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Abstract This work deals with the mathematical modelling and asymptotic
analysis of the plasma convective dynamics in the center of the Sun. The heat
produced via thermonuclear fusion in the interior of the Sun is transported
towards the surface first via radiation, and finally via convection. Convection
is thought to be responsible for the generation of magnetic fields and is hence
a very important phenomenon to be understood in detail in order to get more
insight in the internal structure of the Sun. Anelastic and Boussinesq mod-
els are formally derived here from the underlying compressible MHD models
and we shall prepare the ground for our future numerical works, based on
Asymptotic-Preserving techniques.

Keywords Plasma modelling · Convection in the Sun · Singularly perturbed
problems · compressible MHD-system · Anelastic equation · Boussinesq
equation · Asymptotic-Preserving scheme

1 Introduction

The goal of this work is to present a hierarchy of mathematical models, starting
from the compressible MHD system, in the aim to describe adequately the
conductive plasma dynamics in the center of giant planets and stars, like our
Sun. A large part of astrophysical research treats with the study of a ionized
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gas (plasma) under the influence of gravitational and magnetic forces. Our
particular aim here is to investigate the process of (turbulent) heat transfer
by motion.

To be more precise, let us start by describing the physical context. The
Sun is a “dwarf” star of average size, temperature and brightness, which is
held together by its own gravity, in other words it is a self-gravitating sphere
of plasma. The interior of the Sun is divided into three regions, defined by
the different processes that occur there (see Figure 1). First, there is the core,
where the thermonuclear fusion reactions take place, transforming hydrogen
nuclei into helium nuclei. These reactions release the energy that escapes ul-
timately from the solar surface as visible light. On its way towards the Sun’s
surface, this energy is first transported by radiation (photons) through the
radiative zone, a phenomenon which lasts about a million of years, due to the
high density of the Sun’s interior. As the temperature gets lower, the radi-
ation becomes less powerful and another process is set into motion in order
to transport more efficiently the energy, namely the convection process. It is
thought that most of the solar magnetic activity is driven by turbulent flows,
rotation and shear in this convective zone and the origin of the magnetic field
is believed to be in the tachocline, which is the thin interface separating the
radiative zone from the convective one. Anyhow, the dynamics of the solar in-
terior is up to now still poorly understood. Given the wide range of temporal
and spacial scales coexisting in the physical processes arising in the Sun, it is a
great challenge to model self-consistently the solar interior and the here occur-
ring dynamo effects. All these phenomena require state-of-the-art numerical
schemes supported by rigorous mathematical results.

Fig. 1 Left: Turbulences in the Sun; Right: Different regions of the Sun (Core; radiative
and convective region, separated by the tachocline).

Our aim in this work is the mathematical modelling and analysis of the
plasma dynamics in the solar convective region. The compressible MHD equa-
tions, adapted for a precise description of this convective process [15], are the
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following:

(MHD)



∂tρ+∇ · (ρu) = 0,

ρ [∂tu + (u · ∇)u] = −∇p+ ρ g + 2ρ (u×Ω)

+
1

4π
(∇×B)×B +∇ · D,

ρ T [∂tS + (u · ∇)S] = ∇ · (κT cp ρ∇T ) +∇ · (κS ρ T ∇S)

+
η

4π
(∇×B)2,

∂tB = ∇× (u×B)−∇× (η∇×B),

∇ ·B = 0.

(1)

The plasma gas flow in the interior of the Sun is described in terms of the
mass density ρ (t,x), its mean velocity u (t,x), the temperature T (t,x), the
pressure p (t,x), the specific entropy S (t,x) and the self-consistent magnetic
field B. Let us also mention that gravity acts radially inwards. Furthermore,
Ω is the angular velocity of the rotating Sun, the term 2ρ (u×Ω) being the
Coriolis force term, D the viscous stress tensor and η the magnetic viscosity. In
most astrophysical applications, the turbulent thermal diffusivity (or eddy dif-
fusivity) dominates the standard thermal diffusivity (or molecular diffusivity).
Due to this considerations, we introduce apart from the thermal diffusivity
term ∇ · (κT cpρ∇T ) an additional, more appropriate, entropy diffusion term
∇ · (κSρT∇S), as used in the “mixing length theory” [16], and suppose that
the turbulent and thermal diffusion coefficients, respectively κT and κS , are
such that κT � κS .

System (1) is finally supplied, for its closure, with the following equations
of state (ideal gas assumptions), relating the thermonuclear variables

p = R ρ T =
γ − 1

γ
cp ρ T, S =

cp
γ

(
ln

p

p�
− γ ln

ρ

ρ�

)
= cv ln

(
p

p�

ργ�
ργ

)
, (2)

being p� and ρ� arbitrary values for the pressure and density, respectively;
R := cp − cv the universal gas constant, and γ = cp/cv the adiabatic con-
stant (γ = 5/3 for monoatomic gases and γ = 7/3 for diamtomic molecular
gases), where cp and cv are the specific heat capacities at constant pressure
and constant volume, respectively, which we shall assume to be constant.

The difficulty in the numerical resolution of the fully compressible MHD
system (1) is that one has to resolve the very rapid sound wave dynamics, fact
which very rapidly becomes a computationally expensive task. Reduced, ap-
proximate models, such as the Anelastic, Boussinesq or simply incompressible
models are then introduced, to filter out the sound waves and to permit the
choice of coarser grids. To derive these approximate models, one has first to
identify the physical regime of interest, introduce reference values as well as
some adimensional parameters (Mach and Froude numbers, for instance) and
perform finally the adequate asymptotic limits.
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Starting from the MHD system (1) (with B ≡ 0) and performing the
adequate scaling corresponding to the convective plasma dynamics, we shall
in this work obtain the following singularly perturbed problem

(P )ε,α


∂tρ+∇ · (ρu) = 0

ρ [∂tu + (u · ∇) u] = − 1

ε2
∇p+

α

ε2
ρ g

ρ T [∂tS + (u · ∇)S] = ε2∇ · (ρ∇T ) +∇ · (ρ T ∇S),

(3)

system which will be the starting model for obtaining several different reduced
models. Not all of them are well suited for the solar convection region, however
for completeness we shall mention them all.

Depending on the magnitude of both occurring parameters α and ε, mainly
three models are obtained. In the case α = O(1) and ε → 0, we shall get in
the limit the so-called anelastic model. In the case α = O(ε) and ε → 0, one
obtains the well-known Boussinesq model (used to describe ocean circulation
or katabatic winds), whereas α = O(ε2) and ε→ 0 lead to the well-known in-
compressible equations (low-Mach limit). In Section 2 we present the physical
scaling leading to the dimensionless form of the problem (3). In Section 3 we
perform the formal asymptotic limits permitting to get the different reduced
models and we shall also single out the model most suited for the convection
zone dynamics. Finally the aim of Section 4 is to put the basis for our fu-
ture numerical works. Indeed, our final aim is to design an efficient numerical
scheme, based on asymptotic-preserving techniques, which will be able to solve
(P )ε,α uniformly accurate and stable in ε (and α), without having to adapt
the grid to the perturbation parameters ε and α. Such an AP-scheme could be
very useful for numerical simulations of the convective solar dynamics, as it
would permit coarser grids and hence a considerable gain in simulation time.

2 Physical scaling

To focus only on some specific multiscale mathematical difficulties in problem
(1), we shall assume in the following that B ≡ 0, Ω ≡ 0 and D ≡ 0. Some of
these assumptions are not completely unphysical, as one can assume for ex-
ample that the centrifugal force is small compared to the gravitational force.
Moreover, in astrophysical fluid dynamics the presence of solid walls and vis-
cosity is often unimportant [20], allowing to safely neglect the viscous stress
tensor D. However, the magnetic field is important in the convection zone,
such that in a further work, one should take into account for its influence. In
this first step however, we shall neglect B, and characterize the regime we are
interested in by the following scales [8,16,21]:

– Diffusion coefficients: We introduce a first small parameter τ , measuring
the ratio between the thermal and the turbulent diffusivities, i.e.

κS
κT

=
1

τ2
.
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– Length, Time and Velocity scales: Let us denote by x̂ the length-scale of
reference, being the scale of the considered convective motion; the reference
time t̂ is chosen to be the entropic diffusion time t̂ = x̂2/κS , with κS the
turbulent diffusion coefficient. Then the reference velocity is given by

û =
x̂

t̂
=
κS
x̂
.

– Sound waves/Gravity waves: We shall assume that the convection velocity
û is much smaller that the sound speed (c =

√
p̂/ρ̂) as well as the gravity

fall speed (uGF =
√
ρ̂ x̂). This permits to introduce the Mach and the

Froude numbers

p̂

ρ̂û2
=

1

Ma2
,

ĝ t̂

û
=
ĝ x̂

û2
=

1

Fr2
.

– Stratification: The degree of stratification of our model is defined by a
parameter α, called Boussinesq number and defined as

α :=
Ma2

Fr2
=
x̂ρ̂ĝ

p̂
=
x̂

d̂
, d̂ :=

p̂

ρ̂ĝ
,

where d̂ represents nothing else than the pressure scale height of the fluid.
Letting α tend to zero means letting the ratio between the typical domain
scale-length and the pressure scale tend to zero, which means removing the
height limitation and leading thus to the Boussinesq approximation.

– Entropy: The entropy S is scaled by the specific heat capacity at constant
pressure. We shall also assume that S is fixed at the inner boundary r = ri
and the outer boundary r = ro of the convection shell (represented in
Figure 2), such that the entropy gradient instability criterion (in the radial
direction) ∂S/∂r < 0 is satisfied. Finally we shall introduce the essential
parameter ε, comparing the typical length-scale x̂ with the entropy-gradient
length-scale. Briefly, one has

Ŝ = cp, Si = Ŝ ∆S > 0, So = 0, x̂
∇̂S
Ŝ

= ∆S = ε2. (4)

– Thermodynamic variables: The state equations are also made dimension-
less, by imposing the relations

p̂ = R ρ̂ T̂ , Ŝ =
cp
γ

(
ln

p̂

p�
− γ ln

ρ̂

ρ�

)
= cv ln

(
p̂

p�

ργ�
ρ̂γ

)
.

Having defined all the characteristic values for our problem, let us now de-
compose each quantity in its reference value and an adimensional function, as



6 Andrea Mentrelli

ρ = ρ̂ ρ∗, to get the system

∂t∗ρ∗ +
t̂û

x̂
∇∗ · (ρ∗ u∗) = 0

ρ∗

[
∂t∗u∗ +

t̂û

x̂
(u∗ · ∇∗)u∗

]
= − p̂

ρ̂û2
∇∗p∗ +

t̂ĝ

û
ρ∗ g∗

ρ∗T∗

[
∂t∗S∗ +

t̂û

x̂
(u∗ · ∇∗)S∗

]
= ∇∗ · (

κT
κS

ρ∗∇∗T∗) +
t̂û

x̂
∇∗ · (ρ∗ T∗∇∗S∗) .

(5)

For the description of the solar convective motion, we are interested in low
Mach regimes and shall assume the following ordering

Ma = ε , Fr = ε/
√
α , τ = ε ,

which embodies for simplicity only one perturbation parameter ε � 1, where
α(ε) shall be ε-dependent (of order O(1), O(

√
ε) or O(ε)), leading to different

regimes.
Taking into account for all the above mentioned scaling considerations, and
omitting all the stars, we obtain the following singularly-perturbed system for
the unknowns (ρε,α,uε,α, Sε,α)

(P )ε,α



∂tρ
ε,α +∇ · (ρε,α uε,α) = 0

ρε,α [∂tu
ε,α + (uε,α · ∇)uε,α] = − 1

ε2
∇pε,α +

α

ε2
ρε,α g

ρε,αT ε,α [∂tS
ε,α + (uε,α · ∇)Sε,α] = ε2∇ · (ρε,α∇T ε,α)

+∇ · (ρε,αT ε,α∇Sε,α),

(6)

associated with the rescaled equations of state

pε,α = ρε,α T ε,α, Sε,α =
1

γ
ln

(
pε,α

(ρε,α)γ

)
+ 1, (7)

as well as initial and boundary conditions. The initial conditions for ρε,α, uε,α,
Sε,α will be specified in each particular case and will be slight perturbations
of a hydrostatic state (see Eq. (11) for example).

Concerning the boundary conditions, let us mention that for simplicity
reasons, the considered simulation domain Ω will be chosen to be a rectangle
[0, Lx] × [0, Ly] × [0, Lz] with the gravity acting vertically in the direction z,
i.e. g = (0, 0, g(z)). This rectangle is a simplified description of the spherical
convection shell, with the outer boundary in z = 0 and the inner one in z = Lz
(see Fig. 2). Thus, all the quantities are supposed to be periodic with respect
to (x, y). Moreover, stress-free impenetrable conditions on the velocity are
assumed, i.e.

uε,αz = ∂zu
ε,α
x = ∂zu

ε,α
y = 0 for z = 0, z = Lz.
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The entropy is supposed to be known on the upper (interior part of the shell)
and lower (outer part) boundary, with Sε,αo = 0 for z = 0 and Sε,αi = ∆S = ε2

for z = Lz. For the density, we suppose ρε,α to be known and constant
on the inner and outer part of the shell, namely ρε,α(t, x, y, 0) = ρo and
ρε,α(t, x, y, Lz) = ρi.

Model (6)-(7) is our starting point for the derivation of a hierarchy of re-
duced models, permitting to describe different regimes of low Mach motions,
especially the one we are interested in, namely the convective plasma motion
in the Sun.

3 Asymptotic limits

Starting from the singularly-perturbed problem (6)-(7), let us perform in this
section the anelastic, the Boussinesq as well as the incompressible asymptotics,
letting the parameter ε tend towards zero. This procedure shall be based on
formal asymptotic techniques, such as the Hilbert expansion. The interested
reader can find some more rigorous asymptotic studies in [6,7].

3.1 The anelastic approximation: α = O(1), ε� 1.

The anelastic regime corresponds to the scaling Ma2 = ε2, Fr2 = ε2 and a
Boussinesq number of α := Ma2/Fr2 = 1. The starting model is thus

(P )εA


∂tρ

ε +∇ · (ρε uε) = 0

ρε [∂tu
ε + (uε · ∇) uε] = − 1

ε2
∇pε +

1

ε2
ρε g

ρε T ε [∂tS
ε + (uε · ∇)Sε] = ε2∇ · (ρε∇T ε) +∇ · (ρε T ε∇Sε),

(8)

completed with the equations of state (7), initial and boundary conditions. For
simplicity, we shall omit in the following the ε-dependencies of the functions.
To obtain the limit model of (8) as ε→ 0, we shall suppose that all quantities
can be expanded in a power series in the small parameter ε (Hilbert expansion)

ρ(t,x) = ρ̄(t,x) + ε2ρ′(t,x) + · · · , u(t,x) = ū(t,x) + ε2u′(t,x) + . . . ,

p(t,x) = p̄(t,x) + ε2p′(t,x) + . . . ,

T (t,x) = T̄ (t,x) + ε2T ′(t,x) + . . . , S(t,x) = S̄(t,x) + ε2S′(t,x) + . . . .

(9)
Inserting this Ansatz in the original problem (8) and comparing the terms of
the same order in ε yields a hierarchy of equations to be solved to get some
information about the distinct terms in the Hilbert expansion; in particular
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we are interested in computing only the macroscopic quantities. The first con-
straint tells us that for ε→ 0, the limit functions, denoted here by a bar, shall
satisfy the hydrostatic equilibrium equation

∇p̄ = ρ̄g, where g = (0, 0, g (z)) .

This implies immediately that in the limit of vanishing ε, the pressure and the
density are functions depending only on the vertical variable, i.e. p̄ = p̄ (t, z)
and ρ̄ = ρ̄ (t, z). The equations of state (7) yield then the information that the
temperature, as well as the entropy, are in the limit ε → 0 also of the form
T̄ = T̄ (t, z) and S̄ = S̄(t, z), respectively.

Now the boundary conditions for ρ and S, which are time-independent
on the inner and outer part of our shell, permit immediately to show (with
the help of the equations of state) that all these quantities are also time-
independent. Finally, the scaling conditions for the entropy (4) yield that
S̄(z) ≡ const = 0. Altogether one gets the dependencies

ρ̄(z), T̄ (z), p̄(z), S̄ ≡ const = 0.

Nothing is known for the moment about the velocity ū(t,x). In order to obtain
the limit model for ε → 0, we go further and match in (8) the terms of order
zero in ε2. This yields the anelastic model

(P )0A



∇ · (ρ̄ ū) = 0

∂z p̄ = ρ̄ g

ρ̄ [∂tū + (ū · ∇)ū] = −∇p′ + ρ′ g

ρ̄T̄ [∂tS
′ + (ū · ∇)S′] = ∂z

[
ρ̄ ∂zT̄

]
+∇ ·

[
ρ̄ T̄ ∇S′

]
.

(10)

If one supplies now the starting model (8) with “well-prepared” initial condi-
tions, meaning perturbations of a hydrostatic equilibrium, i.e.

ρ(0,x) = ρ̄(z) + ε2ρ′in(x), u(0,x) = uin(x), S(0,x) = ε2S′in(x), (11)

the anelastic system (10), associated with the equations of state (7), which at
leading order read

p̄ = ρ̄ T̄ ,
1

γ
ln (p̄)− ln (ρ̄) + 1 = 0 ,

1

γ

p′

p̄
− ρ′

ρ̄
= S′ ,

is a well-posed model, permitting to compute the remaining quantities p̄, T̄ ,
ū, p′, ρ′, and S′.
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3.2 The Boussinesq approximation: α = O(ε), ε� 1.

The Boussinesq regime corresponds to the scaling Ma2 = ε2, Fr2 = ε and a
Boussinesq number of α := Ma2/Fr2 = ε. The starting model is hence

(P )εB


∂tρ+∇ · (ρu) = 0

ρ [∂tu + (u · ∇)u] = − 1

ε2
∇p+

1

ε
ρ g

ρT [∂tS + (u · ∇)S] = ε2∇ · (ρ∇T ) +∇ · (ρT ∇S).

(12)

Supposing now that each quantity has a Hilbert expansion of the form
ρ(t,x) = ρ̄(t,x) + ερ′(t,x) + · · · , u(t,x) = ū(t,x) + εu′(t,x) + · · · ,

p(t,x) = p̄(t,x) + εp′1(z) + ε2p′2(t,x) + · · · ,

T (t,x) = T̄ (t,x) + εT ′(t,x) + · · · , S(t,x) = S̄(t,x) + εS′(t,x) + · · · ,
(13)

inserting then this Ansatz in (12) and comparing the terms of the same order
in ε, yields firstly the two constraints

∇p̄ = 0, ∇p′1 = ρ̄g, g = (0, 0, g (z)) .

The first constraint implies immediately that in the limit ε → 0 the pressure
is a function only of the time, i.e. p̄(t). The second constraint gives the de-
pendences ρ̄(t, z), p′1(t, z) and with the help of the equations of state (7) also
T̄ (t, z) and S̄(t, z). Going forward, the boundary conditions for ρ, imply that ρ̄
is independent on the time and the scaling conditions for the entropy (4) yield
that S̄(t, z) ≡ const = 0, such that finally we obtain for the limit quantities,
the dependencies

ρ̄ ≡ const, T̄ ≡ const, S̄ ≡ const = 0, p′1(z), p̄ ≡ const.

In order to obtain the limit model for ε → 0, we go one step further in the
identification of the power terms in ε, and obtain the Boussinesq system

(P )0B



∇ · ū = 0

∂zp
′
1(z) = ρ̄ g

ρ̄ [∂tū + (ū · ∇)ū] = −∇p′2 + ρ′ g

∂tS
′ + (ū · ∇)S′ −∆S′ = 0.

(14)

Again, supplying this last system with “well-prepared” initial conditions of
the type

ρ(0,x) = ρ̄+ ερ′in(x), u(0,x) = uin(x), S(0,x) = εS′in(x), (15)

shall permit, together with (7), which at leading order write

p̄ = ρ̄ T̄ ,
1

γ
ln (p̄)− ln (ρ̄) + 1 = 0,

1

γ

p′1
p̄
− ρ′

ρ̄
= S′,

to compute the remaining quantities p̄, T̄ , ū, p′1, p′2, ρ′, S′.
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3.3 The low Mach number approximation: α = O(ε2), ε� 1.

The low Mach number regime has been widely investigated in literature [1,5,
11], we mention it here only for completeness. It corresponds to the scaling
Ma2 = ε2, Fr2 = 1 and a Boussinesq number of α := Ma2/Fr2 = ε2. The
starting model is

(P )εM


∂tρ+∇ · (ρu) = 0

ρ [∂tu + (u · ∇)u] = − 1

ε2
∇p+ ρ g

ρT [∂tS + (u · ∇)S] = ε2∇ · (ρ∇T ) +∇ · (ρT ∇S).

(16)

In the limit ε→ 0, one gets, following the same procedure as presented above,
the incompressible equations

(P )0M



∇ · ū = 0

∇p̄ = 0

ρ̄ [∂tū + (ū · ∇)ū] = −∇p′ + ρ̄ g

∂tS
′ + (ū · ∇)S′ −∆S′ = 0,

(17)

completed with “well-prepared” initial conditions (15), boundary conditions
as well as the equations of state (7), yielding the unknowns ū, p′, S′.

3.4 Choice of the solar convective model.

Not all of the above mentioned reduced models are well suited to describe the
convective dynamics of the stellar plasma. The most precise one is clearly the
starting MHD-system (1) – in our simplified framework this corresponds to
system (6). The Boussinesq model (14) is not really adequate for this con-
vective motion, as it does not take into account for the fact that the density
is much larger in the deep solar interior than in its upper regions. Neither
does the low Mach-number approximation (17). The Anelastic model (10) can
be considered as intermediate between the MHD-model on one hand and the
Boussinesq model on the other hand. In contrast to the Boussinesq model, the
density and all other quantities are not required to be constant in the Anelastic
model, since they may vary with depth z. Thus the Anelastic model is incorpo-
rating some stratification, when compared to the Boussinesq model, however
without having to resort to the full compressibility of the MHD-model.
In conclusion the Anelastic model (10) seems to be the most suitable ap-
proximate model for a simulation of the convective plasma dynamics in the
stellar interior. It has significant numerical advantages, suppressing the acous-
tic waves and permitting hence larger time steps than would be necessary for
the fully compressible MHD-model, and furthermore it includes more physics
than the Boussinesq model.



Modelling of the Convective Plasma Dynamics in the Sun 11

However, the legitimacy of the Anelastic model (10) as a reasonably accurate
approximation of the MHD model (1) is only justified far from the outer layers
of the solar interior. Indeed, close to the surface (photosphere) the velocities
of the plasma gas start to become larger and larger, exceeding even the sound
speed near the surface. In these regions it is hence more accurate to resort to
the more precise MHD-system, or in our simplified situation to the starting
model (8) with ε ∼ 1. Consequently the appropriate description of this convec-
tive region is the singularly-perturbed system (8), with ε running through all
values between [0, 1], in particular ε� 1 in the interior region and ε ∼ 1 in the
outer region. This model shall be hence our starting point for the numerical
simulations we plan to perform in a future paper.

O x

y

z core:
thermonuclear

engine

radiative zone

convective zone

schematic
convection cell

inner
boundary

outer boundary
(photosphere)

g

Fig. 2 Schematic representation of the simulation domain and of the stellar interior zones.

4 Numerical difficulties and basis of the forthcoming work

Once the mathematical model for a precise description of the plasma convec-
tive dynamics in the Sun has been identified, namely the MHD-system in the
Anelastic scaling (8), the issue is now to find an adequate numerical scheme
for an efficient and accurate resolution, in particular a scheme able to take
into account for all values of ε ∈ [0, 1], leading in the limit ε → 0 towards a
discretization of the Anelastic system (10).

Problem (8) is a typical multiscale or singularly-perturbed problem, the
parameter ε introducing various scales in the problem. The mathematical as
well as numerical studies of such problems is rather challenging, difficulties
arise due to a change in type of the equation as ε → 0. As a consequence,
the use of standard numerical schemes for a resolution of (P )εA would require
very restrictive time and/or space discretization steps of the type ∆t,∆x ∼
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O(ε2). This becomes rapidly too costly from a numerical point of view and
consequently a numerical asymptotic study and even numerical simulations for
small ε-values, are out of reach. Moreover, standard implicit schemes (even if
computationally heavy) may be uniformly stable for 0 < ε < 1, but yet provide
a wrong solution in the limit ε→ 0, which means the scheme is not consistent
with the limit problem (P )0A. Thus the design of robust numerical methods,
whose accuracy and stability do not depend on the parameter ε, allowing even
to capture the limit ε→ 0, becomes an important task.

One approach in astrophysical simulations to tackle such problems, is to
use hybrid techniques, solving (P )εA there where ε ∼ O(1) and (P )0A where
ε is rather small [9,10,15]. Several difficulties can be encountered with this
approach, for example how to locate the interface between (P )εA and (P )0A and
what type of interface conditions to use. Thus, this approach can be difficult to
implement in practice. That is the reason why several large-scale astrophysical
simulations typically neglect the upper part, namely 5 − 10% of the solar
convection zone [19]. We propose on the contrary to base our numerical method
on Asymptotic-Preserving techniques, which we have extensively adopted in
recent years to successfully investigate other singularly perturbed problems
[2–4,17,18].

Asymptotic-Preserving schemes were introduced the first time by S. Jin
[12,13] with the aim to cope with such singularly perturbed problems in the
framework of kinetic models in a diffusive regime. The construction of these
AP-schemes necessitates the existence of a well-posed limit problem (P )0A,
which has to be identified beforehand. The main feature of these schemes is
that they permit a precise, ε-independent, resolution of the problem (P )εA as
well as of its limit problem (P )0A, with no huge computational effort. The main
idea for the construction of AP-schemes is based on asymptotic arguments and
consists in a mathematical reformulation of the singularly perturbed problem
(P )εA into an equivalent problem (AP )ε, which is a regular perturbation of
the limit problem (P )0A. The equivalent reformulation of (P )εA into (AP )ε is a
sort of “reorganization” of the problem into a form which is better suited for
the numerical discretization and for the asymptotic limit study ε → 0. The
same numerical scheme is then used for the discretization of (AP )ε as well as
for (P )0A, which means that this procedure allows for an automatic numerical
transition from (P )εA to (P )0A. Considering the singularly-perturbed problem
(P )εA, namely (8) in the Anelastic regime, one can think to reformulate it, by
introducing the auxiliary variables (pε′, ρε′) and solve for every ε ∈ [0, 1] the
regular system

(AP )ε



∂tρ
ε +∇ · (ρε uε) = 0

ρε [∂tu
ε + (uε · ∇) uε] = −∇pε′ + ρε′ g

−∇pε + ρε g = ε2
[
−∇pε′ + ρε′ g

]
ρε T ε [∂tS

ε + (uε · ∇)Sε] = ε2∇ · (ρε∇T ε) +∇ · (ρε T ε∇Sε),
(18)
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completed with the initial conditions (11), boundary conditions as well as the
equations of state

pε = ρε T ε,
1

γ
ln (p̄ε)− ln (ρ̄ε) + 1 = 0,

1

γ
ln

(
1 + ε2

pε′

p̄ε

)
− ln

(
1 + ε2

ρε′

ρ̄ε

)
= ε2 Sε′,

where we used for simplicity the notation p̄ε := pε − ε2 pε′ as well as ρ̄ε :=
ρε − ε2 ρε′.

To summarize, the asymptotic-preserving approach consists somehow in
trying to mimic on the discrete level the asymptotic behaviour of the singu-
larly perturbed problem solutions. It is thus very important to have a full
understanding of the solutions behaviour (ρε,uε, Sε) of (AP )ε. The detailed
mathematical and numerical study of this AP-reformulation shall be the aim
of a forthcoming paper.
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Verlag, Basel, Switzerland, 2009.
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