

according to the following macrogroups: Dravidian and Austro-Asiatic speakers from South Asia, Dra/AA SA; Northern South Asians, NOSA; Southern South

Asians, SA; South Asian Tibeto-Burmans, SA T-B. East Asian populations are reported according to their respective population label. High-altitude Tibetan/

Sherpa samples sequenced for the whole genome are highlighted in bold. (B) PC1 versus PC3 performed on the East Asian and Tibeto-Burman populations

included in the “low-density” data set. Samples typed with SNP-chip arrays are reported as full dots, while Tibetan/Sherpa samples sequenced for the whole

genome are labelled as empty triangles. (C) fineSTRUCTRE hierarchical clustering analysis performed on a subset of East Asian populations included in the

“low-density” data set. Only the upper splitting branches are reported. Shaded boxes under (A), color of points in (B), and cluster labels in (C) are color-coded

according to the following macrogroups: South East Asians, light-gray; North East Asians, dark-gray/black, Siberians, light blue; Tibeto-Burmans (T-B), green;

Tibetans, red; Sherpa, orange.
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representativeness of the assembled WGS data set as con-

cerns the overall patterns of variation observable for high-

altitude Himalayan groups. Moreover, although results from

such a hierarchical clustering approach should not be inter-

preted as a strict description of relationships among popula-

tions, they suggested that clear genetic boundaries between

the considered Tibetan and Sherpa groups cannot be identi-

fied based on the available data. Accordingly, we performed

subsequent analyses by considering the upper

fineSTRUCTURE clustering level, for which all Tibetans and

Sherpa were grouped into a single clade clearly distinguish-

able from the rest of East Asian populations (fig. 1C).

Identifying Selective Events Mediating Tibetan/Sherpa
Adaptation to High Altitude

Results from the above-mentioned population structure anal-

yses were used to guide multiple selection scans, which were

performed on the genomes of Tibetan/Sherpa samples show-

ing low Dravidian/Austro-Asiatic and Northern or Southern

South Asian ancestry components. In particular, we com-

puted the nSL and DIND statistics on the phased “high-

density” data set including 4,077,599 SNVs and we used

the obtained scores as input to perform gene network anal-

yses (see Materials and Methods).

When considering results based on nSL scores (supplemen-

tary table 2 and fig. 6, Supplementary Material online), seven

gene subnetworks were identified as significant, with espe-

cially three presenting P values<0.01 that belonged to nested

integrin-associated pathways (i.e., Integrin b-1, Integrin a6-

b4, and Integrin involved in angiogenesis), being highly over-

lapping and including a total of 14 genes (fig. 2A).

Interestingly, ITGA6 encoding for integrin a6-b4, which was

part of two of the integrin subnetworks identified, is an im-

portant receptor on platelets and is proved to play a role in

angiogenesis (Avraamides et al. 2008). Other two significant

subnetworks tightly linked with each other belonged to the C-

MYB and C-MYC transcription factor pathways and were

made up of 32 genes. These oncogene transcription factors

are reported to be involved in several functions, mostly pro-

moting the proliferation/differentiation of hematopoietic pro-

genitor cells and sprouting angiogenesis (Bateman et al.

2017) (supplementary results, Supplementary Material on-

line). As regards the two less significant subnetworks, one

belonged to the Stabilization and expansion of the E-cadherin

adherents junction pathway, being made up of six genes, and

the other to the P53 pathway composed of 14 genes (sup-

plementary results, Supplementary Material online).

Gene network analysis performed according to the com-

puted DIND scores led to the identification of eight significant

subnetworks (supplementary table 3 and fig. 7,

Supplementary Material online). Among them, the Integrin

b-1 and Integrin in angiogenesis pathways were represented

by five genes, with COL11A1 and COL11A2 being pointed

out even by nSL-based computations (fig. 2B). Furthermore, a

subnetwork belonging to the CDC42 signaling cascade and

made up of five genes was highlighted, including loci that

encode for a GTPase complex that binds to different effectors

involved in many cellular functions (Bateman et al. 2017).

Another significant subnetwork was represented by three

genes and belonged to the Nephrin/Neph1 signaling path-

way, which plays a role in controlling the glomerular perme-

ability (Liu et al. 2003). Three subnetworks then turned out to

be composed by a few genes each (i.e., two or three), but

they were all linked by ESR1 that encodes for an estrogen

receptor. Interestingly, isoform 3 of the ESR1 protein is known

to contribute to the activation of NOS3 and to endothelial

production of nitric oxide (Bateman et al. 2017), a vasodilator

showing increased concentration in the lungs of high-altitude

Himalayan people (Beall et al. 2001) (supplementary results,

Supplementary Material online). Finally, genes from a subnet-

work belonging to the wide P73 pathway were detected as

significantly enriched among the candidate targets of positive

selection pinpointed by the DIND test (supplementary results,

Supplementary Material online).

When applied to the low-altitude CHB population, gene

network analysis based on results from the nSL test identified

four significant subnetworks (supplementary results and sup-

plementary table 4, Supplementary Material online), with es-

pecially those belonging to the Stabilization and expansion of

the E-cadherin adherents junction and P73 pathways being in

common with the significant subnetworks described earlier

for Tibetans and Sherpa. Moreover, four macrosubnetworks

were found to be significant according to gene network anal-

ysis based on DIND scores (supplementary results and supple-

mentary table 5, Supplementary Material online), including

the C-MYC transcription factor and CDC42 signaling cascade

pathways previously pointed out for Tibetans and Sherpa.

To further validate results from gene network analyses, the

same network enrichment approach was replicated on larger

data sets consisting of results from independent neutrality

statistics calculated on previously generated genome-wide

genotyping data (Gnecchi-Ruscone et al. 2017). For this pur-

pose, we used a “selection SNP-chip” data set including

378,174 SNPs (see Materials and Methods) to compute PBS

and XP-EHH statistics separately on high-altitude Sherpa and

medium-altitude Tamang populations from the Nepalese

GCA. PBS and XP-EHH results for each group were then com-

bined into Fcs scores before their submission to gene network

analysis (see Materials and Methods).

Results for the Sherpa group (supplementary table 6 and

fig. 8, Supplementary Material online) were in line with those

previously obtained by several single-gene approaches (Beall

et al. 2010; Bigham et al. 2010; Simonson et al. 2010; Yi et al.

2010; Xu et al. 2011; Hu et al. 2017; Yang et al. 2017). In fact,

they pointed to the identification of significant subnetworks

belonging to the HIF-1a and HIF-2a pathways and containing,

respectively, the EGLN1 and EPAS1 genes among those
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highlighted by the highest scoring subnetwork algorithm.

These two subnetworks partially overlapped and were com-

posed of 18 genes (supplementary results, Supplementary

Material online). Among the remaining significant subnet-

works, three were associated to the pathway of the P53

protein family of transcription factors and tumor suppres-

sors (i.e., P53, P63, and P73 subnetworks, for a total of 28

genes), thus confirming findings from WGS-based selec-

tion scans (supplementary results, Supplementary

Material online). Other subnetworks significant for the

Sherpa population were those belonging to the Integrin

b-1 and Integrin a6-b4 pathways (fig. 2C). They included

eight genes encoding for integrin subunits, ligands, and

effectors, five of which (i.e., LAMC1, LAMC2, ITGA6,

ITGA1, and ITGA2) were already pointed out by the nSL-

based analyses described earlier. Finally, other Sherpa sig-

nificant subnetworks included the Glucocorticoid receptor

regulatory network, for a total of nine genes, and the

Interleukin-1 signaling events made up of seven genes.

As regards results obtained for the Tamangs, who are not

expected to have evolved adaptation to hypobaric hypoxia

(Gnecchi-Ruscone et al. 2017), 11 gene subnetworks belong-

ing to different biological pathways turned out to be signifi-

cant (supplementary table 7, Supplementary Material online).

In detail, three overlapping subnetworks were involved in im-

mune activities (i.e., TCR signaling in T cells CD4þ and CD8þ
and Signaling mediated by PTP1B) (Cho et al. 2013; Yang

et al. 2016), while other two belonged to two P53 protein

family pathways (i.e., P53 effectors and P73 network) (sup-

plementary results, Supplementary Material online).

Moreover, two additional significant subnetworks were rep-

resented by the ATF-2 transcription factor network, which is

involved in the development of nervous system and the skel-

eton (Reimold et al. 1996), and by the Netrin-mediated sig-

naling events that regulate axon guidance (O’Donnell et al.

2009). Finally, the RET receptor tyrosine kinase signaling

events involved in several human syndromes, such as the

Hirschprung’s disease, multiple endocrine neoplasia and

FIG. 2.—Angiogenesis-related integrin subnetworks identified as significant in Tibetans and Sherpa by the different tests performed. (A) Nested integrin

subnetworks belonging to the Integrin involved in angiogenesis, b-1 integrin, and a6-b4 integrin pathways and pinpointed by nSL-based analysis performed

on the “high-density” data set. (B) Nested integrin subnetworks belonging to the Integrin involved in angiogenesis and b-1 integrin pathways and pinpointed

by DIND-based analysis performed on the “high-density” data set. (C) Nested integrin subnetworks belonging to the b-1 integrin and a6-b4 integrin

pathways and pinpointed by replication Fcs-based analysis performed on the “selection SNP-chip” data set. The genes present in more than one of the

described significant subnetworks are underlined.
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familial thyroid carcinoma (van Weering and Bos 1998), were

found to be significant in addition to the subnetwork of

Vascular endothelial growth factor receptors (Abhinand

et al. 2016). According to these findings, with the exclusion

of those belonging to the P53 pathways (supplementary

results, Supplementary Material online), the considered

Sherpa and Tamang populations did not present any common

subnetwork among those pointed out as significant.

Discussion

To date, traditional genome-wide selection scans and gen-

otype–phenotype GWASs failed to replicate other genes

than EPAS1 and EGLN1 as strong genetic determinants of

Tibetan/Sherpa high-altitude adaptation, plausibly due to

the multifaceted and polygenic nature of such an adaptive

phenotype. Therefore, we aimed at explicitly testing for mech-

anisms of polygenic adaptation evolved by these populations

in response to hypobaric hypoxia by searching for selective

events simultaneously occurred at multiple loci with moderate

to small effect size and involved in the same biological path-

way (Pritchard and Di Rienzo 2010). In detail, we performed a

series of selection scans culminating in gene network analyses

that unlike previous pathway-based approaches have been

designed to identify outlier subnetworks of genes involved

in a wider functional pathway (Gouy et al. 2017).

Accordingly, we specifically accounted for the fact that under

a polygenic adaptation model positive selection likely acts on a

subset of loci involved in a given biological function rather

than on the entire set of genes belonging to that pathway

(Gouy et al. 2017).

For this purpose, we used a panel of Tibetan/Sherpa sam-

ples sequenced for the whole genome and that genotype-

based and haplotype-based population structure analyses

demonstrated to be well representative of the gradient of

genetic variation observable for these Himalayan groups

(fig. 1). In particular, we computed nSL and DIND statistics

that, with respect to traditional methods, were proved, re-

spectively, more powerful to search for soft selective sweeps

(Ferrer-Admetlla et al. 2014) and more robust to demography

and variation in sequencing coverage when applied to popu-

lation samples of small size (Fagny et al. 2014), as is the case in

the present study. Furthermore, we validated the obtained

results by taking advantage of a larger Sherpa data set

(Gnecchi-Ruscone et al. 2017) (supplementary table 1,

Supplementary Material online) and by performing the

same gene-network analysis, but based on different selection

statistics (i.e., the Fisher Fcs score calculated as combination of

PBS and XP-EHH). In addition, in such a validation process,

we considered as negative control groups two low-

altitude populations of East Asian ancestry, such as the

Han Chinese samples sequenced for the whole genome in

the 1000 Genome Project and a Tamang population from

the Nepalese GCA. In fact, the ancestors of Han Chinese

and Tibetans are supposed to have diverged as early as

44 ka, having then maintained appreciable gene flow until

�9 ka (Hu et al. 2017). Moreover, despite showing some

genetic affinity with the Sherpa, Tamangs have been re-

cently proposed to have originated from a low-altitude

branch of the ancestral Tibeto-Burmans instead that

from the Tibetan/Sherpa lineage (Gnecchi-Ruscone et al.

2017). Therefore, both Han Chinese and Tamang ethnic

groups share an ancient common origin with Tibetans and

Sherpa, but they have spent most of their evolutionary

histories at low altitude so that they have not experienced

hypoxia-related selective pressures.

According to this approach, we pinpointed some gene

subnetworks belonging to highly interconnected functional

pathways and that most of the performed tests (i.e., based

on both WGS and validation data sets) suggested to have

been pervasively subjected to positive selection only in the

Tibetan and Sherpa populations. In fact, when excluding

those related to the macro P-53 protein family of transcription

factors (supplementary results, Supplementary Material

online), the gene subnetworks plausibly involved in high-

altitude adaptation were the three highly nested and belong-

ing to different integrin pathways (fig. 2 and supplementary

tables 2–4, Supplementary Material online). In particular, one

of them resulted significant for Tibetans and Sherpa according

to all the computed statistics and none were among the sig-

nificant subnetworks observed for Han Chinese or Tamangs.

These gene subnetworks are directly involved in promoting

angiogenesis (i.e., the Integrin in angiogenesis pathway) or

include loci encoding for integrin subunits and/or ligands, as

well as proteins of the collagen family (i.e., COL genes), which

contribute to angiogenetic functions. For instance, the

COL6A1 candidate gene pointed out by the nSL-based test

belongs to both the b-1 integrin and the Integrin in angiogen-

esis pathways and is known to play a role especially in muscle

development, showing deleterious mutations that cause a

congenital muscular dystrophy referred as the Bethlem my-

opathy (Jöbsis et al. 1999). The ITGA6 gene instead belongs to

the b-1 integrin pathway and its subpathway Integrin a6-b4

includes an integrin subunit expressed on platelets and mod-

ulating angiogenesis (Avraamides et al. 2008). Interestingly,

some ITGA6 variants were recently found to be associated

with differential risk of developing polycythemia (Zhao et al.

2017) and it has been proposed that such a gene is directly

regulated by hypoxia-inducible factors (Brooks et al. 2016).

Subnetworks of genes belonging to these functional path-

ways were thus found to have experienced multiple selective

events according to different tests (i.e., based on patterns of

interpopulation differentiation, such as the Fcs, or of intrapo-

pulation haplotype homozygosity, as is the case of nSL and

DIND) and despite the different population samples and type

of data analyzed. Therefore, this provided robust evidence

supporting their adaptive evolution in the Tibetan/Sherpa

lineage.
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To our knowledge, and with the exclusion of ITGA6, none

of the previous studies conducted on these populations have

pinpointed such genes among the candidate loci contributing

to Tibetan/Sherpa high-altitude adaptation. A possible expla-

nation for this outcome is that although some of them pre-

sented quite high scores for the computed statistics, when

considered independently as single genes their relation with

a specific biological function (e.g., angiogenesis) is not so ob-

vious because the proteins they encode are involved in several

other basal cellular activities. Similarly, this may be the case of

the significant subnetworks identified according to the DIND

statistics and linked with each other by the ESR1 gene, which

is known to contribute to endothelial nitric oxide production

(Bateman et al. 2017). Accordingly, selective events at these

subnetworks have the potential to have favored the increased

blood flow observed in Tibetan/Sherpa lungs (Beall et al.

2001) (supplementary results, Supplementary Material on-

line). Another reason for the absence of such genes from

previous lists of top candidate high-altitude associated loci

may relate to the fact that although at least two of the

above-mentioned integrin pathways resulted significant in

all tests, the genes composing these subnetworks were not

always the same according to the different analyses applied

and the different set of samples examined. This further cor-

roborates the hypothesis that selective pressure imposed by

hypobaric hypoxia has triggered polygenic adaptation of

these Himalayan populations. Such a model of adaptation

assumes that many genes were subjected to natural selection,

but the intensity of the selective pressure on each of them was

relaxed due to their limited individual role in shaping the adap-

tive phenotype (Pritchard and Di Rienzo 2010; Pritchard et al.

2010; Hernandez et al. 2011; Scheinfeldt and Tishkoff 2013;

Jeong and Di Rienzo 2014; Schrider and Kern 2017).

According to this evolutionary scenario, an adaptive allele

could be even replaced by a different variant on another re-

lated gene without compromising the overall adaptive out-

come, so that different individuals may carry different

adaptive mutations on different sets of highly correlated

genes (Pritchard and Di Rienzo 2010). This implies that most

of these loci are expected to present moderate to low selec-

tion signatures, thus failing to result as outliers when tradi-

tional hard sweep-oriented single-gene approaches are

applied (Scheinfeldt and Tishkoff 2013).

Unfortunately, with the available data and without

implementing targeted functional assays it is impossible

to fully elucidate the actual phenotypic trait/s modulated

by variants located on the identified candidate genes.

Nevertheless, it is plausible that their role in angiogenesis

underlays at least some of the Tibetan/Sherpa biological

adjustments observed along the oxygen transport cascade.

For instance, the increased blood flow and capillary distri-

bution already attested for Tibetans and Sherpa (Beall

2007; Gilbert-Kawai et al. 2014) may be achieved by

changes in the regulation of angiogenetic factors and

positive selection at gene subnetworks highlighted by the

present study may have just acted in this direction by pro-

moting increased tissue blood perfusion in response to the

hypoxic stress.

In conclusion, by using whole-genome sequence data and

by combining a series of complementary selection statistics

with a recently developed gene network analysis, we provided

new evidence for polygenic adaptation to high altitude in

Tibetans and Sherpa. In particular, our results proved that

such an adaptation was mediated not only by the few hard

selective sweeps at genes involved in the erythropoietic cas-

cade attested so far but also by multiple subtle selective events

at loci related to functional pathways involved in regulating

angiogenesis. Accordingly, the present study took a step for-

ward into the depiction of the full spectrum of genetic deter-

minants underlying the complex Tibetan/Sherpa adaptive

phenotype and pointed to modulation of angiogenetic func-

tions as a key evolutionary process having enabled these pop-

ulations to cope with hypobaric hypoxia.
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