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Abstract: Nonintrusive image-based methods have the potential to advance hydrological streamflow
observations by providing spatially distributed data at high temporal resolution. Due to their
simplicity, correlation-based approaches have until recent been preferred to alternative image-based
approaches, such as optical flow, for camera-based surface flow velocity estimate. In this work,
we introduce a novel optical flow scheme, optical tracking velocimetry (OTV), that entails automated
feature detection, tracking through the differential sparse Lucas-Kanade algorithm, and then
a posteriori filtering to retain only realistic trajectories that pertain to the transit of actual objects in
the field of view. The method requires minimal input on the flow direction and camera orientation.
Tested on two image data sets collected in diverse natural conditions, the approach proved suitable for
rapid and accurate surface flow velocity estimations. Five different feature detectors were compared
and the features from accelerated segment test (FAST) resulted in the best balance between the
number of features identified and successfully tracked as well as computational efficiency. OTV was
relatively insensitive to reduced image resolution but was impacted by acquisition frequencies
lower than 7–8 Hz. Compared to traditional correlation-based techniques, OTV was less affected
by noise and surface seeding. In addition, the scheme is foreseen to be applicable to real-time
gauge-cam implementations.

Keywords: optical tracking velocimetry (OTV); streamflow; optical flow; Lucas-Kanade; FAST;
feature detection; feature tracking; particle tracking velocimetry; large scale particle image
velocimetry; gauge-cam

1. Introduction

Streamflow observations are of paramount importance in hydrological modelling and engineering
practice [1–3]. Monitoring streamflow velocity facilitates estimation of river discharge and enables
the comprehension of complex phenomena, such as erosion dynamics and sediment transport [4].
Traditionally, flow velocity measurement relies on pointwise intrusive approaches, such as acoustic
doppler current profilers and impeller flowmeters [5,6]. Alternatively, standard remote methods
include radars and ultrasonic flowmeters [7]. Most of these methods are expensive and some of them
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require time-consuming experimental campaigns and the presence of qualified personnel. Intrusive
and highly user-assisted technology cannot be adopted to monitor abrupt phenomena, such as flash
floods, and large flood events that may be risky for personnel and equipment [8].

Close-range remote sensing through optical imagery has the potential to advance streamflow
measurement by affording low-cost observations that are distributed (rather than pointwise) in space.
Also, inexpensive optical equipment can be either installed at permanent measurement stations or
mounted onboard unmanned aerial vehicles (UAVs), thus enabling frequent monitoring of hydrological
processes. Many diverse approaches entail the extraction of hydraulic information from image
data. For instance, in [9], water surface roughness was shown to influence total surface reflectance
and to positively correlate with flow velocity. Thermal image data have been used to estimate
flow depth and surface velocity towards an integrated and flexible river discharge measurement
system [10]. Alternatively, optical image data of the stream water surface can be analyzed with different
algorithms to reconstruct the surface flow velocity field. Such velocity maps can then be complemented
with information on the bathymetry to provide streamflow estimations. Large scale particle image
velocimetry (LSPIV) and particle tracking velocimetry (PTV) are correlation-based algorithms that
are popularly used to obtain the surface flow velocity field from image data. Both methods revolve
around the concept of particle, that is, a group of pixels either representing a specific object or
a pattern, which functions as a tracer and whose position can be tracked in an image sequence.
More specifically, LSPIV applies the principles of the classical particle image velocimetry (PIV)
fluid dynamics laboratory technique to outdoor environments. PIV enables the estimation of the
instantaneous flow velocity field of seeded fluids [11–13]. LSPIV was originally introduced by [14] and
is based on a high-speed cross-correlation scheme between an interrogation area (IA) in a first image
and IAs within a search region (SR) in a second image. Each image is divided into a grid of IAs and
the cross-correlation coefficients between IAs and SRs are computed. The location of the maximum
value of the cross-correlation coefficient in consecutive frames yields displacement vectors, and can be
determined at sub-pixel accuracy using fitting schemes [13]. Based on camera acquisition frequency,
it is then possible to estimate the instantaneous velocity from the displacement vectors. On the other
hand, PTV consists of particle identification and tracking [15]. Firstly, images are processed to enhance
the appearance of particles in the field of view and the location of the particles’ centroid is recovered.
Then, the centroid of the detected particles is identified in subsequent images to reconstruct the particle
trajectory. Several algorithms have been developed for PTV analysis, with cross-correlation being most
commonly implemented for both particle detection and tracking [15–17].

Due to their simplicity, correlation-based approaches have until recent been preferred to
alternative image-based approaches. In [18], LSPIV has been found to underestimate surface velocities
with respect to PTV in case of both highly and poorly seeded surfaces. Conversely, PTV combined
with trajectory-based filtering has led to more accurate surface flow velocity estimations in both
settings. Towards a more automated PTV approach, in [19], a novel nearest-neighbor PTV approach
has been introduced (PTV-Stream) that affords the identification and tracking of features of any shape
(rather than of round-shaped particles as in traditional correlation-based PTV). However, despite the
versatility of PTV in scarcely seeded streams, both LSPIV and PTV are severely influenced by sunlight
reflections and require a priori knowledge of several parameters, including tracer dimension and
velocity, and the average surface flow velocity direction.

Besides LSPIV and PTV, image-based methods also entail a large number of algorithms that
exhibit great accuracy even in the absence of tracers and in case of non-stationary patterns, such as
optical flow approaches. Such methods aim at computing the image approximate 2D motion field
from patterns of image intensity [20]. The underlying assumption to the implementation of optical
flow is image brightness constancy, that is, even if objects depicted in images may change position in
a short interval of time, the image reflectivity and illumination should remain constant [21]. Typically,
optical flow is applied to autonomous robotics [22], whereby the motion of rigid bodies is determined,
but it has also been adopted in climatological and geophysical applications [23–25] and to estimate the
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discrepancy between consecutive images [26]. The non-rigid motion structure and dynamic variations
of fluid flow pose serious challenges to the implementation of optical flow, which have partially been
addressed through diverse strategies [27–34].

Optical flow methods include many diverse approaches that share the following similarities:
(i) Images are prefiltered to enhance their signal-to-noise ratio; (ii) basic measurements (such as
derivatives) are computed from images; and (iii) such measurements are then integrated to extract
the 2D flow field. Differential techniques focus on the computation of the velocity field from
spatio-temporal derivatives of image intensity. They entail both global, that minimize a global energy
functional such as the Horn-Schunck method [20], and local, that optimize local energy expressions
schemes [35]. Global methods lead to dense flow fields whereby velocity information are extracted at
each image pixel. Such high information density is however mirrored by high computational times.
Conversely, local schemes tend to be more robust to noise and more computationally efficient. Several
studies have explored the trade-off between quality of the computed flow and computational times by
proposing fast and robust local methods [36].

Both global and local optical flow approaches have been demonstrated for fluid flow monitoring,
and in several laboratory applications these methodologies have been adopted to estimate the velocity
field of fluid flows [37,38]. Regarding optical flow in environmental settings, in [39], an altered version
of the global approach by [40] has been applied to extract the surface flow velocity field of a river from
two video frames. Similarly, in [41], the velocity field of a dam break flow and of an aerated stepped
spillway flow has been estimated. Compared to classical PIV, the optical flow approach led to results
at higher spatial resolution even if longer computational times were required. In [42,43], global optical
flow has been exploited to reconstruct instant surface currents from either satellite- or Unmanned
Aerial Vehicle (UAV)-captured images.

Among local techniques, the Lucas-Kanade algorithm has been frequently adopted in several
scientific fields due to its reduced sensitivity to noise with respect to alternative first-order
techniques [21]. Different from matching methods, differential algorithms are generally better at
estimating subpixel displacements, which is an asset in case of the low velocity fields encountered
in natural flows. For instance, in [44,45], the Lucas-Kanade algorithm enables subpixel accuracy in
estimating glacier flow and sea ice drift. Similarly, in [46], objects drifting on a lake surface are tracked
from images analyzed with the Lucas-Kanade approach, and in [47], tracer particles are deployed
and tracked onto the surface of a water stream. Further, the Lucas-Kanade algorithm has also been
instrumental to investigate high-velocity fields in case of skimming flows above a stepped chute [48]
and a flash flood event [49].

Motivated by the robustness of the Lucas-Kanade algorithm and by its independence on
regularly-shaped tracers, in this work, we propose a differential local optical flow-based approach,
optical tracking velocimetry (OTV), that combines (i) feature detection (testing five different
algorithms); (ii) tracking through the pyramidal Lucas-Kanade algorithm; and (iii) trajectory-based
filtering as in [18], to estimate the surface flow velocity field of natural streams. OTV does not rely
on the deployment of tracers in the field of view, encompasses automated feature identification
and tracking, and only retains reliable trajectories, which can be related to the transit of physical
objects in the field of view, thus minimizing the probability of fake trajectories and allowing for
uncertainty estimation. The objectives of our work entail assessing (i) if OTV is suitable for streamflow
measurement from image data in diverse hydrological conditions; (ii) the robustness of OTV in case
of high variance between successive frames; and (iii) the performance of OTV with respect to four
alternative correlation-based approaches.

Specifically, to experiment with varying hydrological settings, we apply OTV to the analysis of
videos captured in the Brenta River in case of abundant and artificial tracer seeding and in the Tiber
River during a moderate flood event with natural floating material. Towards the establishment
of a robust OTV procedure, five different feature detector estimators are selected and applied
to the analysis of experimental videos that present highly diverse hydraulic regimes and image
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appearances. Such analyses aim at replicating adverse environmental conditions, where rapidly
changing hydroclimatic conditions may invalidate the assumption on the constancy of image brightness
that underlies optical flow. The effect of the variability between consecutive images is simulated by
testing OTV on image sequences at low frame acquisition frequency and reduced frame resolution.
Besides providing insight on the robustness of the procedure, these tests also shed light on the
possibility of implementing OTV in real-time on image captured through gauge-cams in natural
rivers. Finally, the performance of OTV is validated against velocity estimations from four alternative
correlation-based techniques.

2. Case Studies and Methodology

We executed streamflow observations by capturing videos of the surface of two natural rivers in
Italy and processing image sequences with OTV, an optical flow-based procedure. The approach is
demonstrated in case of feature detection through five different algorithms. Identified features are then
tracked by the pyramidal Lucas-Kanade approach, and reliable trajectories are retained by applying
the trajectory-based filtering procedure developed in [18]. Based on the extracted trajectories, surface
flow velocity estimations are computed and then compared to values obtained from four alternative
correlation-based approaches.

2.1. Case Studies

2.1.1. Controlled Outdoor Tests in the Brenta River

Experiments were performed on the Brenta River at the bridge “Ponte Zaccon”, Trento, Italy,
(46◦02′20.8122′′ North Latitude, 11◦24′37.3349′′ East Longitude, 464.38 elevation in the WGS84
coordinate system) on 10 June 2015. Therein, a gauge station featuring an ultrasonic water level meter
monitors the upper basin of the Brenta River (171.9 km2), Figure 1a. At the bridge, the cross-section is
10.1 m wide and the river bed presents green filamentous algae, pebbles, and wood detritus. During
the experiment, a constant water level of approximately 0.41 m was observed.1 m 1 m a) c) d) b) e) 

Figure 1. (a) View and (b) representative processed image of the Brenta River; (c) location of the
gauge-cam on the Tiber River; (d) camera and laser units of the gauge-cam, and (e) representative
processed image. The white dashed rectangles in panels (b,e) indicate regions at darker intensity due
to the bridge shadow.
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Experiments aimed at replicating ideal conditions for streamflow measurements with correlation-
based optical approaches. Namely, woodchips were continuously deployed from the upstream side
of the bridge throughout the entire cross-section. Particle diameter ranged within 10 to 15 pixels.
Particles moved by less than 6 pixels between consecutive frames. On average, throughout an image
sequence, particle density was approximately equal to 1.5 × 10−4 particles/total pixels (assuming
an average particle diameter of 12 pixels). Except for areas without tracers, a number of five to eight
particles were on average present in interrogation windows of 32× 32 pixels. The portable telescopic
apparatus developed in [50] was installed on the downstream side of the bridge. The apparatus
featured a GoPro Hero 4 Black edition camera oriented with its axis orthogonal to the water surface.
A metre stick was placed on the right-side stream bank at the same level of the water surface for
image photometric calibration. The camera was set to full HD (1920× 1080 pixels) resolution and at
50 Hz acquisition frequency. A video was recorded for over 4 minutes, and 12 video sequences of
20 s each and subsampled to 25 Hz were extracted out of the original footage. Analyzed images were
1430× 1080 pixels in resolution (corresponding to a field of view of 7.1× 5.3 m2) and a bottom right
area of 552× 375 pixels displaying vegetation was masked with a black patch. Original RGB images
were converted to grayscale intensity by eliminating hue and saturation information and retaining the
luminance. To emphasize lighter particles against a dark background, images were gamma corrected
to darken midtones [51], Figure 1b.

2.1.2. A Moderate Flood Event in The Tiber River

A video recorded at the gauge-cam station on the Tiber River underneath the bridge “Ponte del
Foro Italico” in the city of Rome, Italy [52,53], on February 2015, at 7:40 a.m., was analyzed through
OTV, Figure 1c. The gauge-cam station acquires one-minute long videos every ten minutes through
a Mobotix FlexMount S15 weatherproof internet protocol camera. The camera comprises two optical
modules with independent sensors and lenses, whereby only footage from the right-side L25 lens
(82◦ angle of view and 4 mm focal length), which captured an area of 16.15× 12.11 m2, was retained for
the analyses. The optical axis is perpendicular to the water surface thus eliminating the requirement
of orthorectification. Also, the gauge-cam station features a system of two <20 mW green (532 nm
wavelength) lasers installed at 50 cm on both sides of the camera, Figure 1d. The lasers are activated
for 20 s at the beginning of each video, and generate highly visible reference points located 1 m apart
on the water surface. This laser system enables image photometric calibration. The frame acquisition
frequency of the gauge-cam station is automatically adjusted based on external illumination conditions
and, thus, varies for each captured clip. The overall frequency of the sequence of 410 images was
estimated to be 6.95 Hz as a weighted average of each clip’s frequency. Such a relatively low frequency
was sufficient to apply image-based streamflow measurement [18].

During the video, the transit of debris and vegetation was observable on the river surface due to
a moderate flood. Generally, floating material tended to clump together to form objects on the order
of 100× 100 pixels. On average, material had a frame-by-frame displacement of less than 15 pixels.
Over the entire image sequence, particle density was estimated to be 2.2× 10−6 particles/total pixels
(assuming an average particle diameter of 100 pixels). Large scale floating material tended to transit on
the right hand side of images. Image resolution was set to 1024× 768 pixels for both optical modules.
Images were affected by barrel distortion due to the wide-angle L25 lens. Fisheye distortion was
removed using the Adobe Photoshop “Lens correction” filter. Also, frames were further trimmed to
865× 530 pixels to remove highly distorted borders, Figure 1e.

2.2. Optical Tracking Velocimetry

2.2.1. Feature Detectors

Feature identification revolves around three main phases. First, points of interest are detected
based on distinctive locations inside images. For instance, corners and junctions are frequently
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considered candidate features [54]. Then, the neighborhood of the feature is described as a vector
and finally matched among different images, whereby the matching consists of computing a distance
between vectors. All of these phases are affected by noise and, depending on the selection of the
neighborhood, may require diverse computational times. Outdoors, image noise is considerable
and feature identification plays a key role in the computation of trajectories and flow velocity.
Also, even if several comparisons among feature detectors are available in the literature [55], changing
illumination and the presence of fluid flow in streamflow images pose serious challenges that have
been rarely investigated. Thus, in order to provide reliable guidelines for image-based streamflow
observations, we assessed the performance of five different feature detectors that are highly popular in
computer vision.

The good features to track (GFTT) approach identifies features based on their change of appearance
between subsequent images. In this method, good features are the ones that can be more reliably
tracked in image sequences, thus circumventing the requirement to define corners and points of interest
in images [56]. Further, GFTT assumes an affine motion model, where features can be identified not
only if they translate but also if images display deformation. The scale invariant feature transform
(SIFT) is an efficient object recognition system that transforms images into large collections of local
feature vectors. Features are invariant to translation, scaling, rotation, and moderately invariant to
illumination changes and affine projections [57]. Even if not as computationally efficient as alternative
algorithms, this approach has proved successful in numerous computer vision applications [58].
The features from accelerated segment test (FAST) directly addresses computation efficiency by
a machine learning approach that yields high quality features [59]. The algorithm classifies image
corners by considering a circle of sixteen pixels around a corner candidate and evaluating the intensity
of each pixel. The speeded-up robust features (SURF) stems from previous feature detectors and
improves their scale and in-plane rotation invariance [60]. Similarly, the oriented FAST and rotated
binary robust independent elementary features (ORB) detector builds on FAST and exhibits orientation
invariance and higher robustness to noise [61].

The robustness of the feature detection approach in case of high variance between successive
frames was investigated by subsampling the image sequences of a representative video on the Brenta
River at 12.5 Hz and 8.3 Hz. Reducing the frame frequency is crucial to minimize computational
times, thus enabling real-time and continuous image processing that is of paramount importance to
capture the evolving dynamics of hydrological processes. However, lower acquisition frequencies
also yield an increased difference between successive frames, thus invalidating the assumption of
intensity constancy. While the Lucas-Kanade approach can generally be adjusted to frequency to
partially mitigate this issue, we identified the minimum frequency at which OTV led to meaningful
results. Similar to frame acquisition frequency, image resolution greatly impacts computational times
and the suitability of the image processing method for real-time operation. To this end, we subsampled
the resolution of the image sequences to 720× 953 pixels and 576× 763 pixels. We then ran OTV with
the five different feature detectors on the subsampled frame sequences.

To fully inspect the performance of the detectors, we also evaluated their effectiveness at
frame-by-frame feature identification on a consistent representative image sequence on the Brenta
River. In our test, we computed the average number of features identified by each detectors over
the entire frame sequence. In addition, to verify if identified features also pertained to actual objects,
we compared the number of detected features to the total number of trajectories. Specifically, we set
the maximum number of trackable features among subsequent frames to 20,000. We then summed
the total number of trajectories output by the method for different feature detectors. Results were
also benchmarked to features randomly selected in the field of view, where the maximum number
of randomly identifiable features in each frame was again set to 20,000. Similar tests have already
been adopted in the literature to compare the performance of different detectors and inform their
selection [62]. Our test was executed on full HD images recorded at 25 Hz.
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2.2.2. Tracking Approach

The Lucas-Kanade algorithm is a sparse first-order differential technique that computes
spatio-temporal derivatives of image intensity. The method assumes that image intensity, I(x, t),
a function of both position, x = (x, y), and time, t, is conserved. Intensity constancy in image
translation can be formulated as I(x, t) = I(x − vt, 0), whereby v = (u, v)T indicates velocity in
(x, y) [20]. More generally, the optical flow equation, dI(x, t)/dt = 0, is expressed as a gradient
constraint equation,

∇I(x, t) · v +
∂I(x, t)

∂t
= 0 (1)

where ∇I(x, t) and
∂I(x, t)

∂t
indicate partial space and time derivatives and ∇I · v denotes the dot

product. According to [63], the residual function between images can be solved by the weighted least
squares principle, where weights are assigned to image subsets. The weighting procedure gives more
importance to pixels in the center of the subset.

In case of natural streamflow videos, images may display large pixel motion, which may lead
to inaccurate optical flow computation. To this end, we used the pyramidal Lucas-Kanade approach
where image resolution can be subsampled up to four levels [64]. Optical flow is then computed at the
lower image resolution and then propagated up to the original image. Basically, the initial guess for
pixel displacement is refined in a recursive fashion at higher resolution.

The algorithm was implemented in the open source computer vision (OpenCV) library in C++.
We used the pyramidal approach up to the fourth level with a search window of 15× 15 pixels in size.
Features identified through the five detectors were used as input to the method and then matched
in successive images. The iterative Lucas-Kanade algorithm was run until a maximum number of
20 iterations or when the search window moved by less than 0.03 pixels. Features were filtered out if
the relative gradient matrix had a minimum eigenvalue less than 0.001 [64].

2.2.3. Trajectory-Based Filtering

Once feature trajectories were determined as in Sections 2.2.1 and 2.2.2, they were post-processed
through a filtering procedure developed in [18] for PTV results. Similar to [65], the procedure aims
at retaining trajectories for velocity estimation only if they exhibit minimum variance of length and
angle of travel between successive images, and if the detected features proceed for a minimum length
in the field of view. The camera field of view is assumed to be directed with its width along the
river cross-section. Also, detected features are supposed to move forward (that is, their trajectories
should be fairly orthogonal to the river cross-section). These simple assumptions aim at reducing
“false” trajectories that may bias velocity results. In fact, slanted trajectories with respect to the stream
cross-section were frequently found to pertain to agglomerated features that separate while moving in
the field of view [66].

The filtering constraints can be summarized as follows. When two successive frames (that is,
frames k and k − 1) are considered, feature position vectors ~Xk and ~Xk−1 should satisfy the
following condition:

arctan

[
(~Xk − ~Xk−1) · j
(~Xk − ~Xk−1) · i

]
>

π

4
(2)

whereby j and i are unit vectors orthogonal and parallel to the river cross-section, respectively.
Equation (2) is verified between each pair of frames during the analysis. Trajectories are further
selected based on their length and slant. Namely, we only retain trajectories slanting up to 80◦ from
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the river cross-section and that extend for at least 20% of the height of the field of view (H). The first
condition is imposed through

arctan

[
(~Xend − ~Xstart) · j
(~Xend − ~Xstart) · i

]
>

4
9

π (3)

whereby ~Xend and ~Xstart indicate the feature position vectors in the final and first images of the
trajectory, respectively. The length of the trajectory is validated through

‖~Xend − ~Xstart‖ >
1
5

H. (4)

To minimize computational time, filtering through Equations (3) and (4) is implemented as soon
as tracking of a selected feature through the Lucas-Kanade algorithm is ended. Threshold values in
Equations (2)–(4) can be opportunely adjusted to account for the specific experimental conditions.

Streamflow velocity for each trajectory (V) is then determined as

V =
‖~Xend − ~Xstart‖

∆t
(5)

where ∆t is the time interval between the final and first images of the trajectory. Time-averaged
cross-sectional profiles obtained with OTV and the five different feature detectors were tested for
statistical significance through the analysis of variance (ANOVA), with level of significance, p, set to
p < 0.05.

2.3. Alternative Algorithms

Video data were processed with alternative correlation-based algorithms that are frequently
implemented in hydrological studies. Specifically, image sequences were analyzed with LSPIV, PTV,
and with the recently introduced PTV-Stream approach. PTV analyses were, in turn, applied both
without (“Unfiltered PTV”) and with (“Filtered PTV”) the trajectory-based filtering procedure. Details
on the procedures and implementation of LSPIV and PTV can be found in [18], while the PTV-Stream
approach as well as its implementation on the Brenta and Tiber Rivers are presented in [19]. On the
Brenta River, LSPIV was executed on sequences subsampled at 12.5 Hz and adopting the 1–2, 2–3
sequencing style. Standard direct cross-correlation was computed by setting the interrogation area to
32× 32 pixels and the grid size to 16× 16 pixels. The 2× 3-point Gaussian fit was used as sub-pixel
displacement peak estimator. Upper and lower thresholds (u ± 3σu, with u the mean velocity for
each analyzed frame pair and σu its standard deviation) were applied to velocity results. Consistent
parameters were set to analyze the video of the Tiber River.

PTV entailed particle identification through cross-correlation with a symmetric Gaussian kernel
(intensity grayscale level set to 130, standard deviation to 12 pixels, and correlation threshold set to 0.5).
Further, particle tracking was implemented using cross-correlation by interrogation area (interrogation
area set to 20 pixels, cross-correlation threshold to 0.4, and neighbor similarity percentage to 20%).
Analysis of the Tiber River image sequence with PTV encompassed consistent approach and parameters.
The intensity grayscale level was set to 90 while all other parameters were consistent with the analysis
on the Brenta River. PTV-Stream was implemented on videos of the Brenta and Tiber Rivers by setting
the luminance threshold for particle identification to ±50 and the particle area threshold to 35 pixels.
Frame-by-frame changes in particle areas were set to less than 20% or larger than 120% and the search
area was set to 20× 100 pixels.

2.4. Velocity Data Extraction and Comparison

To offer a comparison among different image-based techniques for data collected on the Brenta
River, the field of view was divided into eight parallel vertical regions 100 pixels-wide each.
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Such regions were selected in the center of the stream to exclude areas close to river banks, where tracers
were scarce. Average velocities and standard deviations inside regions were computed for each
technique. Specifically, velocities from OTV, PTV, and PTV-Stream were computed by averaging
values obtained from Equation (5) for each trajectory laying in the vertical regions. Regarding
LSPIV, time-averaged surface flow velocity maps were developed for each of the 12 image sequences.
The average velocity and standard deviation were computed by intersecting time-averaged maps
with vertical regions and averaging PIV cell values laying in such regions. Finally, for each method,
we averaged values with respect to the 12 image sequences.

Image-based data were validated against velocities measured with an OTT Hydromet C2 current
meter captured 3 cm below the water surface and at four locations along the stream cross-section
up to 3.5 m from the right-side river bank. Twelve replicates of the current meter measurements
were performed at each location; average velocities (vb) and standard deviations (σb) are reported in
Table 1.

Table 1. Average benchmark velocities (vb) and standard deviations (σb) measured with the current
meter in the Brenta River. Measurement locations are at 1, 2, 2.7, and 3.5 from the right-side river bank.

3.5 m 2.7 m 2 m 1 m

vb (m/s) 0.46 0.45 0.31 0.32
σb (m/s) 0.04 0.03 0.02 0.02

Average velocity and standard deviation data on the Tiber River were obtained by averaging
over the entire LSPIV time-averaged map and over the trajectories estimated with OTV, PTV,
and PTV-Stream. Results were compared to measurements from an RVM20 speed surface radar
installed next to the gauge-cam station that recorded an average surface velocity of 2.33 m/s during
the experiment.

3. Results

In this Section, we report results for the Brenta and Tiber Rivers. For each case study, we first
present velocimetry results obtained by analyzing video data with OTV. Then, we illustrate the
performance of the different feature detectors and tracking approach. Finally, we compare velocity
estimations to results from LSPIV, PTV, and PTV-Stream.

3.1. Assessment of OTV through Controlled Outdoor Tests in the Brenta River

OTV enabled successful extraction of the surface flow velocity of the Brenta River in moderate flow
conditions. This is remarkable since experimental videos featured homogeneously and continuously
seeded surfaces, which are inherently advantageous to correlation-based LSPIV and PTV rather than
to optical flow [34]. Nonetheless, a considerable number of trajectories (on the order of 1000) were
computed through OTV in each image sequence. All retained trajectories covered more than 20% of
the field of view and were several orders of magnitude more numerous than trajectories obtained
with the filtered PTV approach illustrated in [18]. Therefore, OTV was not severely affected by the
absence of continuous patterns in images nor by noise due to water reflections, and it may be suitable
for streamflow measurements in challenging environmental conditions.

3.1.1. Average Surface Streamflow Velocity

Figure 2 illustrates trajectories computed by OTV with the five different feature detectors for
a representative image sequence out of the 12 recorded on the Brenta River. The colorbar indicates
the velocity of each trajectory calculated as in Equation (5). Left-hand plots display all trajectories
identified by the method, while plots on the right-side only report trajectories that satisfy the filtering
constraints. All techniques successfully reconstruct the surface flow velocity profile in the stream
reach, with faster trajectories found in the center of the stream and slower ones close to the banks.
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Plots of unfiltered data report numerous low-velocity trajectories close to the left-side bank of the
stream, where the stream bed is rich in permanent vegetation.

FAST-based OTV successfully identifies and tracks features located at the bottom of images in
the shadowy area below the stream bridge, dashed rectangle in Figure 1b. This suggests that FAST is
robust to noise in the illumination conditions of the water surface. SIFT-based OTV proves instead the
most affected by changes in illumination conditions since many trajectories only start above the bridge
shadow. SURF and GFTT-based OTV show several filtered trajectories close to the right-side stream
bank, where the transit of artificially-deployed wood chips was rare. Thus, such detectors identify
features that do not necessarily exhibit a higher contrast with respect to the background, which is
a crucial property in case of unseeded water surfaces.

unfiltered trajectories filtered trajectories 

velocity m
agnitude 

[m/s] 
0.15 

0.70 

FAST FAST 

ORB ORB 

SIFT SIFT 

SURF SURF 

GFTT GFTT 
1 m 

Figure 2. Unfiltered and filtered trajectories obtained with optical tracking velocimetry (OTV) and
five different feature detectors for a representative video on the Brenta River. The colorbar indicates
velocity magnitude for each trajectory computed as Equation (5). Flow direction is upwards.



Remote Sens. 2018, 10, 2010 11 of 24

For a representative image sequence, in Figure 3, trajectories retained after the filtering procedure
are reported for each vertical region and all feature detectors. Consistent with Figure 2, SURF and
GFTT present a higher number of trajectories close to the right-side stream bank as compared to
alternative algorithms. The SIFT technique yields the highest number of trajectories in three vertical
bands out of eight, while the FAST algorithm leads to the lowest number of trajectories in seven
vertical regions.
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Figure 3. Number of trajectories per vertical region as obtained for a representative image sequence on
the Brenta River with the five different feature detectors.

Average surface flow velocity estimations obtained by OTV with the five feature detectors
for the 12 image sequences are reported in Figure 4. In Figure 4a, OTV results are illustrated for
all the detectors along with current meter data (black dashed line). The root mean square error
(RMSE) values between OTV results and the current meter data are also reported. In Figure 4b,
the coefficient of determination (R2) values computed between results from each feature detector
and the FAST method are showed. Average velocities are in good agreement among all procedures,
with an average of 0.47 m/s. Such a value is slightly above the current meter measurements close to
the center of the stream, which were taken at a depth of a few centimeters below the water surface.
All the approaches also exhibit similar standard deviations (error bars in Figure 4a) and R2 values.
By analyzing the time-averaged cross-sectional profiles in Figure 4a through ANOVA, the difference
among the techniques did not result statistically significant, thus supporting that all feature detectors
captured the general behavior of the flow.

3.1.2. Subsampled Video Acquisition Frequency

On average, particles moved by less than 6 pixels between consecutive frames in the Brenta
River. Minimum and maximum velocities estimated with all detectors were 0.157 m/s and 0.716 m/s,
respectively. By subsampling the acquisition frequency to 12.5 Hz and 8.3 Hz, frame-by-frame
displacement increased to 12 and 18 pixels for the maximum velocity and from to 2.5 and 3.8 pixels
for the minimum velocity. In Figure 5, time-averaged cross-sectional profiles are reported for the
five detectors and the three acquisition frequencies. Further, RMSE values between OTV results
and current meter data and R2 values computed with respect to the results at 25 Hz are showed.
Specifically, a 1430× 1080 pixels image sequence at frequencies of 25 Hz, 12.5 Hz, and 8.3 Hz was
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analyzed. The average velocity over the cross-section generally decreases up to a minimum of 0.44 m/s
in case of the ORB detector and at the frequency of 8.3 Hz. On the other hand, the average standard
deviation is not affected by frequency reduction, and therefore, even if the number of trajectories
decreases, the filtering procedure is successful at retaining only reliable trajectories. Average velocities
obtained with different feature detectors at the same frequency were not statistically different. Even if,
at low frequencies, average velocities tended to decrease, differences between average velocities
obtained with consistent feature detectors on frames subsampled at different frequencies were again
not statistically significant (p >> 0.05). Below the frequency of 7–8 Hz, OTV led to a sharp decrease in
average velocities well below realistic values.a b 

Figure 4. (a) Time-averaged surface flow velocity cross-sectional profiles obtained by processing the
12 image sequences on the Brenta River with OTV. Error bars indicate standard deviations. The black
dashed line illustrates average velocities obtained with the current meter. Root mean square error
(RMSE) values between OTV results and the current meter data are reported. OTV data obtained from
different feature detectors refer to consistent distances from the left stream bank as indicated with
brackets and dash-dotted lines; (b) R2 values computed between results from each feature detector and
the features from accelerated segment test (FAST) method.

3.1.3. Subsampled Image Resolution

In Figure 6, time-averaged cross-sectional profiles are reported for the five detectors and three
image resolutions: 1080× 1430 pixels, 720× 953 pixels, and 576× 763 pixels. Specifically, a 25 Hz
image sequence was sampled at 1430× 1080 pixels, 720× 953 pixels, and 576× 763 pixels in resolution.
RMSE values between OTV results and current meter data and R2 values computed with respect to the
results at 1080× 1430 pixels resolution are also showed in Figure 6. In the analysis of lower-resolution
images, input parameters to the Lucas-Kanade algorithm and the trajectory-based filtering procedure
were consistent with the ones adopted for images at the original resolution.
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Figure 5. Time-averaged surface flow velocity cross-sectional profiles obtained by processing the
12 image sequences on the Brenta River with OTV. Error bars indicate standard deviations. Black
markers pertain to 12.5 Hz and white markers to 8.3 Hz. The black dashed line illustrates average
velocities obtained with the current meter. RMSE values between OTV results and the current meter
data are reported. R2 values computed with respect to the results at 25 Hz are showed. OTV data
obtained from sequences sampled at different frequencies refer to consistent distances from the left
stream bank as indicated with brackets and dash-dotted lines.

The approach is minimally affected by decreased resolution and average velocities and standard
deviations are consistent with values obtained from full HD images. No statistically significant
differences are observable among average velocities obtained from consistent feature detectors on
images at different resolutions.

3.1.4. Feature Detector Performance

Table 2 reports the average number of features identified in individual frames with the five
different detectors in a representative image sequence on the Brenta River. Also, the total number
of tracked features in the entire image sequence are presented (we set the maximum number of
frame-by-frame detectable features to 20,000). The ORB detector is the most efficient at sensing features
in images, with almost twice the number of features detected with FAST. On the other hand, SIFT and
GFTT are the least efficient at identifying features but yield the highest number of tracked trajectories
in the image sequence. Thus, such approaches accurately identify objects moving on the water surface
whose trajectories were realistic and retained through the filtering procedure. Randomly selected
features also lead to a high number of tracked features retained in the filtering phase. Generally,
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the ORB detector results as the most affected by noise since a large number of the detected features
are filtered out from the computation (below the threshold of 20,000). The FAST technique instead
leads to an approximately consistent number of identified and then tracked features. Also, this is
the most computationally efficient technique that took less than a fifth of the time requested by the
SIFT-based approach to process the image sequence. Randomly selecting features in the field of view
also proves more computationally expensive than the FAST detector. On average, PTV techniques
led to the identification of less than 70 features per frame. Such a value was further decreased upon
trajectory-based filtering.

Figure 6. Time-averaged surface flow velocity cross-sectional profiles obtained by processing
the 12 image sequences on the Brenta River with OTV. Error bars indicate standard deviations.
Black markers pertain to 720× 953 pixels resolutions and white markers to 576× 763 pixels resolutions.
The black dashed line illustrates average velocities obtained with the current meter. RMSE values
between OTV results and the current meter data are reported. R2 values computed with respect to the
results at 1080× 1430 pixels resolution are showed. OTV data obtained from sequences sampled at
different resolutions refer to consistent distances from the left stream bank as indicated with brackets
and dash-dotted lines.
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Table 2. Frame-by-frame average number of detected features and total number of tracked features
with optical tracking velocimetry (OTV) and six different feature detectors for a representative image
sequence of 500 frames on the Brenta River.

Method Processing Frame-by-Frame Average Total Tracked
Time (s) Detected Features (num) Features (num)

FAST 43 19,098 18,076
ORB 61 37,968 18,325
SIFT 235 7656 24,119
SURF 83 10,076 21,887
GFTT 67 7788 24,747

Random 50 20,000 23,215

3.1.5. Comparison to Alternative Velocimetry Algorithms

In Figure 7, time-averaged cross-sectional profiles obtained with OTV are averaged with respect
to the 12 image sequences and compared to alternative algorithms and the benchmark current
meter measurements. RMSE and R2 values computed between each method and the current meter
data are also reported. The behavior of OTV techniques is generally consistent among different
detectors. Generally, OTV velocity estimates are slightly higher than benchmark measurements
since the current meter was deployed at 3 cm below the water surface. Consistent with PTV data,
OTV largely overestimates water surface velocity at 2 m from the right-side bank, where stream bed
irregularities may have influenced measurements with the current meter. Filtered PTV data exhibit
the lowest standard deviation probably due to the fact that much less trajectories are retained in
the computation with respect to OTV and unfiltered PTV. Unfiltered PTV instead shows the highest
standard deviation, and therefore, cross-correlation with a gaussian mask implemented in PTVLab [16]
may not be ideal to detect features on water surfaces in outdoor conditions. The recently introduced
PTV-Stream technique is in general agreement with OTV and PTV data but leads to higher standard
deviations. At 1 m from the right-side stream bank, only one trajectory is computed with PTV-Stream
and, therefore, the standard deviation is null. Finally, results from LSPIV are generally lower than
benchmark measurements as illustrated in [18].

In Figure 8, R2 values computed between each approach and the benchmark data obtained with
the current meter are illustrated. FAST-based OTV results exhibit the highest similarity to reference
data (R2 = 0.83). Good performance is also achieved with ORB-based OTV (R2 = 0.74) and the filtered
PTV (R2 = 0.70). The other PTV and OTV approaches present R2 values approximately equal to 0.60.
LSPIV results yield R2 = 0.49.

3.2. Proof of Concept Moderate Flood in the Tiber River

3.2.1. OTV Observations

Figure 9 displays unfiltered and filtered trajectories generated with OTV and the five different
feature detectors for the video on the Tiber River. The filtering procedure successfully eliminates the
influence of stationary reflections in the field of view by removing the low-velocity trajectories located
on the left of the field of view. On the other hand, the high velocity area is consistently identified
through all detectors on the right hand side of the image sequence. This region was also rich in floating
sediments, and several objects (debris, floating vegetation, etc.) could be observed over the entire
duration of the video. Since many trajectories do not extend for the entire field of view, it can be noted
that OTV is influenced by the bridge shadow that created two regions at different illumination parallel
to the image width, dashed rectangle in Figure 1e.
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Figure 7. Time-averaged surface flow velocity cross-sectional profiles obtained by processing the 12 image sequences on the Brenta River with all approaches.
RMSE and R2 values computed between each method and the current meter data are reported.
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Figure 8. R2 values computed between all the approaches and the benchmark current meter data.
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Figure 9. Unfiltered and filtered trajectories obtained with OTV and five different feature detectors for
the video on the Tiber River. The colorbar indicates velocity magnitude for each trajectory computed
as Equation (5). Flow direction is upwards.

3.2.2. Comparison to Alternative Velocimetry Algorithms

Table 3 reports all the values of average velocity and standard deviations obtained with the
different velocimetry approaches for the video of the moderate flood in the Tiber River. All methods
severely underestimate the actual velocity and this is probably due to the variable frame acquisition
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frequency, that considerably influences velocity estimation. Remarkably, the performance of techniques
that involve the trajectory-based filtering procedure is much better than LSPIV and unfiltered PTV
(Unf. PTV in Table 3). Thus, it can be inferred that, in challenging conditions, imposing a few
constraints on the general behavior of the flow may be highly beneficial for velocity estimations.
The low standard deviation observed for PTV-Stream can be explained by the fact that only a meagre
number of trajectories (slightly more than 20) are retained by the filtering procedure for velocity
computation. In case of filtered PTV (Filt. PTV in Table 3), slightly less than 70 trajectories are retained
for the computation against an average of more than 175,000 in case of OTV.

Table 3. Average velocity, standard deviation, number of trajectories, and processing time for the
video on the Tiber River and the five different feature detectors, as well as all velocimetry approaches.
The benchmark radar velocity was 2.33 m/s.

FAST ORB SIFT SURF GFTT LSPIV Unf. PTV Filt. PTV PTV-Stream

average velocity (m/s) 1.54 1.57 1.50 1.49 1.52 0.39 0.66 1.4 1.6
standard deviation (m/s) 0.32 0.38 0.36 0.34 0.35 0.07 0.27 0.2 0.09

trajectories (num) 214,884 223,706 163,599 144,735 149,834 – 19,000 68 24
time (s) 34 40 94 43 42 >3000 >3000 >3000 >1000

4. Discussion and Recommendations

4.1. Suitability of OTV for Streamflow Observations

OTV has proved efficient at providing information on the surface flow kinematics in outdoor
conditions based on video footage captured in two different experimental settings. In case of highly
seeded surfaces, where optical flow schemes do not typically outperform correlation-based methods,
the combination of automated feature detectors, sparse Lucas-Kanade, and trajectory-based filtering
yielded accurate velocity estimations, generally in agreement with benchmark manual data. In case
of the moderate flood on the Tiber River, the scheme was severely affected by unstable acquisition
frequency and velocities were largely underestimated. In experiments on the Brenta River, optical
flow-based velocities displayed very low standard deviations, thus supporting the evidence that the
variable frequency of the footage of the Tiber River may have biased the computation of surface
velocity. In both sets of experiments, the method generated up to several thousands of trajectories
even in regions of the field of view where the transit of actual objects could not be visually observed.
This fact is of fundamental importance in case of difficult-to-access environments, where deploying
tracers may be hampered. As expected, the need for a trajectory-based filtering procedure in outdoor
conditions was essential to guarantee that objects rather than stationary water reflections or noise due
to illumination were detected and tracked.

In both data sets, the different feature detectors led to consistent results. The FAST approach
proved as the most efficient due to its balance between identified and effectively tracked and filtered
features. Computational times required by the FAST implementation were generally shorter than
other techniques, even with respect to the random selection of features in the field of view. The SIFT
and ORB algorithms were more significantly affected by changes in illumination, which are typical in
natural settings. The SIFT approach was successful at identifying numerous features but then also led
to increased processing times. Interestingly, the SURF and GFTT detectors recovered many features in
regions that did not present very high contrast. This fact could be advantageous in case of mirror-like
uniform water surfaces and low flow regimes, where the transit of floaters is much scarcer.

The methodology proved relatively insensitive to image resolution while acquisition frequency
was found to be a key control to its performance. In experiments on the Brenta River, a frame
acquisition frequency lower than 7–8 Hz led to a sharp decrease in velocity estimation. Similar findings
have also been observed in PTV-Stream implementations [19]. Of course, the selection of the frame
acquisition frequency is related to the size of the field of view and to flow velocity. Therefore, based on
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our findings, a preliminary analysis on subsampled video sequences may be beneficial to inform the
installation of permanent gauge-cams or instrumentation in the field.

4.2. Comparison to Alternative Velocimetry Algorithms

OTV results were generally in good agreement with the filtered PTV method and PTV-Stream.
The improved performance of procedures that involve filtering of the trajectories confirms that this
is a crucial phase to retain reliable trajectories and, therefore, generate accurate velocity estimations.
In addition, the filtering procedure only requires minimal information that can be easily gathered by
a preliminary inspection of the field of view. Different from filtered PTV and PTV-Stream, OTV allowed
for generating a much more significant number of trajectories, which is beneficial to estimate the
uncertainty of velocity estimations, and it also required less input since the detection and tracking
is fully automated. Another advantage with respect to traditional PTV is the independence of OTV
on the shape and size of the tracers that allows for improved performance in case of naturally
occurring floaters [34,39]. Compared to LSPIV and traditional unfiltered PTV, OTV led to more
robust velocity estimations with lower standard deviations. Our findings demonstrate that traditional
correlation-based methods suffer from noise, dishomogeneously seeded surfaces, and from the
irregularities that are typical of outdoor settings. While such methods may be efficiently implemented
in controlled settings, OTV may instead be a valid alternative in complex settings.

OTV was also the most computational efficient among the methods presented in this work.
Processing an image sequence of the Brenta River required approximately 2 min on a personal computer
(×86_64 architecture with an AMD Ryzen 7 1700X eight-core processor, CPU ranging from 2.2 GHz
to 3.4 GHz, 2 threads per core, and total memory of 16.4 Gb) against the 17 min (with a deviation
of 7 min on an ASUS laptop with an Intel Core i7 2670QM Processor, CPU ranging from 2.2 GHz to
3.1 GHz, 2 threads per core) taken by PTV-Stream, which is a custom-made procedure developed in
Java. The computational times required for PTV and LSPIV processing with PTVLab and PIVLab are
two orders of magnitude longer than OTV.

4.3. Criticalities and Future Developments

The efficiency and robustness of OTV support its implementation for real-time streamflow
observations through gauge-cams. We foresee that processing units may be integrated in prototypes
similar to the one installed on the Tiber River to generate spatially distributed velocity data at high
temporal resolution. Of course, extensive calibration and optimization of the algorithms would
be necessary to enable fast computation on simple processing units. In addition, further efforts
are necessary to validate the performance of the feature detectors and the tracking scheme in even
more diverse flow regimes and illumination settings. For instance, generating results in case of
extremely scarce illumination or at night is still an open problem. In some other instances, the presence
of image subregions that display highly different illumination, such as, for instance, underneath
bridges, may lead to shorter trajectories (that is, the tracking is typically interrupted when the feature
crosses two areas where the average intensity is remarkably different). Similarly, rapid changes in the
illumination may introduce several problems in recovering long and reliable trajectories. On the other
hand, preliminary tests on mirror-like surfaces have highlighted that the absence of objects visible with
a naked eye is not crucial to apply OTV. In fact, the feature detectors successfully identify minimal
changes in the intensity of the water surface that can be regarded as tracers.

OTV results were developed both in case of shallow depth (the Brenta River water level was
0.41 m deep at the time of the experiments) and rather deep stream (the water level was greater than
7 m in the Tiber River at the time of the experiment). In the Brenta River, bottom-reflected radiance was
non-negligible; however, it did not affect the accuracy of surface flow velocity measurements. On the
other hand, in the Tiber River, higher turbidity and depth should enhance the visibility of surface
tracers and flow velocity estimation. Nonetheless, in this latter case, the irregular frequency of image
sequences controlled the accuracy of the method. Interestingly, when the bottom-reflected radiance is
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dominant (that is, especially in shallow streams) image data could also be utilized for stream depth
retrieval [67], thus leading to a flexible and integrated discharge measurement approach.

Establishing standard protocols and guidelines for the implementation of OTV in different settings
is another important issue to be addressed in the future. Even if innovative observational techniques
and approaches are blossoming in hydrology [68], many of these multidisciplinary methods are not
validated and taken to the maturity of traditional techniques. In this respect, very few initiatives are
currently aiming at leveraging the potential of new methods through the coordinated harmonization
of protocols and techniques [69].

Another criticality and future endeavor entails the computation of flow discharge and the
establishment of rating curves from OTV. Even if some proof-of-concept experiments have been
conducted to demonstrate discharge estimation from image-based methods [70,71], this is still an open
problem in hydrology. We foresee that the integration of OTV and the methodologies by [72,73] for
the estimation of mean velocity in open channels may be beneficial for advancing current practice in
remote hydrological observations.

5. Conclusions

A novel optical flow scheme, optical tracking velocimetry (OTV), was introduced for remote
streamflow observations in natural settings. The approach encompasses automated feature detection,
tracking through the differential sparse Lucas-Kanade algorithm, and trajectory-based filtering from
a priori known information on the flow direction. The methodology was tested on two diverse image
data sets: a set of videos collected on the Brenta River, where artificial seeding was provided, and the
footage of a moderate flood captured by a gauge-cam on the Tiber River. Average surface flow velocity
estimations on the Brenta River were in good agreement with the current meter measurements for all
the five feature detectors. Velocity results for the Tiber River were instead more severely influenced by
unstable frame acquisition frequency.

Different from alternative correlation-based approaches, OTV led to a number of trajectories on
the order of several thousands. Out of the tested feature detectors, the FAST algorithm proved the
most computationally efficient and stable in terms of number of features identified and then tracked.
OTV was only mildly affected by low image resolution and led to acceptable results even in case of
rather low image frequencies (7–8 Hz with respect to an average surface flow velocity on the order
of 0.4–0.5 m/s). The methodology highly benefited from a posteriori trajectory-based filtering that
only retains trajectories pertaining to actual objects transiting in the field of view. OTV is inherently
suited for real-time implementations on gauge-cams, even if further validation and standardization of
protocols are necessary in a wide array of hydrological settings.

Supplementary Materials: The following is available online at http://www.mdpi.com/2072-4292/10/12/2010/
s1, Video S1: Brenta_analysis.avi.
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