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On profinite groups with word values covered by nilpotent
subgroups

Eloisa Detomi, Marta Morigi, and Pavel Shumyatsky

Abstract. Let N stand for the class of nilpotent groups or one of its well-

known generalizations. For a multilinear commutator word w and a profinite
group G we show that w(G) is finite-by-N if and only if the set of w-values

in G is covered by countably many finite-by-N subgroups. Earlier this was

known only in the case where w = x or w = [x, y].

1. Introduction

In recent years profinite groups in which the set of word-values is covered by
countably many subgroups with special properties attracted some interest (cf. [1]).
Here we say that a set is covered by subgroups if it is contained in the set theoretical
union of the subgroups. Given a group-word w in n variables and a group G, the
verbal subgroup w(G) of G determined by the word w is the subgroup generated
by the set consisting of all values w(g1, . . . , gn), where g1, . . . , gn are elements of G.
In the present paper we deal with the so called multilinear commutators (otherwise
known under the name of outer commutator words). These are words which are
obtained by nesting commutators, but using always different variables. For exam-
ple, the word [[x1, x2], [x3, x4, x5], x6] is a multilinear commutator while the Engel
word [x1, x2, x2, x2] is not.

A profinite group is a topological group that is isomorphic to an inverse limit
of finite groups. In the context of profinite groups all the usual concepts of group
theory are interpreted topologically. In particular, in a profinite group the verbal
subgroup corresponding to the word w is the closed subgroup generated by all w-
values. More generally, in this paper by a subgroup of a profinite group we always
mean a closed subgroup and by a quotient we mean a quotient over a normal closed
subgroup.

In the present article we work with certain generalizations of nilpotent groups.
Recall that a group G is locally nilpotent if all finitely generated subgroups of
G are nilpotent. Following Shalev [9], we say that a group G is strongly locally
nilpotent if it belongs to a locally nilpotent variety of groups. This means that, for
some function f and for all positive integers d, every d-generated subgroup of G
is nilpotent of class at most f(d). According to Wilson and Zelmanov a profinite
group is locally nilpotent if and only if it is Engel [13]. Such a group is strongly
locally nilpotent if it is n-Engel for some positive n (see [12] or [14]).

Throughout the present article N stands for one of the following classes of
groups.
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• The class of nilpotent groups;
• The class of pronilpotent groups;
• The class of locally nilpotent groups;
• The class of strongly locally nilpotent groups.

The class of groups G having a finite normal subgroup D such that the quotient
G/D belongs to N is denoted by FN .

The main result of the present article can be stated as follows.

Theorem 1.1. Let w be a multilinear commutator word and let G be a profinite
group. The verbal subgroup w(G) belongs to the class FN if and only if the set of
w-values in G is covered by countably many FN -subgroups.

This generalizes the results of [11] and [5] where similar conclusions were de-
rived in the case where w is either the word x or the word [x, y]. Since a profinite
group G is in the class FN if and only if G is covered by finitely many N -subgroups
(see [11, 5]), we obtain the following corollary.

Corollary 1.2. Let w be a multilinear commutator word and let G be a profi-
nite group. The following statements are equivalent.

1. The verbal subgroup w(G) belongs to the class FN ;
2. The set of w-values in G is covered by countably many N -subgroups;
3. The set of w-values in G is covered by finitely many N -subgroups.

Theorem 1.1 and Corollary 1.2 are in parallel with results obtained earlier
in [3, 4] that say that w(G) is locally finite, or has finite rank, if and only if
the set of w-values in G is contained in a union of countably many subgroups
with the respective property. Moreover, w(G) is finite if and only if the set of
w-values in G is countable. In fact, the combinatorial techniques for handling
multilinear commutator words developed in [3, 4] play an important role in the
proof of Theorem 1.1. Unsurprisingly, the proof of Theorem 1.1 is much more
complicated than the proofs in the case when w = [x, y] in [11] and [5].

2. Preliminary results

In any group a product of finitely many normal N -subgroups is again a normal
N -subgroup. This is well-known when N is the class of nilpotent, pronilpotent or
locally nilpotent groups, while for the class of strongly locally nilpotent groups it
is Lemma 2.4 in [5]. The following lemma extends this observation to products of
normal FN -subgroups.

Lemma 2.1. [5, Lemma 2.5] In any group a product of finitely many normal
FN -subgroups is again in FN .

If C is a class of groups, a virtually-C group is a group with a normal C-subgroup
of finite index.

Lemma 2.2. In any group a product of finitely many normal virtually-FN
subgroups is again a virtually-FN subgroup.

Proof. It is sufficient to prove the lemma for a product of two normal virtually-
FN subgroups N1 and N2 of a group G. By Lemma 2.1, since Ni is virtually-FN ,
there exists a unique maximal normal FN -subgroup Ri of Ni for each i = 1, 2.
Then R1, R2 are normal in G and so R1R2 is a normal FN -subgroup of finite index
in N1N2. �

If A is a subset of a group G, we write 〈A〉 for the subgroup generated by A.
If B is another subset, we denote by AB the set {ab | a ∈ A and b ∈ B}.
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Lemma 2.3. [5, Lemma 2.6] Let L be a subgroup of a profinite group G such
that the normalizer NG(L) is open.

(1) If L is finite, then 〈LG〉 is finite.
(2) If L is in FN and H is a normal open subgroup of G contained in NG(L),

then 〈(L ∩H)G〉 is in FN .

The next two lemmas generalize [2, Lemma 2.1] and [2, Lemma 2.2] to the
case of multilinear commutator words. Recall that the weight of a multilinear
commutator w is just the number of different variables involved in w.

Lemma 2.4. Let w be a multilinear commutator word of weight n. Assume
that H is a normal subgroup of a group G. Let g1, . . . , gn ∈ G, h ∈ H and fix
s ∈ {1, . . . , n}. Then for every j = 1, . . . , n there exist yj ∈ gHj such that

w(g1, . . . , gs−1, gsh, gs+1, . . . , gn) =

w(y1, . . . , yn)w(g1, . . . , gs−1, h, gs+1, . . . , gn).

Proof. We argue by induction on n. If n = 1, then the result is self-evident.
Assume that n ≥ 2. Then there exist two multilinear commutator words w1

and w2 such that w = [w1, w2]. Let l be the weight of w1 and assume that s ≤ l.
By induction, for every j ≤ l there exist yj ∈ gHj such that

w1(g1, . . . , gs−1, gsh, gs+1, . . . , gl) =

w1(y1, . . . , yl)w1(g1, . . . , gs−1, h, gs+1, . . . , gl).

Note that h = w1(g1, . . . , gs−1, h, gs+1, . . . , gl) ∈ H.
Using the standard commutator identities we compute

w(g1, . . . , gs−1, gsh, gs+1, . . . , gn) = [w1(y1, . . . , yl)h,w2(gl+1, . . . , gn)] =

[w1(y1, . . . , yl), w2(gl+1, . . . , gn)]h[h,w2(gl+1, . . . , gn)] =

[w1(yh1 , . . . , y
h
l ), w2(ghl+1, . . . , g

h
n)][h,w2(gl+1, . . . , gn)],

and we obtain the desired result. The case s > l is similar. �

Let w = w(x1, . . . , xn) be a multilinear commutator word. If A1, . . . , An are
subsets of a group G, we write w(A1, . . . , An) to denote the subgroup generated by
the set of all w-values w(a1, . . . , an) with ai ∈ Ai.

Let I be a subset of {1, . . . , n}. Suppose that we have a family Ai1 , . . . , Ais of
subsets of G with indices running over I and another family Bl1 , . . . , Blt of subsets
with indices running over {1, . . . , n} \ I. We write

wI(Ai;Bl)

for w(X1, . . . , Xn), where Xk = Ak if k ∈ I, and Xk = Bk otherwise.

Lemma 2.5. Let G be a group and let w be a multilinear commutator of weight
n. Assume that H,A1, . . . , An are normal subgroups of G such that for some ele-
ments ai ∈ Ai, the equality

w(a1(H ∩A1), . . . , an(H ∩An)) = 1

holds. Then for any subset I of {1, . . . , n} we have

wI(H ∩Ai; al(H ∩Al)) = 1.

Proof. The proof is by induction on the size of I, the case I = ∅ being trivial.
Let I be a non-empty subset of {1, . . . , n} and fix s ∈ I. By induction applied to
I∗ = I \ {s} we have

(1) wI∗(H ∩Ai; al(H ∩Al)) = 1.
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Let w = w(g1, . . . , gn), where gi ∈ H∩Ai if i ∈ I and gi ∈ ai(H∩Ai) otherwise.
It suffices to prove that w = 1.

We apply Lemma 2.4 to the element obtained by replacing in w the entry gs
with asgs: since gs ∈ H, there exist elements yi ∈ gHi ⊆ gi(H ∩Ai) for every i 6= s
and ys ∈ aHs ⊆ as(H ∩As) such that

w(g1, . . . , gs−1, asgs, gs+1, . . . , gn) = w(y1, . . . , yn)w(g1, . . . , gn)

= w(y1, . . . , yn)w.

Thus, gi, yi ∈ H ∩ Ai when i ∈ I∗ and gl, yl ∈ al(H ∩ Al) when l /∈ I. Since
ys ∈ as(H ∩As), by assumption (1) we have

w(g1, . . . , gs−1, asgs, gs+1, . . . , gn) ∈ wI∗(H ∩Ai; al(H ∩Al)) = 1,

and
w(y1, . . . , yn) ∈ wI∗(H ∩Ai; al(H ∩Al)) = 1.

Therefore w = 1. �

Corollary 2.6. Let G be a group and let w be a multilinear commutator of
weight n. Assume that H is a normal subgroup of G such that for some elements
a1, . . . , an ∈ G the equality w(a1H, . . . , anH) = 1 holds. Then w(H) = 1.

We recall that an element of a group G is called an FC-element if it has only
finitely many conjugates in G.

Lemma 2.7. Let G = 〈H, a1, . . . , as〉 be a group, where H is a finite index
abelian normal subgroup and a1, . . . , as are FC-elements. Then G′ is finite.

Proof. Note that H ∩ CG(a1) ∩ · · · ∩ CG(as) is contained in the center of G
and has finite index in G. So the result follows from Schur’s theorem [8, 10.1.4]. �

3. The case of derived words

An important family of multilinear commutator words is formed by so-called
derived words δk, on 2k variables, defined recursively by

δ0 = x1, δk = [δk−1(x1, . . . , x2k−1), δk−1(x2k−1+1, . . . , x2k)].

Of course δk(G) = G(k) is the k-th term of the derived series of G.
In the present section we deal with groups in which δk-values are covered by

countably many FN -subgroups. We also develop techniques that will be helpful in
handling the general case of Theorem 1.1 in the subsequent section.

Lemma 3.1. [5, Lemma 3.2] Let G = N〈b〉 be a profinite group where N is an
open normal FN -subgroup of G. Assume that there exists an open normal subgroup
R of G such that R ≤ N and R〈b〉 is in FN . Then G is in FN .

In the sequel we will often use without mentioning the fact that if w is a word,
the conjugate of a w-value is again a w-value. Next lemma holds for any word w.

Lemma 3.2. Let w be a word and let G be a profinite group in which the set
of w-values is covered by countably many FN -subgroups Gi. Suppose that x is a
w-value and N is a normal FN -subgroup of G such that N is open in 〈N, x〉. Then
the subgroup 〈N, x〉 is in FN .

Proof. Let X be the set of all w-values contained in the coset xN . Of course
X is non-empty. Obviously, the set X is closed and therefore compact. It is clear
that X is covered by the (closed) subsets X ∩Gi. By the Baire category theorem
(cf [7, p. 200]), at least one of these subsets has non-empty interior. Hence, there
exist an open normal subgroup T of G, an element b ∈ X and an index j such
that X ∩ bT is a subset of Gj . Let R = T ∩ N . Notice that for every r ∈ R, the
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conjugate br is a w-value and br = b[b, r] ∈ bR. Since all w-values contained in
bR belong to Gj , it follows that 〈bR〉 ≤ Gj . So 〈bR〉 is in FN . We observe that
〈b, R〉 = 〈bR〉R is a product of two normal FN -subgroups so it is in FN by Lemma
2.1. Since R is open in N , in view of Lemma 3.1 we conclude that 〈N, b〉 is in FN .
As 〈N, b〉 = 〈N, x〉, the lemma follows. �

Throughout the rest of the article we will work under the following hypothesis.

Hypothesis 3.3. Let w be a multilinear commutator of weight n and let G
be a profinite group in which the set of w-values of G is contained in a union of
countably many FN -subgroups Gi.

Lemma 3.4. Assume Hypothesis 3.3. Then G contains an open normal sub-
group H such that w(H) is virtually-FN .

Proof. For each positive integer i consider the set

Si = {(g1, . . . , gn) ∈ G× · · · ×G | w(g1, . . . , gn) ∈ Gi}.
Note that the sets Si are closed in G×· · ·×G and cover the whole group G×· · ·×G.
By the Baire category theorem at least one of these sets has non-empty interior.
Hence, there exist an open normal subgroup H of G, elements a1, . . . , an ∈ G, and
an integer j such that w(a1H, . . . , anH) ⊆ Gj .

Let

K = w(a1H, . . . , anH).

Note thatK ≤ Gj andH normalizesK. SinceGj is in FN , so isK. LetD = K∩H.
By Lemma 2.3, 〈DG〉 is in FN .

Note that 〈DG〉 has finite index in 〈KG〉. Indeed, suppose that D = 1. In
this case K is a finite subgroup normalized by H and thus 〈KG〉 is finite. Hence
〈DG〉 has finite index in 〈KG〉. It follows that 〈KG〉 is virtually-FN . The quotient
Ḡ = G/〈KG〉 satisfies the hypothesis of Corollary 2.6, whence w(H̄) = 1. It follows
that w(H) ≤ 〈KG〉 and hence it is virtually-FN . �

Lemma 3.5. Assume Hypothesis 3.3 and let a ∈ G be a w-value. Then there
exists a normal open subgroup Ha of G such that [Ha, a] is in FN .

Proof. For each positive integer i let

Si = {x ∈ G | ax ∈ Gi}.
Note that the sets Si are closed in G and cover the whole group G. By the Baire
category theorem at least one of these sets has non-empty interior. Hence, there
exist an open normal subgroup H of G, an element b ∈ G, and an integer j such that
bH ≤ Sj , i.e. abh ∈ Gj for any h ∈ H. Thus 〈abH〉 ≤ Gj . Since [ab, H] ≤ 〈abH〉,
we conclude that [a,Hb−1

] ≤ Gb−1

j , and the result follows. �

Proposition 3.6. Assume Hypothesis 3.3 with w = δi. Then G(2i) is virtually-
FN .

Proof. By Lemma 3.4 there exists an open normal subgroup H such that
H(i) is virtually-FN . Let K = G(i), L = K ∩ H. Note that L is open in K.
Choose a finite set of δi-values a1, . . . , as such that K = 〈L, a1, . . . , as〉 and let
Ha1 , . . . ,Has be normal open subgroups of G such that [Haj , aj ] is in FN for every
j (see Lemma 3.5). Note that for each j the subgroup [Haj , aj ] is a normal subgroup

of Haj so, by Lemma 2.3, 〈[Haj , aj ]
G〉 is in FN . Let N1 ≤ G(i) be the subgroup

generated by L(i) and the subgroups 〈[Haj , aj ]
G〉 for j = 1, . . . , s. Note that N1

is virtually-FN by Lemma 2.2. The images of a1, . . . , as in the quotient G/N1

are FC-elements while the image of L in G/L′ is abelian. Therefore by Lemma
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2.7 the group KN1/L
′N1 has finite derived group. In other words L′N1 has finite

index in K ′N1. In particular there exist finitely many δi-values b1, . . . , bt such that
K ′N1 = 〈L′, b1, . . . , bt, N1〉.

As above, there exist normal open subgroups Hb1 , . . . ,Hbt of G such that
〈[Hbj , bj ]

G〉 is in FN for every j. Let N2 be the subgroup generated by N1 and the

subgroups 〈[Hbj , bj ]
G〉 for j = 1, . . . , t. Note that N2 is virtually-FN by Lemma

2.2. Again, b1N2, . . . , btN2 are FC-elements in G/N2 and arguing as before we ob-
tain that L(2)N2 has finite index in K(2)N2. By iterating this argument we get that
L(i)Ni has finite index in K(i)Ni for some normal virtually-FN subgroup Ni, so
L(i)(K(i) ∩Ni) has finite index in K(i) = G(2i). As L(i) ≤ H(i) is virtually-FN it
follows that G(2i) is virtually-FN , as desired. �

Proposition 3.7. Assume Hypothesis 3.3 with w = δk. Suppose that G(k) is
virtually-FN . Then G(k) is in FN .

Proof. Let N be an open characteristic FN -subgroup of G(k) and let X be
the set of δk-values in G. Lemma 3.2 tells us that for each x ∈ X the subgroup
〈N, x〉 is in FN . Let Dx be the (unique) minimal characteristic finite subgroup of
〈N, x〉 such that 〈N, x〉/Dx is in N . Since N is open in G(k), it follows that there
are only finitely many subgroups of the form 〈N, x〉, where x ∈ X. Therefore Dx

has only finitely many conjugates in G and so the normal closure of Dx in G is
finite. It follows that D = 〈Dx, x ∈ X〉 is a finite normal subgroup of G. So we
pass to the quotient G/D and we can assume that 〈N, x〉 is in N for every x ∈ X.

Let π be the set of primes dividing the order of G(k)/N .
Suppose first that N is a pro-π′ group. Let S be the set of all π-elements

contained in procyclic subgroups generated by elements from X. Then G(k) =
N〈S〉. As 〈N, x〉 is in N for every x ∈ X, it follows that N centralizes 〈S〉.
Therefore the center of 〈S〉 has finite index in 〈S〉. So by Schur’s theorem the
derived group 〈S〉′ is finite. As 〈S〉 is characteristic in G, we can pass to the
quotient G/〈S〉′ and we may assume that 〈S〉 is abelian. Now G(k) is the product
of two normal N -subgroups, so it is in N . This concludes the proof in the case
when N is a pro-π′ group.

Now suppose that N is a pro-p group for some prime p ∈ π. Let S1 be the
set of all p′-elements contained in procyclic subgroups generated by elements from
X. Again, N centralizes S1, so 〈S1〉′ is finite. As above, we can assume that 〈S1〉
is abelian. Therefore 〈S1〉 is a p′-subgroup of G(k). Since G(k) is virtually pro-p,
it follows that 〈S1〉 is finite, so by passing to the quotient G/〈S1〉 we can assume
that all δk-values of G are p-elements. Using a profinite version of Lemma 3.1 in
[10] we obtain that G(k) is a pro-p group. Now we will prove that G(k) is in N
by induction on |G(k) : N |. Since G(k)/N is nilpotent, there is an index i such
that γi(G

(k))N/N is a nontrivial subgroup of the center of G(k)/N (here, as usual,
γi(G

(k)) denotes the i-th term of the lower central series of G(k)). Notice that if
x1, . . . , xi ∈ X, then [x1, . . . , xi] ∈ X. As γi(G

(k)) is generated by γi-values whose
entries are δk-values, there exists a δk-value x such that xN is a nontrivial element
of the center of G(k)/N . Therefore 〈N, x〉 is a normal N -subgroup of G(k)/N . The
characteristic closure M of 〈N, x〉 in G is obviously again in FN and |G(k) : M | is
smaller than |G(k) : N |. Then, by induction we conclude that G(k) is in FN .

Let π = {p1, . . . , ps} and let Nπ and Np′ be the Hall π-subgroup and the Hall
p′-subgroup of N, respectively. Since N is pronilpotent, the subgroups Nπ, Np′i
are normal in G. We already know that all quotients G(k)/Nπ and G(k)/Np′i are in

FN . Moreover, G(k) is isomorphic to a subgroup of the direct product

G(k)/Nπ ×G(k)/Np′1 × · · · ×G
(k)/Np′s ,
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which is the product of finitely many FN -groups. We conclude that G(k) is in FN ,
as desired. �

Corollary 3.8. Assume Hypothesis 3.3 with w = δi. Then G(2i) is in FN .

Proof. By Proposition 3.6 the subgroup G(2i) is virtually-FN . Then note
that every δ2i-value is in particular a δi-value, so the hypotheses of Proposition 3.7
are satisfied when k = 2i and we obtain the desired result. �

4. The general case

In the present section we complete the proof of Theorem 1.1.
Recall the notation introduced in Section 2: whenever I is a subset of {1, . . . , n}

and Ai1 , . . . , Ais and Bl1 , . . . , Blt are families of subsets of G with indices running
over I and {1, . . . , n} \ I, respectively, we write

wI(Ai;Bl)

for the subgroup w(X1, . . . , Xn), where Xk = Ak if k ∈ I, and Xk = Bk otherwise.
On the other hand, whenever ai ∈ Ai for i ∈ I and bl ∈ Bl for l ∈ {1, . . . , n} \ I,
the symbol wI(ai; bl) stands for the element w(x1, . . . , xn), where xk = ak if k ∈ I,
and xk = bk otherwise.

Lemma 4.1. Let A1, . . . , An and H be normal subgroups of a group G. Let I
be a subset of {1, . . . , n}. Assume that for every proper subset J of I

wJ(Ai;H ∩Al) = 1.

Suppose we are given elements gi ∈ Ai with i ∈ I and elements hk ∈ H ∩ Ak with
k ∈ {1, . . . , n}. Then we have

wI(gihi;hl) = wI(gi;hl).

Proof. Let
w̄ = wI(gihi;hl) = w(c1, . . . , cn)

where ci = gihi if i ∈ I, and ci = hi otherwise.
Fix an index s ∈ I and let J = I \ {s}. We can write gshs = h̄gs where

h̄ = h
g−1
s
s ∈ H ∩As. Then, by Lemma 2.4,

w̄ = w(c1, . . . , cs−1, h̄gs, cs+1, . . . , cn)

= w(y1, . . . , yn)w(c1, . . . , cs−1, gs, cs+1, . . . , cn)

where ys ∈ h̄G ≤ H ∩ As and yk ∈ cGk for every k 6= s. In particular yk ∈ Ak if
k ∈ J and yk ∈ H ∩Ak if k /∈ I. Therefore

w(y1, . . . , yn) ∈ wJ(Ai;H ∩Al)
and so w(y1, . . . , yn) = 1 by assumption. Hence

w̄ = w(c1, . . . , cs−1, gs, cs+1, . . . , cn).

By repeating the argument for every s ∈ I, we get the desired conclusion. �

Lemma 4.2. Assume Hypothesis 3.3. Let T be a normal FN -subgroup of G and
let A1, . . . , An be normal subgroups of G such that w(A1, . . . , An)T/T is abelian.
Let I be a subset of {1, . . . , n} and assume that G has an open normal subgroup H
such that

(**) wJ(Ai;H ∩Al) ≤ T, for every proper subset J of I.

Then, for any given set of elements {gi}i∈I , where gi ∈ Ai, there exist an open
normal subgroup U of G, contained in H, and a normal FN -subgroup N of G,
containing T , such that

wI(gi;U ∩Al) ≤ N.
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Proof. Consider the sets

Sj = {(h1, . . . , hn) | hk ∈ H ∩Ak and wI(gihi;hl) ∈ Gj}.

Note that the sets Sj are closed in the group (H ∩A1)× · · · × (H ∩An) and cover
the whole group. By the Baire category theorem at least one of these sets has
non-empty interior. Hence, there exist an integer r, open subgroups Vk of H ∩Ak,
and elements bk ∈ H ∩Ak for every k = 1, . . . , n such that

wI(gibiVi; blVl) ⊆ Gr.

Each subgroup Vk is of the form Vk = Uk∩H∩Ak where Uk is an open subgroup
of G and we can assume that Uk is normal in G. Let U = U1 ∩ · · · ∩ Un ∩H. Note
that U is an open normal subgroup of G contained in H. Now let

K = wI(gibi(U ∩Ai); bl(U ∩Al)).

Then K ⊆ Gr is in FN and U normalizes K. Let D = K ∩ U . Since U has finite
index in G, by Lemma 2.3, 〈DG〉 is in FN . So we can assume that 〈DG〉 ≤ T .

Set R = 〈KG〉. Let us examine the quotient G̃ = G/〈DG〉. We see that

K̃ = K〈DG〉/〈DG〉 is a finite subgroup normalized by Ũ . Thus R̃ is finite. Note
that T ∩ R has finite index in R. Moreover, R/(T ∩ R) is isomorphic to RT/T ≤
w(A1, . . . , An)T/T which is abelian. As R is generated by w-values, it is the product
of finitely many subgroups of the form 〈T ∩ R, x〉, where x is a w-value. The
subgroups 〈T ∩ R, x〉 normalize each other and each of them is in FN by Lemma
3.2. It follows from Lemma 2.1 that R is in FN .

Let N = RT . Now in the quotient group G/N the equality

wI(gibi(U ∩Ai); bl(U ∩Al)) = 1

holds. In view of Lemma 2.5 we deduce that

wI(gibi(U ∩Ai);U ∩Al) = 1

in G/N. By condition (**), given that T ≤ N , we can apply Lemma 4.1 and we
obtain that

wI(gi;U ∩Al) = wI(gibi(U ∩Ai);U ∩Al) = 1,

in G/N , that is,

wI(gi;U ∩Al) ≤ N,
as desired. �

Lemma 4.3. Assume Hypothesis 3.3. Let T be a normal FN -subgroup of G and
let A1, . . . , An be normal subgroups of G such that w(A1, . . . , An)T/T is abelian.
Let I be a subset of {1, . . . , n} and assume that G has an open normal subgroup H
such that

(**) wJ(Ai;H ∩Al) ≤ T, for every proper subset J of I.

Then there exist an open normal subgroup U of G, contained in H, and a normal
FN -subgroup N of G, containing T , such that

wI(Ai;U ∩Al) ≤ N.

Proof. For each i ∈ I choose a set Ri of coset representatives of H ∩ Ai in
Ai. Note that all those sets are finite. Now we apply Lemma 4.2 to each choice
of elements ḡ = {gi}i∈I , with gi ∈ Ri: let Uḡ and Nḡ be the normal subgroups of
G such that wI(gi;Uḡ ∩ Al) ≤ Nḡ. Note that there is only a finite number of Uḡ’s
and Nḡ’s. Then U = ∩ḡUḡ is a normal open subgroup of G contained in H and
N =

∏
ḡ Nḡ is a normal FN -subgroup containing T , such that

wI(gi;U ∩Al) ≤ N
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for every choice of gi ∈ Ri. Note that, by condition (**) and Lemma 4.1,

wI(gi(H ∩Ai);U ∩Al) = wI(gi;U ∩Al) ≤ N.

Since Ai = ∪gi∈Rigi(H ∩Ai) for every i ∈ I, we conclude that

wI(Ai;U ∩Al) = 〈∪ḡwI(gi(H ∩Ai);U ∩Al)〉 ≤ N,

as desired. �

Lemma 4.4. Assume Hypothesis 3.3. Suppose that there exists an open normal
subgroup H of G such that w(H) ≤ T , where T is a normal FN -subgroup of G.
Let A1, . . . , An be normal subgroups of G such that in the quotient group G/T the
subgroup w(A1, . . . , An)T/T is abelian. Then w(A1, . . . , An) is in FN .

Proof. It is enough to prove the following statement: for every subset I of
{1, . . . , n}, there exist an open normal subgroup UI of G contained in H and a
normal FN -subgroup NI containing T such that wI(Ai;UI ∩Al) ≤ NI .

The proof is by induction on the size k of I. If k = 0, then I = ∅ and

w∅(Ai;H ∩Ai) = w(H ∩A1, . . . ,H ∩An) ≤ w(H) ≤ T.

So assume k > 0. Let J1, . . . , Js be all proper subsets of I. By induction, for
each t = 1, . . . , s there exist an open normal subgroup Ut of G contained in H and
a normal FN -subgroup Nt containing T such that wJt(Ai;Ut ∩Al) ≤ Nt.

Let U = ∩tUt and N = 〈Nt, t = 1, . . . , s〉. Then wJ(Ai;U ∩Al) ≤ N , for every
proper subgroup J of I. Now, we can apply Lemma 4.3 to I. We obtain that there
exist an open normal subgroup UI of G contained in H and a normal FN -subgroup
NI containing T such that wI(Ai;UI ∩Al) ≤ NI , as desired. �

We denote by I the set of all n-tuples (i1, . . . , in), where all entries ik are non-
negative integers. We will view I as a partially ordered set with the partial order
given by the rule that

(i1, . . . , in) ≤ (j1, . . . , jn)

if and only if i1 ≤ j1, . . . , in ≤ jn.
Given i = (i1, . . . , in) ∈ I, we write

w(i) = w(G(i1), . . . , G(in))

for the subgroup generated by the w-values w(g1, . . . , gn) with gj ∈ G(ij). Further,
let

w(i+) =
∏

w(j),

where the product is taken over all j ∈ I such that j > i.

Lemma 4.5. [3, Corollary 6] Let w = w(x1, . . . , xn) be a multilinear commuta-
tor word and let i ∈ I. If w(i+) = 1, then w(i) is abelian.

We will need the following well-known result (see for example [10, Lemma 4.1]).

Lemma 4.6. Let G be a group and let w be a multilinear commutator word on
n variables. Then each δn-value is a w-value.

Lemma 4.7. Assume Hypothesis 3.3. If w(G) is virtually-FN then w(G) is in
FN .

Proof. Assume that w(G) is virtually-FN . It follows from Lemma 2.1 that
there exists a maximal open normal FN -subgroup R of w(G). By Lemma 4.6 every
δn-value in G is a w-value. In view of Corollary 3.8 we deduce that G(2n) is in FN .
Hence G(2n) ≤ R. Since G/R is soluble, there exist only finitely many i ∈ I such
that w(i)R/R 6= 1.
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Assume, by contradiction, that w(G)R 6= R and choose i = (i1, . . . , in) ∈ I such
that w(i)R/R 6= 1 while w(j)R/R = 1 whenever i < j. By Lemma 4.5, w(i)R/R
is abelian. As w(i) is generated by w-values, w(i)R is a product of finitely many
normal subgroups of the form 〈R, x〉, where x is a w-value. Each subgroup 〈R, x〉
is in FN by Lemma 3.2. It follows that w(i)R is in FN . Therefore w(i) ≤ R, a
contradiction. �

We are now ready to complete the proof of Theorem 1.1.

Proof of Theorem 1.1
We only need to show that if w = w(x1, . . . , xn) is a multilinear commutator

word and G is a profinite group in which the set of w-values is covered by countably
many FN -subgroups then w(G) is in FN . By Lemma 4.6 every δn-value in G is a
w-value. In view of Corollary 3.8 we deduce that G(2n) is in FN .

Let H be as in Lemma 3.4. By Lemma 4.7, w(H) is in FN . Let T =
G(2n)w(H). Then T is in FN by Lemma 2.1. Since G(2n) ≤ T it follows that
G/T is soluble.

There exist only finitely many i ∈ I such that w(i)T/T 6= 1. The theorem will
be proved by induction on the number of such n-tuples i.

Choose i = (i1, . . . , in) ∈ I such that w(i)T/T 6= 1 while w(j)T/T = 1 whenever
i < j. It follows from Lemma 4.5 that w(i)T/T is abelian. Now we apply Lemma
4.4 and we obtain that w(i) is in FN . Let N = w(i)T . Then induction on the
number of j ∈ I such that w(j) 6≤ N leads us to the conclusion that w(G) is in
FN . �
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