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Abstract—IoT end-nodes require high performance and ex-
treme energy efficiency to cope with complex near-sensor data
analytics algorithms. Processing on multiple programmable pro-
cessors operating in near-threshold is emerging as a promis-
ing solution to exploit the energy boost given by low-voltage
operation, while recovering the related frequency degradation
with parallelism. In this work, we present a heterogeneous
cluster architecture extending a traditional parallel processor
cluster with a reconfigurable Integrated Programmable Array
(IPA) accelerator. While programmable processors guarantee
programming legacy to easily manage peripherals, radio software
stacks as well as the global program flow, offloading data-intensive
and control-intensive kernels to the IPA leads to much higher
system level performance and energy-efficiency. Experimental
results show that the proposed heterogeneous cluster outperforms
an 8-core homogeneous architecture by up to 4.8x in performance
and 4.5x in energy efficiency when executing a mix of control-
intensive and data-intensive kernels typical of near-sensor data
analytics applications.

I. INTRODUCTION

High performance and extreme energy efficiency are strict
requirements for many deeply embedded near-sensor process-
ing applications such as wireless sensor networks, end-nodes
of the Internet of Things (IoT) and wearables. One of the
most traditional approaches to improve energy efficiency of
deeply embedded computing systems is achieved exploiting
architectural heterogeneity by coupling general-purpose pro-
cessors with application- or domain-specific accelerators in
a single computing fabric [1][11]. On the other hand, most
recent ultra-low power designs exploit multiple homogeneous
programmable processors operating in near-threshold [10].
Such an approach, which joins parallelism with low-voltage
computing, is emerging as an attractive way to join perfor-
mance scalability with high energy efficiency.

In this paper, we present a heterogeneous architecture
which integrates a near-threshold tightly-coupled cluster of
processors [10] augmented with the Integrated Programmable
Array (IPA) presented in [3]. This approach joins the pro-
gramming legacy of instruction processors with the flexible
performance and efficiency boost of Coarse Grain Recon-
figurable Arrays [4] (CGRA). A similar approach has been
adopted in [5], which introduced an ultra-low power hetero-
geneous system featuring a Single Instruction Multiple Data
(SIMD) CGRA as reconfigurable accelerator for bio-signal

analysis. With respect to this domain-specific architecture,
where the computational kernels must be mapped manually
on the CGRA, the system proposed in our work is meant
for general-purpose near-sensor data analytics, also relying
on an automated compilation flow that allows to generate the
configuration bitstream for the CGRA starting from a general-
purpose ANSI-C code [2].

We synthesized the architecture in a 28nm FD-SOI technol-
ogy, and we carried out a quantitative exploration combining
physical synthesis results (i.e. frequency, area, power) and
benchmarking of a set of signal processing kernels typical of
end-nodes IoT applications. Two interesting findings of our
exploration show that (1) the performance of the IPA is much
less sensitive to memory bandwidth than parallel processor
clusters and that (2) the simpler nature of its architecture
allows the IPA to run twice as fast as the rest of the system.
Exploiting these two features of our architecture, we show that
the heterogeneous cluster achieves significant performance and
energy improvement for both compute and control intensive
benchmarks with respect to the 8 core homogeneous cluster,
achieving up to 4.8× speed-up (with a minimum of 1× and
an average of 1.79×) and up to 4.4× (with a minimum of 1×
and an average of 2.24×) better energy efficiency.

II. BACKGROUND

This section presents the background technology used to
design the heterogeneous reconfigurable cluster described in
this work.

A. PULP Cluster Architecture

The PULP cluster features 8 32-bit RISC-V cores based on
a four pipeline stages micro-architecture optimized for energy-
efficient operation [6] sharing a 64KB multi-banked scratchpad
memory through a low-latency interconnect [8]. The ISA of the
cores is extended with instructions targeting energy efficient
digital signal processing such as hardware loops, load/store
with pre/post increment, SIMD operations. The cores share
a 4KB private instruction cache to boost performance and
energy efficiency for tightly coupled clusters of processors
typically relying on data parallel computational models [7].
Off-cluster data transfers are managed by a lightweight multi-
channel DMA optimized for energy-efficient operation [9].
Both the (I$) and DMA are connected to an AXI4 cluster bus.
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Fig. 1. PULP heterogeneous cluster augmented with IPA subsystem

A peripheral interconnect is used to communicate with on-
cluster peripherals such as a timer, a hardware synchronizer
and other memory mapped peripherals such as application-
specific accelerators. To operate at the best operating point
for a given workload the cluster can be integrated in an
independent voltage and frequency domain, featuring dual-
clock FIFOs and level shifters at its boundary.

B. IPA Architecture

The IPA consists of an array of 16 PEs communicating
through a 2D torus interconnect [2]. Each PE can perform 32-
bit ALU operations (both arithmetic and logical), 16-bit× 16-
bit→ 32-bit multiplications and control flow operations such
as branches. The functional units of each PE features two
input operands coming from the neighbouring PEs or the
internal register files. The PEs also include an instruction
register file which stores the program, a regular register file
to store temporary variables and a constant register file to
store immediates. To reduce dynamic power consumption in
idle mode, each PE contains a tiny Power Management Unit
(PMU) which clock gates the PEs when idle [3]. A parametric
number of PEs can be augmented with a load-store unit
employing the same request-grant protocol of the PULP low-
latency interconnect [8], which allows to communicate with a
multi-banked shared memory. The configuration of the array
is generated automatically by a compilation flow which starts
from a ANSI-C code and generates the configuration bitstream
for the IPA [2].

III. HETEROGENEOUS CLUSTER ARCHITECTURE

In this work, the PULP cluster is extended with the
Integrated Programmable Array accelerator, as shown in Figure
1. Figure 2 shows a detailed block diagram of the subsystem
embedding the IPA array. The IPA array is configured through
a global context memory (GCM), responsible for storing
locally the configuration bitstream of the PEs. The GCM is
connected through a DMA-capable AXI-4 port to the cluster
bus, enabling pre-fetching of IPA contexts from L2 memory.
The GCM is considered twice the size of the configuration
bitstream of the IPA in the worst case. In this way, it is
possible to employ a double-buffering mechanism and load
a new bitstream from the L2 to the GCM when the current
one is being loaded on the array, completely hiding time for
reconfiguration. More details on the structure of the IPA array

IPA frequency domain

IPACDMA IPA

Control Registers

From peripheral 

interconnect To cluster bus

GCM

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

IPA2Cluster

Cluster2IPA

To TCDM 

Interconnect

Fig. 2. Block diagram of the IPA subsystem.
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Fig. 3. Synchronous interface for reliable data transfer between the two clock
domains.

bitstream can be found in [3]. A set of memory mapped
control registers allow to load a new context to the IPA array,
trigger the execution of a kernel and synchronize with the other
processors in the cluster.

As opposed to many CGRA architectures, the IPA can
access a multi-banked shared memory through 8 master ports
connected to the low-latency interconnect. This eases data
sharing with the other processors of the cluster, following the
computational model described in [1]. The optimal number
of port has been chosen to optimize the trade-off between
the size of the interconnect and the bandwidth requirements
of the IPA. Following the analysis conducted in [2], which
shows that the IPA can operate 2× faster than the processors,
we have extended the architecture of the cluster in a way
that the IPA can work at twice the frequency of rest of the
cluster. This approach allows to operate each component in the
cluster at the optimal frequency, without paying the overheads
of dual-clock FIFOs, requiring a significant amount of logic
and synchronization overhead. On the contrary, the hardware
support for the dual-frequency mode includes a clock divider
to generate the two different edge aligned clocks, and two
modules needed to adapt the request-grant protocol of the low-
latency interconnect [8] to deal with the frequency domain
crossing, as shown in Figure 3.

IV. SOFTWARE INFRASTRUCTURE

To offload jobs to the IPA and synchronize the execution,
the cores access the control registers of the IPA, by memory



TABLE I. LIST OF APIS FOR CONTROLLING IPA

Function Description
void load data l2totcdm
(int DMA CORE ID, int size,
unsigned int l2 addr,
unsigned int tcdm addr)

Writes data from L2 memory
to the TCDM banks through
DMA CORE

void load context l2togcm
(int DMA IPA ID,
int size, unsigned int l2 addr,
unsigned int gcm addr)

Writes context from L2 memory
to the GCM through DMA IPA

int ipa start execution () Initiate IPA execution by writing
in the command register

void ipa check status(in id) Core synchronization
void free ipa (int id) Release IPA

mapped operations. The control registers are composed of a
command register and a status register. We designed a simple
Application Programming Interface (APIs) to perform the
offload and synchronize tasks with the IPA. The main functions
are described in Table I. Before execution starts in the IPA
accelerator, the cores load the corresponding context and data
from the L2 memory to the GCM and L1 memory, program-
ming the system DMA and the IPA DMA, respectively. The
context for the IPA consists of instructions and constants for
the PEs, generated by the compilation flow proposed in [2].
The functions load data l2totcdm and load context l2togcm
contain a set of routines to write data and context into
TCDM and GCM respectively. The ipa start execution writes
execute command into the command register of the IPA. The
completion of the execution is notified by updating the status
register. The core is synchronized with the IPA execution by
calling the ipa check status function, which checks for the
updates in the status register.

V. EXPERIMENTAL RESULTS

In this section we present the implementation results of
the heterogeneous PULP cluster. The three possible modes
considered in these comparisons are: (a) single-core: running
applications in a single core, (b) ipa: running applications
in the IPA where the core takes part in offloading only,
(c) multi-core: running applications in parallel cores. All the
benchmarks are coded in fully portable C, using the OpenMP
programming model to express parallelism for PULP. In these
benchmarks, matrix multiplication, convolution, FFT, FIR,
separable filter, sobel filter are broadly used in near sensor
image and multimedia applications. Sampling scheduler of
the sensors strongly depends on computation of the greatest
common divisor (GCD). Feature extraction in sensor networks
widely uses CORDIC.

A. Implementation

The cluster consists of 8 cores featuring 4 kB of shared
I$, one IPA with 16 PEs and a GCM of 4KB, while the
TCDM is composed of 16 banks of 4 kB each, leading to an
overall TCDM size of 64 kB. These architectural parameters
were chosen to fit the constraints of the wide range of signal
processing benchmarks presented in this paper. The SoC was
synthesized with Synopsys Design Compiler 2013.12-SP3 on a
STMicroelectronics 28nm UTBB FD-SOI technology library.
Since, the achievable frequency of the PEs in the IPA is higher
than the RI5KY cores used in the cluster, the IPA is clocked at
100 MHz, while the rest of the cluster runs at 50 MHz (in the
SS, 0.6V, −40◦C corner). Synopsys PrimePower 2013.12-SP3

TABLE II. SYNTHESIZED AREA INFORMATION FOR THE PULP
HETEROGENEOUS CLUSTER

Components Area (µm2) % of
cluster area

CORES 160,352 18
ICACHE 190,089 22
DMA CORE 41,406 5

IPA

Total 156,323

18
IPAC 861
GCM INTCNCT 359
PE ARRAY 154,515
OTHERS 588

DMA IPA 32,636 4
GCM 18,704 2
TCDM 149,638 17
CLUSTER INTCNCT 63,126 7
CLUSTER PERIPHERALS 21,610 2
OTHERS 37,932 4
Total 871,816 100

was used for timing and power analysis at the supply voltage of
0.6V, 25◦C temperature, in typical process conditions. Table II
presents the area information of the components in the cluster.
Although, the total area of the IPA with 16 PEs is almost
similar to the area of the 8 cores combined, the area occupied
by the GCM is much less than the total cache memory,
which in turn provides better area efficiency while running
applications in IPA.

B. Performance and Energy Efficiency

Table III reports the execution time in nano seconds for
different benchmarks running on a single-core, on 8 cores and
on the IPA. The IPA execution time includes the time taken
for loading the context into the PEs. Comparing to the perfor-
mance of execution in single-core, the accelerator achieves a
maximum of 8× (with a minimum of 2.49× and an average of
5.4×) speed-up. The control intensive kernel like GCD does
not exhibit parallelism, hence parallel software execution does
improve performance of the homogeneous cluster. On the other
hand, the execution on the IPA improves the performance
by almost 5×, exploiting also instruction-level parallelism
rather than data-level parallelism only. The performance gain
in the accelerator for the compute intensive kernels like matrix
multiplication, convolution, FIR and separable filters is limited
if compared to the performance of parallel-cores. However,
the relatively small performance gain compared to the parallel
cluster is compensated by the gain in energy consumption
(Table V) due to the simpler nature of the compute units of
the IPA with respect to full processors, to the smaller number
of power-hungry load/store operations (Table VI), and to the
fine-grained power management architecture that allows clock
gate the inactive PEs during execution (Table V).

Table IV presents the performance improvement of the IPA
when moving from iso-frequency to the 2× frequency domain
execution in the IPA. This shows that, although there is a
reduction of memory bandwidth (see loss due to additional
stalls column in Table IV), since the TCDM operates at the
same frequency as the rest of the cluster (i.e. half frequency
w.r.t. the IPA array), an average of 1.82× speed-up (with
maximum of 1.92× and a minimum of 1.73×) can be achieved
with this dual-frequency cluster architecture.

The power consumption profiles for the different modes of
execution presented in Figure 4, which shows the percentage
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Fig. 4. Power consumption breakdown in percentage: Executing Matrix-Multiplication in (a) Multi-Core; (b) Single-Core; (c) IPA. Executing GCD in (d)
Single-Core; (e) IPA.

TABLE III. PERFORMANCE EVALUATION IN EXECUTION TIME (NS)
FOR DIFFERENT CONFIGURATION IN THE HETEROGENEOUS PLATFORM

Kernels
Data
size

(KB)

Single-
core
(ns)

Multi-
core
(ns)

Speed-
up in
multi-

core (x)

IPA
(ns)

Speed-
up
in

IPA
(x)

MatMul 8 3,358,740 435,180 7.72 432,630 7.76
Conv 8 9,733,380 1,520,840 6.4 1,494,860 6.51
FFT 1 767,640 142,720 5.38 94,510 8.12
FIR 0.84 182,500 33,460 5.45 33,410 5.46
Sep
Filter 10 39,870,420 6,404,160 6.23 6,334,700 6.29

Sobel
Filter 10 117,024,880 40,894,260 2.86 28,865,890 4.05

GCD 0.01 2,951,160 2,951,160 1 61,1300 4.83
Cordic 0.06 9,000 7,000 1.29 3,610 2.49
Manh
Dist 8 244,640 164,640 1.49 70,300 3.48

TABLE IV. PERFORMANCE COMPARISON BETWEEN ISO-FREQUENCY
AND 2× FREQUENCY EXECUTION IN IPA

Benchmarks
#cycles
in iso
frequency

#cycles
in 2x
frequency

Loss due
to stalls

overall
execution
speed-up

MatMul 39,330 43,263 3,933 1.82
Convolution 130,896 149,486 18,590 1.75
FFT 8,182 9,451 1,269 1.73
FIR 3,122 3,341 219 1.87
Separable filter 575,882 633,470 57,588 1.82
Sobel Filter 2,634,172 2,886,589 252,417 1.83
GCD 58,573 61,130 2,557 1.92
Cordic 328 361 33 1.82
ManhDistance 6,391 7,030 639 1.82
Average 1.82

of contribution by the several components in the cluster.
Figure 4 (a), (b), (c) represents the power breakdown while
executing matrix multiplication in multi-core, single-core and
IPA respectively, representative for other compute intensive
benchmarks. Similarly, in this figure, (d) and (e) present the
profiles for executing GCD, a control intensive benchmark, in
single-core and IPA respectively. In Figure 4 (a), (b), (c), the
TCDM contributes to 14.7%, 15% and 7.2% in the multi-core,
single-core and IPA configurations, respectively. The reduced
memory access in IPA execution helps to achieve better energy
efficiency. While executing GCD in single-core and the IPA,
the TCDM consumed around 15.9% and 2.5% of the total
power in the two analysed configurations, respectively. The
simpler nature of the compute units, low burden on the TCDM
and data exchange through PEs explains the energy gain of 7×
in the IPA execution.

TABLE V. ENERGY CONSUMPTION EVALUATION IN µ J FOR
DIFFERENT CONFIGURATION IN THE HETEROGENEOUS PLATFORM

Kernels Single-core Multi-core IPA

Energy
of

Active
PEs/cycle

MatMul 1.247 0.313 0.208 58.5
Convolution 2.876 1.095 0.658 59.2
FFT 0.292 0.087 0.042 59.7
FIR 0.08 0.026 0.026 46.1
Separable filter 16.663 4.611 4.28 55.5
Sobel Filter 51.491 29.444 12.701 51.2
GCD 1.151 1.151 0.257 6.25
Cordic 0.004 0.003 0.001 50
ManhDistance 0.1 0.095 0.03 48.5

TABLE VI. COMPARISON BETWEEN TOTAL NUMBER OF MEMORY
OPERATIONS EXECUTED

Benchmarks multi-core single-core IPA
MatMul 66,584 66,561 35,032
Convolution 135,280 135,114 75,600
FFT 12,528 11,733 6528
FIR 5,904 5,893 3,990
Separable filter 142,840 142,800 95,200
Sobel Filter 148,240 148,224 120,000
GCD 64,531 64,531 2
Cordic 32 28 15
ManhDistance 2,158 2,049 2,048

VI. CONCLUSION

In this paper, we present a novel approach towards het-
erogeneous computing, augmenting ultra-low power reconfig-
urable accelerator in the PULP multi-core cluster. The exper-
iments integrating IPA in the PULP platform suggests that
architectural heterogeneity is a powerful approach to improve
energy profile of the computing systems. We have presented
three possible executions of the benchmarks in the IPA in-
tegrated PULP platform. The heterogeneous cluster achieves
achieving up to 4.8× speed-up and up to 4.4× better energy
efficiency with respect to an 8-core homogeneous cluster.
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