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Topological dynamics of Nondeterministic Cellular
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Pietro Di Lena

Department of Computer Science and Engineering
University of Bologna, Italy
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Abstract

Cellular Automata (CA) are discrete dynamical systems and an abstract
model of parallel computation. Nondeterministic Cellular Automata (NCA)
are the class of multi-valued functions obtained by allowing nondeterminism
in CA. In this study we extend to multi-valued functions the definition of
some important topological properties and investigate the differences between
the dynamical behaviour of one-dimensional NCA and one-dimensional CA
in such classes.

Keywords: nondeterministic cellular automata, equicontinuity, sensitivity,
transitivity, expansivity, positive expansivity

1. Introduction

Cellular Automata (CA) are discrete dynamical systems and one of the
simplest abstract models for parallel computation. The dynamical [4, 6, 10,
8, 14, 23, 24] and computational [5, 11, 13, 15, 16, 22, 26, 29] properties of the
CA formalism, as well as those of its asynchronous and non-uniform variants
[7, 9, 12], have been well studied in literature.

A cellular automaton is defined by a fixed infinite grid of cells, each
one in one of a finite number of possible states. The simplest grid is a
one-dimensional (1D) infinite line of cells, although it can be in any finite
number of dimensions. The value of each cell is updated synchronously at
discrete temporal instants. The update rule, called local rule, uses a finite
amount of information and depends on the current state of the cell and that
of its neighbours. CA can be easily extended to nondeterminism by simply
allowing a nondeterministic update local rule.
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From the mathematical point of view, Nondeterministic Cellular Au-
tomata (NCA) are a special class of multi-valued functions, i.e. a function
that is allowed to map a point in its domain to more than one point in its
range. In particular, NCA multi-valued dynamical systems can be seen as
the parallel composition of an uncountable collection of continuous self maps,
i.e. the uncountable set of maps that can be defined by selecting cell-specific
local rules from a finite set of local rules. The mathematical background on
multi-valued functions is not well-developed as for the single-valued counter-
part. In particular, standard notions of dynamical system theory, such as
equicontinuity and sensitivity to initial conditions, cannot be immediately
extended to multi-valued dynamical systems. To the best of our knowledge,
the only mention in literature of such topological properties for multi-valued
dynamical systems is in recent works on induced dynamics on the hyperspace
with Hausdorff metric topology [25, 30, 31, 32], where the multi-valued dy-
namical systems are, however, defined by the parallel composition of a finite
collection of continuous self maps and, thus, do not include the NCA class.
The lack of formal mathematical background maybe the reason why, despite
its attractiveness and simplicity, the NCA model received so far very little
attention in literature [3, 17, 18, 19, 20, 27, 28, 33].

In [17] we started to study the most basic properties of the 1D NCA map-
pings. In particular, we proved necessary and sufficient conditions that char-
acterize the class of NCA, proved that the NCA multifunction is continuous,
and that the image of a compact set under the NCA continuous multifunction
is compact. Such properties simplify the effort to study the NCA formalism
from the point of view of dynamical system theory. In this study we continue
our investigation on the 1D NCA dynamical system starting from some im-
portant topological properties that have been well characterized for 1D CA.
Part of these studies have already appeared in [18].

In detail, we extend to NCA the definition of well-studied topological
properties related to the degree of chaoticity and complex behaviour of CA.
The considered properties are equicontinuity, almost equicontinuity, sensitiv-
ity, topological transitivity, expansivity and positive expansivity. Our defini-
tions are quite intuitive and are equivalent to their single-valued counterparts
when applied to CA. With the help of simple examples we show how, in com-
parison to CA, the dynamical behaviour of NCA is much more complex and
less constrained. The most immediate differences are related to the equicon-
tinuous behaviour. Surjective equicontinuous CA have a strongly periodic
behaviour, hence they are bijective and reversible. On the contrary, there
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are surjective equicontinuous NCA that are transitive and not reversible.
Furthermore, equicontinuity points of CA are characterized by the occur-
rence of blocking words, i.e. finite words that block the information coming
from the left and right under the iteration of the map. As a consequence of
the existence of blocking words it is possible to prove that for every CA the
set of equicontinuous points is either empty or dense, and thus that every
CA can be either almost equicontinuous or sensitive. There is no immedi-
ate generalization of the concept of blocking word for NCA, which leaves
open the question whether there are NCA with a non-empty and non-dense
set of equicontinuous points. A further property, not preserved in NCA, is
that the set of equicontinuous point of NCA is not inversely invariant. This
property is used in the single-valued setting to prove that transitive dynam-
ical systems can be either almost equicontinuous or sensitive. Although it
is well known that in the CA dynamical system transitivity implies sensi-
tivity, we can show examples of transitive almost equicontinuous NCA but
remains open the question whether there are non-sensitive and non-almost
equicontinuous transitive NCA.

The paper is organized as follows. In Section 2 we introduce the basic
notation and background on symbolic dynamical systems, CA and NCA.
Sections 3-6 are devoted to equicontinuity, sensitivity, transitivity and ex-
pansivity, respectively. Section 7 contains the final remarks.

2. Preliminaries

2.1. Symbolic Dynamics

We introduce the basic notation and terminology we will use throughout
the rest of the paper. We assume that the reader is familiar with the ele-
mentary notions from Symbolic Dynamics and Topology Theory [21, 24].

Let Z denote the set of integers and N the set of non-negative integers.
Let A be a finite set with at least two elements. We denote with Ak, the
set of words over A of length k > 0 and with A+ = ∪k>0A

k the set of finite
words on A. The set AZ denotes the set of doubly infinite sequences (xi)i∈Z
of symbols xi ∈ A. Given x ∈ AZ we use the shortcut x[i,j] for the sub-word
xixi+1..xj ∈ Aj−i+1. A sequence containing a periodic repetition of the word
w ∈ A+ is denoted with ∞w∞, i.e x = ∞w∞ if ∀i ∈ Z, x[i·|w|,(i+1)|w|−1] = w.

The mapping σ : AZ → AZ, defined by σ(x)i = xi+1, is called shift map.
The pair (AZ, σ) is a dynamical system, called a full shift.
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Consider the metric d(x, y) = 2−n on AZ, where n = min{|i| | xi 6= yi}.
The full shift AZ endowed with metric d is a Cantor space, i.e. a compact,
totally disconnected, metric space. For every word u ∈ A+ and i ∈ Z, the
set [u]i = {x ∈ AZ | x[i,|u|−1] = u} is called cylinder set. We can extend the
cylinder set notation to set of words U ⊆ A+, [U ]i = ∪u∈U [u]i. A cylinder
set is a clopen (closed and open) set in AZ. Given x ∈ AZ and ε = 2−r > 0,
the open ball Bε(x) = {y ∈ AZ | d(x, y) < ε} coincides with the cylinder
set [x[−r,r]]−r. Every open set U ⊆ AZ is defined by a countable union of
cylinders.

A configuration x ∈ AZ is said to be bitransitive if every word in A+

occurs in x infinitely often on the left and on the right, i.e. ∀w ∈ A+,
∀i ∈ N, ∃i′ ≤ −i, ∃i′′ ≥ i such that x[i′,i′+|w|−1] = x[i′′,i′′+|w|−1] = w. The
orbit of a bitransitive point under σ is dense in AZ. That is, the closure of the
orbit of a bitransitive point x ∈ AZ is the entire space AZ = {σi(x) | i ∈ z}.

A map F : AZ → AZ is a sliding block code if there exists a block map
f : A2r+1 → A, for some radius r ≥ 0, such that for every point x ∈ AZ,
F (x)i = f(x[i−r,i+r]). We call f the local rule of F . Local rules of radius zero
are usually called one-block maps.

The fundamental theorem of symbolic dynamics [21], states that a map-
ping F : AZ → AZ is a sliding block code if and only if F is continuous and
commutes with the shift, i.e. F (σ(x)) = σ(F (x)). The shift map σ itself is a
sliding block code.

2.2. Cellular Automata

The continuous and σ-commuting mappings (AZ, F ) are usually known
as Cellular Automata (CA). Cellular Automata are a class of discrete time-
and-space dynamical systems, which exhibit a rich dynamical behaviour. We
review here only the most basic properties of CA dynamical systems that are
relevant to this study.

Injective and surjective CA are well characterized. It is well known that
every injective CA is surjective, hence bijective, and that its inverse F−1 is
again a sliding block code [21, 28]. Furthermore, every point in the configu-
ration space of a surjective CA has a bounded number of pre-images [21].

The following topological dynamical properties and their correlations have
been widely studied in literature for the class of CA dynamical systems [24].

Definition 2.1. Let (AZ, F ) be a CA.

• The set E ⊆ AZ of equicontinuous points of (AZ, F ) is defined by
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x ∈ E ⇐⇒ ∀ε > 0,∃δ > 0,∀y ∈ Bδ(x),∀n ∈ N, d(F n(x), F n(y)) < ε

• (AZ, F ) is equicontinuous if E = AZ

• (AZ, F ) is almost equicontinuous if E is dense in AZ.

• (AZ, F ) is sensitive to initial conditions if

∃ε > 0,∀x ∈ AZ, ∀δ > 0,∃y ∈ Bδ(x),∃n ∈ N, d(F n(x), F n(y)) ≥ ε

The constant ε is called sensitivity constant.

• (AZ, F ) is topologically transitive if

∀U, V ⊆ AZ, open and non-empty, ∃n ∈ N, F n(U) ∩ V 6= ∅.

• (AZ, F ) is expansive if it is bijective and

∃ε > 0,∀x 6= y ∈ AZ,∃n ∈ Z, d(F n(x), F n(y)) ≥ ε

The constant ε is called expansivity constant.

• (AZ, F ) is positively expansive if

∃ε > 0,∀x 6= y ∈ AZ, ∃n ∈ N, d(F n(x), F n(y)) ≥ ε

The constant ε is called expansivity constant.

By definition, a sensitive dynamical system cannot have equicontinuous
points but the converse is not generally true. However, it is well known that
every CA is either sensitive or almost equicontinuous [23]. This dichotomy
is a consequence of the presence of blocking words on configurations that are
equicontinuity points.

Definition 2.2. Let (AZ, F ) be a CA. A word w ∈ A2d+1, d ≥ 0 is a blocking
word if there is some 0 ≤ k ≤ d such that

∀x, y ∈ [w]−d,∀n ≥ 0, F n(x)[−k,k] = F n(y)[−k,k].
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By definition, a blocking word is a word that blocks the information com-
ing from the right and left under the iteration of the map. In CA, an equicon-
tinuous point is characterised by the occurrence of infinitely many blocking
words in both directions. This implies that every bitransitive point of a CA
that has equicontinuity points is equicontinuous and, thus, that every CA
can have a either dense or empty set of equicontinuoity points. In equicon-
tinuous CA every sufficiently large word is blocking. In fact, equicontinuous
CA have a strongly periodic behaviour. In particular, surjective equicontin-
uous CA are injective and behave like the identity under some power of the
map [4], while non-surjective equicontinuous CA are eventually periodic, i.e.
there exists a preperiod k > 0 and a period n > 0 such F k+n = F k [23]. The
most simple class of equicontinuous CA is the class of mappings with radius
zero, i.e. the class of one-block maps.

It is well known that transitive dynamical systems can be either sensitive
or almost equicontinuous [1]. This is basically a (not immediate) consequence
of the fact that the set of equicontinuous points of a dynamical system is in-
versely invariant. On the other end, the dynamics of transitive CA is more
constrained, since transitive CA are known to be sensitive [23]. Finally,
note that the definitions of positively expansivity and expansivity imply sen-
sitivity. We further have that positively expansive and expansive CA are
transitive [23]. Since transitivity implies surjectivity, expansive and posi-
tively expansive CA are surjective. The most simple example of expansive
CA is the shift map, while the most simple example of positively expansive
CA is the so-called rule 90 on binary alphabet, whose local rule is defined by
∀a, b, c ∈ {0, 1}, f(a, b, c) = (a+ c) mod 2.

2.3. Nondeterministic Cellular Automata

Nondeterministic Cellular Automata (NCA) are the class of multi-valued
functions (or multimaps) definable by nondeterministic or multi-valued block
maps. By definition, CA are a special subclass of NCA.

Definition 2.3. Let A be some alphabet A with at least two elements.

• A (multi-valued) block map f : A2r+1 ⇒ A of radius r ≥ 0 is a nonde-
terministic block map if,

∀w ∈ A2r+1, ∅ 6= f(w) ⊆ A
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• A (multi-valued) mapping F : AZ ⇒ AZ is a nondeterministic cellular
automaton if there is some nondeterministic block map f : A2r+1 ⇒ A
such that:

∀x ∈ AZ, F (x) = {y ∈ AZ | ∀i ∈ Z, yi ∈ f(x[i−r,i+r])}

Orbits and trajectories of multi-valued dynamical systems are defined in
terms of sets of points.

Definition 2.4. Let F : AZ ⇒ AZ be a multimap and let x ∈ AZ.

• The orbit of x under F is the set:

O(x) = {F n(x) | n ≥ 0}

• The trajectory of x under F is the sequence of sets:

(Xn)n≥0 such that Xn = F n(x)

Continuity notion for (single-valued) functions can be extended to multi-
valued functions by means of the dual concepts of upper and lower semicon-
tinuity (also referred to as upper and lower hemicontinuity), which collapse
to the ordinary notion of continuity in the single-valued setting. The upper
and lower semicontinuity properties have a simple characterization in terms
of preimages of closed and open sets (see [2]).

Definition 2.5. Let F : AZ ⇒ AZ be a multimap.

• F is said upper semicontinuous at x ∈ AZ if for any open subset V ⊆ AZ

such that F (x) ⊆ V ,

∃δ > 0 such that ∀x′ ∈ Bδ(x), F (x′) ⊆ V

• F is said lower semicontinuous at x ∈ AZ if for any open subset V ⊆ AZ

such that F (x) ∩ V 6= ∅,

∃δ > 0 such that ∀x′ ∈ Bδ(x), F (x′) ∩ V 6= ∅

• F is said continuous if it is both lower and upper semicontinuous at
every x ∈ AZ.
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Proposition 2.1. Let F : AZ ⇒ AZ be a multimap.

1. F is upper semicontinuous if and only if for any closed set V ⊆ AZ,
F−1(V ) = {x ∈ AZ | V ∩ F (x) 6= ∅} is closed in AZ.

2. F is lower semicontinuous if and only if for any open set V ⊆ AZ,
F−1(V ) = {x ∈ AZ | V ∩ F (x) 6= ∅} is open in AZ.

In the single-valued setting, upper and lower semicontinuity are equivalent
and collapse to the ordinary notion of continuity.

Proposition 2.2. Let F : AZ → AZ be a map. The following conditions are
equivalent.

1. F is continuous.

2. For every open set U ⊆ AZ, F−1(U) is open in AZ.

3. For every closed set V ⊆ AZ, F−1(V ) is closed in AZ.

It is easy to prove that multi-valued block mappings are σ-commuting and
continuous. However, these two properties alone are not sufficient to char-
acterize the class of multi-valued functions definable by multi-valued block
maps.

Definition 2.6. Let F : AZ ⇒ AZ be a multimap.

• We say that F is locally independent at x ∈ AZ if

y /∈ F (x) if and only if ∃i ∈ Z such that yi /∈ F (x)i

or, equivalently,

y ∈ F (x) if and only if ∀i ∈ Z we have yi ∈ F (x)i

where

F (x)i = {a ∈ A | ∃z ∈ F (x), zi = a}

• We say that F is locally independent if it is locally independent at every
x ∈ AZ.

Theorem 2.1. [17] A multimap F : AZ ⇒ AZ is a NCA if and only if it is
continuous, σ-commuting and locally independent.
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It is not generally true for multi-valued functions that the continuous
image of a compact set is compact. It is possible to prove that this property
holds for multi-valued block mappings.

Theorem 2.2. [17] Let (AZ, F ) be a NCA. Then F (U) is compact (closed)
for every compact (closed) subset U ⊆ AZ.

Two interesting classes of NCA are the class of surjective and reversible
NCA. In CA, surjectivity imposes strong constrains to the number of preim-
ages of configurations. In particular, every configuration of a surjective CA
has a bounded number of preimages. On the contrary, surjective strictly non-
deterministic CA are characterized as the class of NCA that have a dense
set of configurations with uncountable number of both images and preimages
[17]. This is basically a consequence of the following property.

Definition 2.7. Let (AZ, F ) a NCA of radius r. We say that (AZ, F ′) of
radius r is a deterministic sub-NCA of F if the block map f ′ : A2r+1 → A
of F ′ has the following property

∀w ∈ A2r+1, ∅ 6= f ′(w) ∈ f(w)

Definition 2.8. Let (AZ, F ) a NCA. We say that F is surjective if

∀y ∈ AZ, ∃x ∈ AZ, y ∈ F (x)

Proposition 2.3. [17] Let (AZ, F ) be a strictly NCA. Then there is a non-
surjective deterministic sub-NCA F ′ of F .

The class of deterministic sub-maps of a NCA gives us also a sufficient
but not necessary condition for surjectivity.

Proposition 2.4. [17] Let (AZ, F ) be a NCA. If there is some surjective
deterministic sub-NCA F ′ of F then (AZ, F ) is surjective.

In the single-valued CA setting reversibility coincides with the injectivity,
hence bijectivity, property. In the multi-valued setting, the scenario is more
complex.

Definition 2.9. Let (AZ, F ) be a NCA.

• The reversed map F−1 : F (AZ) ⇒ AZ is defined by
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F−1(x) = {y ∈ AZ | x ∈ F (y)}

• We say that F is a reversible NCA if F−1 is a nondeterministic sliding
block code.

Note that, by definition F−1 is a NCA only if F is both reversible and
surjective. If F is reversible but not surjective, then its inverse F−1 is a
nondeterministic sliding block code from the subshift F (AZ) ⊂ AZ to AZ.

Definition 2.10. Let (AZ, F ) be a NCA. We say that F is injective if

∀x, y ∈ AZ, x 6= y, F (x) ∩ F (y) = ∅.

In [17] we showed that there are no injective NCA, with the exception of
the class of injective CA. Moreover, we showed that if a surjective CA (AZ, F )
is reversible, then (AZ, F−1) is an injective CA, i.e. it is not multi-valued.
This implies that if (AZ, F ) is a strictly multi-valued, surjective and reversible
NCA, then (AZ, F−1) is again a strictly multi-valued, surjective and reversible
NCA. A further characteristic of reversible NCA is that they don’t need to
be surjective. This property is in contrast with the scenario in the single-
valued setting in which reversibility (i.e. injectivity) implies surjectivity. The
simplest, non trivial example of (surjective or not surjective) reversible NCA
is the class of multi-valued one-block maps.

3. Equicontinuity

In this section we extend the equicontinuity notion to multi-valued func-
tions and point out the main differences between equicontinuous CA and
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equicontinuous NCA. In particular, we show here an example of NCA whose
set of equicontinuous points is not inversely invariant. We also show that
there is no immediate generalization of the blocking word definition for NCA.
In fact, we show an example of an almost equicontinuous NCA that has a
point which is not equicontinuous although it contains infinitely many oc-
currences of blocking words. Furthermore, we show an example of surjective
and equicontinuous NCA that is not reversible.

A point x is called equicontinuous if the family of iterations (F n)n≥0 is
equicontinuous at x. As for the continuity notion for multi-valued func-
tions, the dual properties of lower equicontinuity and upper equicontinuity
facilitate the extension of equicontinuity to iterations of the multimap.

Definition 3.1. Let F : AZ ⇒ AZ be a NCA.

• We say that x ∈ AZ is an upper equicontinuous point (Fig. 2) if

∀ε > 0,∃δ > 0 such that ∀y ∈ Bδ(x), ∀n ≥ 0, F n(y) ⊆ Bε(F
n(x))

• We say that x ∈ AZ is a lower equicontinuous point (Fig. 1) if

∀ε > 0,∃δ > 0 such that ∀y ∈ Bδ(x), ∀n ≥ 0, F n(x) ⊆ Bε(F
n(y))

• We say that x ∈ AZ is an equicontinuous point if it is both upper
and lower equicontinuous:

∀ε > 0,∃δ > 0 such that ∀y ∈ Bδ(x),∀n ≥ 0, Bε(F
n(x)) = Bε(F

n(y))

Definition 3.2. Let E ⊆ AZ be the set of equicontinuous points of
(AZ, F ).

• We say that (AZ, F ) is equicontinuous if E = AZ.

• We say that (AZ, F ) is almost equicontinuous if E dense in AZ.

The most simple class of equicontinuous CA is the class of mappings with
local rules of radius zero. Such class can be easily characterized also for NCA.

Proposition 3.1. Any NCA with radius zero is equicontinuous.
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Proof. If the local rule f has radius zero, we have that ∀x ∈ AZ, ∀n ≥ 0,
F n(x)i = fn(xi). This implies that ∀ε = 2−k > 0, if y ∈ Bε(x) = [x[−k,k]]−k
then ∀n ≥ 0

Bε(F
n(x)) = [F n(x)[−k,k]]−k = [fn(x[−k,k])]−k = [fn(y[−k,k])]−k =

= [F n(y)[−k,k]]−k = Bε(F
n(y))

It is well known that every surjective equicontinuous CA is injective, hence
reversible. We have already shown in [17] that every NCA with radius zero
is reversible. Thus, multi-valued local rules of radius zero give rise to a non
trivial class of (either surjective or not) equicontinuous and reversible NCA.
However, we can easily show that not every surjective and equicontinuous
NCA is reversible.

Example 3.1. (Irreversible and equicontinuous NCA) Consider the
NCA (AZ, F ) on the alphabet A = {0, 1}, defined by the following local rule
of radius 1:

∀a, b, c ∈ A, f(a, b, c) =

{
{0, 1} if a = 1, b = 0, c = 1
{b} otherwise

The mapping F is essentially the identity on A, except for the word 101,
which is mapped nondeterministically by the local rule to {0, 1}. F is clearly
surjective, since ∀x ∈ AZ, x ∈ F (x). In order to see that (AZ, F ) is equicon-
tinuous, note that 1 is a quiescent symbol, i.e. ∀x ∈ AZ,∀n ≥ 0 if xi = 1
then F n(x)i = {1}. The symbol 0 is quiescent everywhere except when it is
immediately surrounded by two (quiescent) 1s. Then,

∀w ∈ A3,∀x, y ∈ [w]−1,∀n ≥ 0, F n(x)0 = F n(y)0

and, generalizing,

∀w ∈ A2k+1,∀x, y ∈ [w]−k,∀n ≥ 0, F n(x)[−k+1,k−1] = F n(y)[−k+1,k−1]

which implies equicontinuity. We conclude by showing that F is not re-
versible. Consider the configuration x̃ = ∞1∞, and note that x̃ ∈ F (∞(01)∞)
and x̃ /∈ F (∞0∞). Now, if F−1 is defined by some multi-valued block map
f−1 : A2k+1 ⇒ A, the only possibility is that f−1(12k+1) = {0, 1}. But in this
way, F−1(x̃) = AZ, while ∞0∞ /∈ F−1(x̃).
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In topological (single-valued) dynamical systems, the set of equicontinuous
points is inversely invariant. The (not immediate) consequence of such prop-
erty is that transitive dynamical systems can be either sensitive or almost
equicontinuous. As shown by the following example, this property does not
hold for multi-valued mappings.

Example 3.2. (Almost equicontinuous NCA with not inversely in-
variant set of equicontinuous points) Consider the NCA (AZ, F ) on al-
phabet A = {0, 1, 2}, defined by the following multi-valued local rule of radius
1:

∀a, b, c ∈ A, f(a, b, c) =


{2} if a = 2 or b = 2 or c = 2
{0, 2} if a = b = c = 0
{c} otherwise

Note that, the symbol 2 is a quiescent symbol that spreads to the left and to the
right. The point ∞2∞ is thus an equicontinuous point of (AZ, F ). Consider
the set of sequences that contain infinitely many occurrences of the symbol 2
to the left and to the right.

U = {x ∈ AZ | ∀i ∈ N,∃k′ ≥ i, k′′ ≤ −i, such that xk′ = 2, xk′′ = 2}

Clearly U is dense and, since the quiescent symbol 2 spreads to the left and
to the right, every element of U is an equicontinuity point, i.e. U ⊆ E.
We show that E 6= AZ, since x̃ = ∞0∞ is not an equicontinuous point. Let
δ = 2−k, k ≥ 0 and consider the point y ∈ Bδ = [02k+1]−k such that

yi =

{
x̃i if i 6= k + 1
1 if i = k + 1

Then F k+1(x̃)0 = {0, 2} 6= {1, 2} = F k+1(y)0, which implies that x̃ is not
an equicontinuous point and that (AZ, F ) is almost equicontinuous but not
equicontinuous. To conclude, note that x̃ ∈ F−1(U), since ∞2∞ ∈ F (x̃).
But, since x̃ /∈ U , we conclude that F−1(E) 6⊂ E.

Recall that, in CA dynamical systems equicontinuity is strictly related to
the presence of blocking words, i.e. words that block the information coming
from the left and from the right under the iteration of the map. In particular,
equicontinuity points of CA are characterized by the presence of infinitely
many occurrences of blocking words. This strong characterization implies
that the set of equicontinuous points of a cellular automaton is either empty
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or dense. There is no immediate generalization of such property for NCA,
since the formal property of blocking word (Definition 2.2), when applied in
the non-deterministic setting, gives rise to words that do not necessarily block
the information flow from the right to the left (and conversely). This leaves
open the question whether there are NCA whose set of equicontinuous points
is non-empty and non-dense. In the following example we build an almost
equicontinuous NCA that has a not equicontinuous point with infinitely many
occurrences of blocking words.

Example 3.3. (Almost equicontinuous NCA that has a point not
equicontinuous containing infinitely many blocking words) Consider
the NCA (AZ, F ) on the alphabet A = {0, 1, 2}, defined by the following
multi-valued local rule of radius 1:

∀a, b, c ∈ A, f(a, b, c) =


{0, 1, 2} if b = 2
{0} if b 6= 2 and (a = 2 or c = 2)
{c} if a, b, c ∈ {0, 1}

Note that the function F behaves like the shift map on {0, 1}Z and that for
every x ∈ AZ, F (x) ∩ {0, 1}Z 6= ∅. On the other end, the symbol 2 does not
move and generates all the other symbols. We first show that (AZ, F ) has
a dense set of equicontinuous points. It is easy to see that x̃ = ∞2∞ is an
equicontinuity point, since ∀δ = 2−d, d ≥ 0 we have that

∀y ∈ Bδ(x̃),∀n > 0, F n(y)[−d,d] = F n(x̃)[−d,d] = A2d+1

In the same way, for every w ∈ A+, all the points in

Uw = {x ∈ AZ | ∃i ∈ Z, x[i,i+|w|−1] = w ∧ ∀j /∈ [i, i+ |w| − 1], xj = 2}

are equicontinuous. In fact, note that

∀w ∈ A+,∀x ∈ [2|w|w2|w|]−w,∀n > |w|, F n(x)[0,|w|−1] = {0, 1}|w|

Then the dense set U = ∪w∈A+Uw is contained in E.
Now, fix some ε = 2−k, k ≥ 0. For simplicity we consider k = 0, but what

follows can be generalized to larger k. By definition 2.2, the word w = 2 is a
blocking word. In fact, for all x, y ∈ [2]0, and for all n ∈ N

F n(x)0 = F n(y)0 = A

14



sensitive

strongly sensitive

upper sensitive

lower sensitive

Figure 3: Sensitivity classes

On the other end, we show that w does not always block the information com-
ing from the left and right by building a not equicontinuous configuration that
contains infinitely many occurrences of w. Consider, the periodic sequence
x̃ = ∞(020)∞. Note that, in x̃ only the 2 symbol can generate the 1 symbol
and that, by definition of the local rule, every symbol generated by 2 is sur-
rounded by a 0 symbol immediately to the left and to the right. This implies
that, under the iteration of the map, it is not possible that two 1s get closer
together in the trajectories of x̃. In particular, for every n ∈ N and for every
z ∈ F n(x̃), the 3-length word 111 cannot appear in z. Then, fix ε = 2−1. For
every δ = 2−d, d ≥ 1 we can build the configuration y ∈ Bδ(x̃) such that

yi =

{
1 if i > d
x̃i otherwise

By definition of F , the configuration ∞(0)(1)∞ ∈ F (y) and, since F is the
shift map on {0, 1}Z, the 111 word will travel infinitely far to the left under
the iteration of the map. Then

∃n > 0, 111 ∈ F n(y)[−1,1], while ∀n ≥ 0, 111 /∈ F n(x̃)[−1,1]

which implies that x̃ is not a point of equicontinuity for F .

4. Sensitivity

In sensitive dynamical systems small perturbations of the initial configu-
ration may lead to significantly different trajectories. In some sense, sensitiv-
ity is the opposite of equicontinuity and, in fact, the two notions are strictly
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related: a sensitive dynamical system cannot have points of equicontinu-
ity. The converse is not generally true, although it is for the CA dynamical
systems.

There is no standard definition of sensitivity for multimaps. We extend the
usual definition of sensitivity to multimaps by introducing the notion of upper
and lower sensitivity. We get different classes of sensitivity that coincide with
the classical definition when the mapping is single-valued.

Definition 4.1. Let F : AZ ⇒ AZ be a NCA.

• We say that (AZ, F ) is upper sensitive (Fig. 1) if

∃ε > 0, ∀x ∈ AZ,∀δ > 0,∃y ∈ Bδ(x), ∃n ≥ 0, F n(y) 6⊂ Bε(F
n(x))

• We say that (AZ, F ) is lower sensitive (Fig. 2) if

∃ε > 0, ∀x ∈ AZ,∀δ > 0,∃y ∈ Bδ(x), ∃n ≥ 0, F n(x) 6⊂ Bε(F
n(y))

• We say that (AZ, F ) is sensitive if

∃ε > 0,∀x ∈ AZ,∀δ > 0,∃y ∈ Bδ(x),∃n ≥ 0, Bε(F
n(x)) 6= Bε(F

n(y))

• We say that (AZ, F ) is strongly sensitive if

∃ε > 0,∀x ∈ AZ,∀δ > 0,∃y ∈ Bδ(x),∃n ≥ 0, Bε(F
n(y)) ∩Bε(F

n(x)) = ∅

The ε constant is called sensitivity constant of the map. All four sen-
sitivity classes imply no equicontinuous points. Note that upper and lower
sensitivity imply sensitivity and that strong sensitivity immediately implies
lower and upper sensitivity. While in the single-valued setting all four def-
initions are equivalent, in the multi-valued setting, the four definitions give
rise to different classes of sensitivity. We show that all such classes are non
empty and distinct (see Fig. 3).

In the following two lemmas we prove two useful properties:

1. if there is one point whose trajectory (i.e. sequence of sets generated
by iterating the map) appears in the trajectory of every other point,
then the NCA is not lower sensitive,
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2. if there is a point that is mapped to the entire space, then the NCA is
not upper sensitive.

We will use these two properties to build examples of NCA that are not
lower-or-upper sensitive.

Lemma 4.1. Let (AZ, F ) be a NCA. Assume that there is some point x ∈ AZ

such that

∀n > 0, ∀y ∈ AZ, F n(x) ⊆ F n(y)

then (AZ, F ) is not lower sensitive.

Proof. Let (AZ, F ) be of radius r ≥ 0 and assume there is one point x ∈ AZ

as defined in the statement. Consider some ε > 0. Then

∀δ > 0,∀y ∈ Bδ(x),∀n > 0, F n(x) ⊆ F n(y) ⊆ Bε(F
n(y)),

which implies that F is not lower sensitive.

Lemma 4.2. Let (AZ, F ) be a NCA. Assume that there is some point x ∈ AZ

such that

F (x) = AZ.

Then F in not upper sensitive.

Proof. First of all, note that if F (x) = AZ, then ∀n > 0, F n(x) = AZ.
Consider some ε > 0, then

∀δ > 0,∀y ∈ Bδ(x), ∀n > 0, F n(y) ⊆ AZ ⊆ Bε(F
n(x)),

which implies that F is not upper sensitive.

All the following examples are based on the shift map. We first show that
sensitivity does not imply lower and upper sensitivity.

Example 4.1. (Sensitive but not lower/upper sensitive NCA) Con-
sider the NCA (AZ, F ) on alphabet A = {0, 1} defined by the following multi-
valued local rule of radius 1:

∀a, b, c ∈ A, f(a, b, c) =

{
{0} if c = 0
{0, 1} if c = 1
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This multi-valued map contains both the shift map and the constant map,
which sends every configuration to the uniform configuration ∞0∞.

We first show that (AZ, F ) is sensitive. Consider some configuration x ∈
AZ and note that, by definition of the local rule f , for every i > 0

F i(x)0 =

{
{0} if xi = 0
{0, 1} if xi = 1

Let x ∈ AZ and let k > 0. Let y ∈ [x[−k,k]]−k be such that

yi =

{
xi if i 6= k + 1
1− xi if i = k + 1

Then F k+1(x)0 6= F k+1(y)0, which implies that F is sensitive with sensitivity
constant ε = 20. We now show that F is neither lower nor upper sensitive.

1. F is not upper sensitive. Consider the configuration x̃ = ∞1∞ ∈ AZ.
We have that, x̃ is mapped to the entire configuration space, i.e.

∀n > 0, F n(x̃) = AZ.

then, by Lemma 4.2, F is not upper sensitive.

2. F is not lower sensitive. Consider the configuration x̃ = ∞0∞ ∈ AZ.
We have that x̃ is a quiescent configuration that appears in every tra-
jectory, i.e.

∀n > 0,∀y ∈ AZ, F n(x̃) = {x̃} ⊆ F n(y).

then, by Lemma 4.1, F is not lower sensitive.

The following two examples show that upper sensitivity does not imply
lower sensitivity, and conversely.

Example 4.2. (Upper sensitive and not lower sensitive NCA) Con-
sider the NCA (AZ, F ) on alphabet A = {0, 1, 2} defined by the following
multi-valued local rule of radius 1:

∀a, b, c ∈ A, f(a, b, c) =


{0} if c = 0
{0, 1} if c = 1
{0, 2} if c = 2
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Consider some configuration x ∈ AZ and note that, by definition of the local
rule f , for every i > 0

• if xi = 0, then F i(x)0 = {0},

• if xi = 1, then F i(x)0 = {0, 1},

• if xi = 2, then F i(x)0 = {0, 2},

Then, for every x ∈ AZ and δ = 2−k, k ≥ 0 we can build the configuration
y ∈ Bδ(x) = [x[−k,k]]−k such that

yi =


xi if i 6= k + 1
2 if i = k + 1 and xi ∈ {0, 1}
1 if i = k + 1 and xi = 2

It is clear that F k+1(y)0 6⊂ F k+1(x)0, which proves that F is upper sensitive
with sensitivity constant ε = 20. In order to see that F is not lower sensitive,
consider the uniform configuration x̃ = ∞0∞ ∈ AZ, which is mapped to itself,
i.e. ∀n ≥ 0, F n(x̃) = {x̃}. Note that ∀y ∈ AZ and ∀n > 0, F n(x̃) ⊆ F n(y),
then by Lemma 4.1, F is not lower sensitive.

Example 4.3. (Lower sensitive and not upper sensitive NCA) Con-
sider the NCA on alphabet A = {0, 1, 2} defined by the following multi-valued
local rule of radius 1:

∀a, b, c ∈ A, f(a, b, c) =

{
{0, 1, 2} if a = b = c = 0
{c} otherwise

Note that, for every x ∈ AZ and i > 0

F i(x)0 =

{
{0, 1, 2} if x[i−2,i] = 000
{xi} otherwise

For every x ∈ AZ and for every δ = 2−k, k ≥ 0 we can build the configuration
y ∈ Bδ(x) = [x[−k,k]]−k such that

yi =


xi if i 6= k + 1
2 if i = k + 1 and xi ∈ {0, 1}
1 if i = k + 1 and xi = 2
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By construction, we have that, if F k+1(x)0 = {0, 1, 2} or F k+1(x)0 = {1},
then F k+1(y)0 = {2}, while if F k+1(x)0 = {1} then F k+1(y)0 = {2}. In both
cases, F k+1(x)0 6⊂ F k+1(y)0, which implies that F is lower sensitive with
sensitivity constant ε = 20. In order to see that F is not upper sensitive,
note that the configuration x̃ =∞ 0∞ ∈ AZ is mapped to the entire space, i.e.
F n(x̃) = AZ, ∀n > 0. Then, by Lemma 4.2, F is not upper sensitive.

Since CA are a subset of NCA, all sensitive CA belong to the strongly
sensitive class. We show that such class contains also strictly NCA. The
simplest example is the multi-valued reformulation of the shift map.

Example 4.4. (Strongly sensitive NCA) Consider the NCA (AZ, F ) on
alphabet A = {0, 1, 2, 3} defined by the following multi-valued local rule of
radius 1:

∀a, b, c ∈ A, f(a, b, c) =

{
{0, 2} if c ∈ {0, 2}
{1, 3} if c ∈ {1, 3}

Note that, F is essentially a nondeterministic shift map on the two sets {0, 2}
and {1, 3}:

∀i > 0, F i(x)0 =

{
{0, 2} if xi ∈ {0, 2}
{1, 3} if xi ∈ {1, 3}

For every x ∈ AZ and δ = 2−k, k ≥ 0 there is the configuration y ∈ Bδ(x)
such that

yi =

{
xi if i 6= k + 1
(xi + 1) mod 4 if i = k + 1

It is easy to see that F k+1(x)0∩F k+1(y)0 = ∅, which implies that F is strongly
sensitive with sensitivity constant ε = 20.

We leave open the question whether there are NCA, both upper and lower
sensitive, that are not strongly sensitive.

5. Transitivity

In a topologically transitive dynamical system every non-empty open set
has points whose orbit intersects any other non-empty open set. The topolog-
ical definition of transitivity does not need to be re-defined for multi-valued
mappings. While, in general, a transitive dynamical system can be either
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sensitive or almost equicontinuous, it is well known that topologically tran-
sitive CA are sensitive. We show here some examples of equicontinuous and
transitive NCA. It is open the question whether a transitive NCA needs to
be either sensitive or almost equicontinuous.

The following general property holds for any continuous endomorphism
of a compact space.

Proposition 5.1. Any transitive NCA is surjective.

Proof. Since F is topologically transitive, for every non-empty open set U ∈
AZ, F (AZ) ∩ U 6= ∅, which implies that F (AZ) is dense in AZ. Since F is
continuous and AZ compact, F (AZ) is closed, then F (AZ) = AZ.

The following sufficient condition is useful to build examples of transitive
NCA.

Lemma 5.1. If there is a deterministic sub-NCA F ′ such that (AZ, F ′) is
transitive, then (AZ, F ) is transitive.

Proof. If (AZ, F ′) is transitive then, for every non-empty open sets U, V ⊆ AZ

there is n ≥ 0 such that F n(U) ∩ V ⊇ F ′n(U) ∩ V 6= ∅.

By Lemma 5.1, all the examples of sensitive NCA in Section 4 are tran-
sitive, since all of them contain the shift map as deterministic sub-NCA. We
conclude this section by showing examples of reversible and non-reversible
transitive equicontinuous NCA. We also show an example of transitive almost
equicontinuous NCA which is not reversible.

The most simple example of transitive NCA is the map that sends every
point into the entire configuration space. Such map is equicontinuous.

Example 5.1. (Transitive, reversible and equicontinuous NCA). Con-
sider the NCA on alphabet A = {0, 1} defined by the following multi-valued
local rule of radius zero:

∀a ∈ A, f(a) = A

By Proposition 3.1, (AZ, F ) is equicontinuous. It is clearly transitive, since
∀n > 0, ∀x ∈ AZ, and for every open set U ⊆ AZ, F n(x)∩U = AZ∩U = U .
This example is also easily reversible and the inverse is the map itself.

With a small modification of the previous example, we can get a non-
reversible, equicontinuous and transitive NCA.
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Example 5.2. (Transitive, irreversible and equicontinuous NCA).
Consider the NCA on alphabet A = {0, 1} defined by the following multi-
valued local rule of radius 1:

∀a, b, c ∈ A, f(a, b, c) =

{
{0} if a = c = 1, b = 0
{0, 1} otherwise

By Lemma 5.1, (AZ, F ) is transitive, since it contains the sensitive elemen-
tary rule 90. It is easy to see that it is equicontinuous, since ∀x ∈ AZ, ∀n ≥
2, F n(x) = AZ. In order to see that it is not reversible, consider the con-
figurations x̃ = ∞1∞ and ỹ = ∞0∞. Note that x̃ ∈ F (x̃) and x̃ ∈ F (ỹ),
thus, if F−1 is a multi-valued block map, the only possibility is that for some
r ≥ 0, f−1(12r+1) = {0, 1}, which implies that F−1(x̃) = AZ. This is not
possible, since x̃ /∈ F (∞(01)∞).

Example 5.3. (Transitive, irreversible and almost equicontinuous
NCA). Consider the NCA on alphabet A = {0, 1} defined by the following
multi-valued local rule of radius 1:

∀a, b, c ∈ A, f(a, b, c) =

{
{0, 1} if b = 0
{c} otherwise

By Lemma 5.1, (AZ, F ) is transitive, since it contains the shift map.
We first show that (AZ, F ) is not reversible. Consider the two configura-

tions x̃ = ∞1∞ and ỹ = ∞0∞. Note that x̃ ∈ F (ỹ) and x̃ ∈ F (x̃). If F is
reversible the only possibility is that for some k ∈ N, f−1(12k+1) = {0, 1} and
then F−1(x̃) = AZ, but this is not possible since x̃ 6∈ F (∞(10)∞).

Now we show that x̃ is not an equicontinuous point, while ỹ it is. For
every k ≥ 0, we can build the configuration xk, defined by

xki =

{
1 if i ≤ k
0 otherwise

Fix ε = 20, then for all k ≥ 0, we have that

F k+1(x̃)0 = 1 6= {0, 1} = F k+1(xk)0.

On the contrary, it is easy to see that ỹ is an equicontinuous point, since

∀k ∈ N,∀y ∈ [ỹ[−k,k]]−k,∀n > 0, F n(y)[−k,k] = A2k+1.
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We just need to show that the set of equicontinuous points of (AZ, F ) is
dense. For any word w ∈ A+, |w| = k, consider the cylinder set [0w0k]i, i ∈ Z
and note that

∀x, y ∈ [0w0k]i,∀n ∈ N, F n(x)[i,i+2k] = F n(y)[i,i+2k]

In particular, note that

∀x, y ∈ [0w0k]i,∀n ≥ k + 1, F n(x)[i,i+2k] = F n(y)[i,i+2k] = A2k+1

Now, let (wi)i≥0 be an enumeration of all finite words on A+ such that |wi| ≤
|wi+1|and consider the sequence

z̃ = ..w20
|w2|w10

|w1|w00
|w0|w10

|w1|w20
|w2|..

The sequence z̃ is bitransitive under the shift map and, by construction, a
point of equicontinuity. Then, the set of equicontinuous points {σi(z̃) | i ∈
Z} ⊂ E is dense in AZ.

6. Expansivity

In expansive dynamical systems every point of the space has a distinctive
trajectory. The classes of expansive and positively expansive CA are well
understood and characterized. For instance, both positively expansive and
expansive CA are transitive, hence surjective.There is no standard definition
of expansivity and positive expansivity for the class of multimaps. In this
section we propose a definition of expansivity and positive expansivity for
NCA and discuss some basic questions on such classes of automata.

Definition 6.1. Let (AZ, F ) be a NCA. We say that:

• (AZ, F ) is expansive if it is surjective, reversible and

∃ε > 0,∀x 6= y,∃n ∈ Z, Bε(F
n(x)) 6= Bε(F

n(y))

• (AZ, F ) is positively expansive if

∃ε > 0,∀x 6= y,∃n ∈ N, Bε(F
n(x)) 6= Bε(F

n(y))

• (AZ, F ) is strongly expansive if it is surjective reversible and
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∃ε > 0,∀x 6= y,∃n ∈ Z, Bε(F
n(x)) ∩Bε(F

n(y)) = ∅

• (AZ, F ) is strongly positively expansive if

∃ε > 0,∀x 6= y,∃n ∈ N, Bε(F
n(x)) ∩Bε(F

n(y)) = ∅

As for the previous properties, in the single-valued setting, the proposed
definitions of expansivity and strong expansivity are equivalent and collapse
to the usual definition of expansivity. The same holds for the two definitions
of positive expansivity. In the multi-valued setting, it is clear that strong
expansivity implies expansivity (resp. strong positive expansivity implies
positive expansivity) but the question whether these definitions are equiv-
alent is not immediate. By definition, expansive and positively expansive
NCA are sensitive, while strongly expansive and strongly positively expan-
sive NCA are strongly sensitive. Furthermore, note that in the expansivity
definition we require reversibility since if F is reversible F−1 is a NCA (i.e.
it is defined on the entire configuration space AZ) only if F is also surjective.

We show that there cannot be proper multi-valued strongly expansive and
positive expansive NCA.

Proposition 6.1. Let (AZ, F ) be a NCA. If it is strongly expansive (resp.
positively expansive) then (AZ, F ) is single-valued.

Proof. Let (AZ, F ) be a strongly expansive (resp. positively expansive)
NCA with expansivity constant ε > 0. Assume by absurd that (AZ, F ) is
strictly multi-valued. Then, by Proposition 2.3, it contains a non-surjective
deterministic sub-NCA (AZ, Fk), which is not expansive (resp. positively
expansive). Then, there are x, y ∈ AZ such that x 6= y and such that
d(F n

k (x), F n
k (y)) < ε for every n ∈ Z (resp. n ≥ 0). This implies that for

every n ∈ Z (resp. n ≥ 0), Bε(F
n(x)) ∩ Bε(F

n(y)) 6= ∅, which contradicts
the hypothesis that (AZ, F ) is multi-valued. Then, the only possibility is
that (AZ, F ) is single-valued.

We show an example of strictly multi-valued expansive NCA.

Example 6.1. (Expansive NCA) Consider the surjective NCA (AZ, F )
on alphabet A = {0, 1, 2} defined by the following multi-valued local rule of
radius 1:

24



∀a, b, c ∈ A, f(a, b, c) =

{
{0, 2} if c = 2
{c} otherwise

The NCA (AZ, F ) contains the shift map as deterministic sub-NCA and it is
easy to see that it is reversible with local rule:

∀a, b, c ∈ A, f−1(a, b, c) =

{
{0, 2} if a = 0
{a} otherwise

We show that (AZ, F ) is expansive with expansivity constant ε = 20. Consider
the one-block mapping φ : A → {0, 1} defined by φ(0) = φ(2) = 0 and
φ(1) = 1 and consider two configurations x, y ∈ AZ such that x 6= y. We
have two possibile cases:

• ∃i ∈ Z such that φ(xi) 6= φ(yi). In this case the only possibility is
that either xi = 1, yi ∈ {0, 2} or xi ∈ {0, 2}, yi = 1. Without loss of
generality, assume that xi = 1 and yi ∈ {0, 2}. Then, by definition of
the local rule, 1 = F i(x)0 6= F i(y)0 ∈ {0, 2}.

• ∀i ∈ Z, φ(xi) = φ(yi). Since x 6= y, the only possibility is that there is
i ∈ Z such that either xi = 0, yi = 2 or xi = 2, yi = 0. Without loss of
generality assume that xi = 0, yi = 2 and i 6= 0. Then, by definition of
the local rule and its inverse, if i > 0, F i(x)0 = 0 and F i(y)0 = {0, 2}.
Otherwise, if i < 0, F i(x)0 = {0, 2} and F i(y)0 = 2.

We do not have an example of strictly multi-valued positively expansive
NCA. One such example is not completely trivial on bi-infinite full shifts.
However, consider that the NCA in Example 6.1 is positively expansive if we
restrict the configuration space to a one-sided full shift. Furthermore, the
only example we can provide, either one-sided or two-sided, is based on the
shift map and thus, by Lemma 5.1, it is transitive. This does not give any
interesting clue about the differences between the expansivity behaviour in
the multi-valued and single-valued settings. In conclusion, the characteristics
of expansive and positively expansive multi-valued maps cannot be observed
by considering simple examples built starting from expansive and positively
expansive CA. As a final remark, we note that most of the properties of
expansive and positively expansive CA are derived from the fact that they
are conjugated to two-sided and one-sided subshifts, respectively. In the
multi-valued setting such conjugacy cannot exist, hence different techniques
need to be developed in other to study such classes of NCA.
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7. Conclusions

We extended to NCA the definition of some relevant topological proper-
ties, well characterized for CA, and studied the differences between the dy-
namical behaviour of NCA and CA in such classes. The considered properties
are equicontinuity, almost equicontinuity, sensitivity, transitivity, expansivity
and positive expansivity. The intersection classes between these properties
for CA and NCA are shown in Figure 4 and 5, respectively. In the two fig-
ures we did not include the expansive and positively expansive classes since
we do not have a strong enough characterization of these classe in the NCA
setting. In the paper we showed NCA examples for almost all intersection
classes that are empty for CA. We do not have an example of a transitive,
reversible and almost equicontinuous NCA that is not equicontinuous, how-
ever we conjecture that one such example exists. The most interesting open
question is whether there are (transitive) NCA which are neither sensitive
nor almost equicontinuous.

Almost Equicontinuous CA Sensitive CA

Surjective CA

Injective CA

Transitive CA

Equicontinuous CA

Figure 4: CA classes
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