
19 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Published Version:

Work-in-Progress: Quantized NNs as the Definitive solution for inference on low-power ARM MCUs?

Published:
DOI: http://doi.org/10.1109/CODESISSS.2018.8525915

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/652922 since: 2018-12-19

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/CODESISSS.2018.8525915
https://hdl.handle.net/11585/652922


	
	
	
	
	
	
	

	
	
	
	
©	2018	IEEE.	Personal	use	of	this	material	is	permitted.	Permission	from	IEEE	must	be	obtained	for	all	other	uses,	in	any	current	or	
future	media,	including	reprinting/republishing	this	material	for	advertising	or	promotional	purposes,	creating	new	collective	
works,	for	resale	or	redistribution	to	servers	or	lists,	or	reuse	of	any	copyrighted	component	of	this	work	in	other	works	

This	is	the	post	peer-review	accepted	manuscript	of:	
	
M.	Rusci,	A.	Capotondi,	F.	Conti	and	L.	Benini,	"Work-in-Progress:	Quantized	NNs	as	the	Definitive	Solution	for	
Inference	on	Low-Power	ARM	MCUs?",	in	Proceedings	of	the	International	Conference	on	Hardware/Software	
Codesign	and	System	Synthesis,	Turin,	Italy	—	September	30	-	October	05,	2018.	
doi:10.1109/CODESISSS.2018.8525915	
	
The	published	version	is	available	online	at:	https://ieeexplore.ieee.org/abstract/document/8525915		
	



Work-in-Progress: Quantized NNs as the Definitive
Solution for Inference on Low-Power ARM MCUs?

Manuele Rusci
DEI, University of Bologna

manuele.rusci@unibo.it

Alessandro Capotondi
DEI, University of Bologna

alessandro.capotondi@unibo.it

Francesco Conti
DEI, University of Bologna

D-ITET, ETH Zurich
f.conti@unibo.it

Luca Benini
DEI, University of Bologna

D-ITET, ETH Zurich
luca.benini@unibo.it

Abstract—High energy efficiency and low memory footprint
are the key requirements for the deployment of deep learning
based analytics on low-power microcontrollers. Here we present
work-in-progress results with Q-bit Quantized Neural Networks
(QNNs) deployed on a commercial Cortex-M7 class microcon-
troller by means of an extension to the ARM CMSIS-NN library.
We show that i) for Q = 4 and Q = 2 low memory footprint
QNNs can be deployed with an energy overhead of 30% and
36% respectively against the 8-bit CMSIS-NN due to the lack of
quantization support in the ISA; ii) for Q = 1 native instructions
can be used, yielding an energy and latency reduction of ∼3.8×
with respect to CMSIS-NN. Our initial results suggest that a
small set of QNN-related specialized instructions could improve
performance by as much as 7.5× for Q = 4, 13.6× for Q = 2
and 6.5× for binary NNs.

Index Terms—Machine Learning, Quantized Neural Network,
ARM Microcontrollers

I. INTRODUCTION

Energy efficiency is key for enabling Deep Learning (DL)
based data analytics performed directly at the edge in un-
obtrusive, low-power devices such as Micro-Controller Units
(MCUs). However, commercial MCUs are typically limited
in terms of computational capabilities and onboard memory,
making aggressive software and algorithmic optimizations
absolutely necessary if one wants to deploy popular DL al-
gorithms such as deep convolutional neural networks (CNNs).
To tackle the first requirement, ARM recently proposed the op-
timized CMSIS-NN library [1], which maximizes performance
and energy efficiency of common DL kernels on top of Cortex-
M series cores. This library, however, only supports 16-bit and
8-bit fixed-point data, which means that even relatively small
CNN topologies may exceed on-chip memory.

A recent trend to reduce the footprint of CNNs is the aggres-
sive quantization of parameters weights and/or activations with
a precision lower than 8 bits. Competitive end-to-end accuracy
has been demonstrated on several public datasets even using
purely binary weights and activations [2]. However, despite the
memory savings of binary NNs, it is still under active debate
whether they represent the best energy-accuracy tradeoff, as 2-
and 4-bit quantized NNs have demonstrated superior accuracy
with comparable energy cost in other cases, including complex
visual classification and detection problems [3], [4].

This work presents the deployment and evaluation on a
ARM Cortex-M7 of low-precision convolutional kernels using
4, 2 or a single bit to represent data, defining the INT-4/2/1
formats accordingly (Sec. II). To this end, we extended the
ARM CMSIS-NN library and ran our experiments on an

Source code is available at https://github.com/EEESlab/CMSIS NN-INTQ.
This project was supported in part by the EU’s H2020 programme under grant
no. 732631 (OPRECOMP).

STM32-H743 MCU. Our initial results indicate that: i) despite
the reduction in memory bandwidth requirements, the INT-4/2
convolutional kernels suffer significant runtime overhead with
respect to the hardware-supported 8-bit quantization, which
could be removed only if the ISA supported efficient sub-
byte scalar product operations; ii) the INT-1 kernel shows a
3.8× higher energy efficiency thanks to the reduced amount
of memory accesses and the bitwise operations featured by
the CPU datapath. Still, efficient popcount support at the ISA
level would lead to significant speed-ups in binary network
inference; this is already available in ARM Cortex-A class
cores (VCNT instruction) and has been shown also in the
context of low-power MCU-class cores [5].

II. INT-Q FORMAT & QNN IMPLEMENTATION

The approach of Hubara et al. [2] generalizes the quan-
tization of real-valued weights/activations w to Q-bit signed
integers by means of the following function q:

q(w) = clip[−1,1)
(
2−(Q−1) · round(w · 2Q−1)

)
, (1)

where clip[a,b)(x) = max(a,min(x, b)). q(w) is a fixed-point
fractionary number; we define the integer W = q(w) ·2Q−1 as
the INT-Q representation of w. If both weights and activation
inputs are INT-Q values, the convolution becomes an integer
sum-of-products operation:

ϕ(w, x) = 2−2(Q−1)
∑
i∈C

WiXi
.
= 2−2(Q−1) Φ(W,X) (2)

where C is the set of input channels, ϕ indicates the
convolution operation. The partial results for the accumulation
of Φ(W,X) feature a higher precision, INT-16 for the purpose
of this work.

We focus on the case of Q = 1, 2, 4 bits as these are
the most natural sub-byte data types to fit within the 32-bit
registers of a common MCU. Similarly to the CMSIS-NN,
we developed a INT-Q convolutional kernel which includes an
Unpack function to i) extract INT-Q parameters and cast them
to an INT-16 representation and ii) reshape a receptive field tile
into an element array. The convolution is then implemented as
a matrix multiplication, which leverages the 2xINT-16 MAC
instruction supported by the ARMv7-M ISA DSP extention
(SMALD). Compared with the baseline CMSIS-NN scenario,
the extraction of 2-,4-bit parameters presents nearly a 2.5×
higher number of operations.

TABLE I
SIZE OF 256×128×3×3 CONV ON 128×16×16 INPUT

Datatype Weights Activations Thresholds Total
FIXED-8 288 kB 96 kB 0.25 kB 384.25 kB
INT-4 144 kB 48 kB 4 kB 196 kB
INT-2 72 kB 24 kB 1 kB 97 kB
INT-1 36 kB 12 kB 0.5 kB 48.5 kB



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

FIXED-8 INT-4 INT-2 INT-1

La
te

nc
y

L2-SRAM L1-D$ L1-DTCM

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

FIXED-8 INT-4 INT-2 INT-1

En
er

gy

L2-SRAM L1-D$ L1-DTCM

Fig. 1. Normalized latency and energy consumption of 2D spatial convolution
benchmark on STM32-H743.

Output values, which stores the accumulation of partial
results (INT-16), have to be compressed back into Q bits using
a staircase function that generalizes (1):

Y = q
(
ϕ(x)

)
=

2Q−1−1∑
p=−2Q−1

p · χ[τp,τp+1)

(
Φ(W,X)

)
(3)

where χs(·) is the characteristic function of the interval s.
Φ(W,X) and the τ thresholds are INT-16 and hence neither
(2) nor (3) need any floating point operation1– the whole layer
can be executed entirely in the integer domain. The staircase
function is optimally implemented by a balanced binary tree
where an INT-16 comparison takes place at every node.

As a special case, INT-1 binarization can be redefined
equivalently as W = sign(w); binary convolution reduces to:

Φbin(X) = popcount(W xnor X) (4)

Contrary to the general INT-Q case, the xnor operation can
be performed bitwise with no need of casting to INT-16. The
accumulation, performed by popcount, still requires INT-16
precision. The final binarization, as in the INT-Q case, is per-
formed by comparing Φbin(X) with an INT-16 threshold [6].

III. EXPERIMENTAL RESULTS & DISCUSSION

To evaluate our quantized extension to CMSIS-NN, we pro-
filed the execution of a 256×128×3×3 convolutional layer on
a 128×16×16 input tensor, sweeping all the INT-Q datatypes
supported and the CMSIS-NN baseline (FIXED-8). We used
a high-performance STM32-H743 MCU, equipped with an
ARM Cortex-M7 running at 384 MHz, 16 kB of L1 data cache
(which can be deactivated), 128 kB of L1 scratchpad called
Data Tightly Coupled Memory (L1-DTCM), 512 kB of SRAM
memory. Table I shows the memory footprint for weights,
activations and thresholds for FIXED-8 and INT-4/2/1; only
INT-2/1 fit in L1-DTCM.

Figure 1 reports latency and energy consumption using
SRAM with no cache (L2-SRAM), with active cache (L1-D$)
and, when the problem fits it, using the manually managed
scratchpad (L1-DTCM). All results are normalized with re-
spect to FIXED-8 with L1-D$. Naturally, the lower bandwidth

1The τp thresholds absorb bias, batch normalization, and the 2−2(Q−1)

factor coming from ϕ = 2−2(Q−1)Φ. Specifically, considering the batch-
normalized y = γ/σ(b+ϕ−µ) +β) (where b is the bias, γ, β, σ, µ are the
batch normalization parameters), the thresholds are

τp =
⌈
2Q−1

(
p · σ/γ − 2Q−1 · (b− µ) + β · σ/γ

)⌉

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

FIXED-8

La
te

nc
y

OtherUnpackCompute

INT-4 INT-2 INT-1

ARMv7-M + DSP ISA
QNN-augmented ISA

ARMv7-M + DSP ISA
QNN-augmented ISA

1.0

0.31

1.28

0.17

1.36

0.10

0.26

0.04

Fig. 2. Breakdown of contributions to latency in the L1-D$ case and
projection to a QNN-augmented ISA.

required when the precision is dropped results in lower impact
from memory latency in the L2-SRAM case. Execution time,
however, does not drop linearly because of the additional
instructions for the INT-4/2 to INT-16 casting. The full impact
of this effect is visible in the L1-D$ case, where memory
latency is hidden. This results in a latency increase of 28% and
36% for INT-4 and INT-2, respectively. Conversely, the INT-
1 kernel shows a ∼3.8× lower execution time by exploiting
the bitwise operations supported by the ISA. Similar results to
the L1-D$ can be seen in the L1-DTCM case, when the full
problem fits in. For what concerns the energy consumption,
INT-4 and INT-2 cases are again less optimal than FIXED-
8 (+30% and +36%, respectively), due to the extra-costs of
data extraction and casting. Using L1-DTCM instead of L1-
D$ provides a marginal energy advantage.

The breakdown of the contributions to latency for the L1-
D$ case is reported in Figure 2. Except for the INT-1 case,
the overall workload is evenly split between Unpack opera-
tions and Compute 2xINT-16 SIMD instructions, as supported
by the ARMv7-M ISA. The INT-1 does not have Unpack
overheads because XNOR convolutions are supported by the
current ISA. However the popcount is software-emulated,
leaving further space for improvements.

Our estimates show that the performance of low-precision
kernels can be greatly enhanced by extending the ISA with
QNN-oriented instructions, on the line of what is done for
INT-16 – this would fully eliminate Unpack latency, as well
as compress Compute time thanks to SIMD vectorization.
We estimate the latency gains in case of a QNN-augmented
ISA supporting vectorized MAC instruction for low precision
data types INT-8/4/2/1. The analysis reveals potential improve-
ments up to 3.2× (FIXED-8), 7.5× (INT-4), 13.6× (INT-2),
6.5× (INT-1) in terms of execution time, enabling highly
desirable downscaling of both execution time and memory
footprint together with data type precision.

REFERENCES

[1] L. Lai et al. Cmsis-nn: Efficient neural network kernels for arm cortex-m
cpus. arXiv:1801.06601, 2018.

[2] I. Hubara et al. Quantized neural networks: Training neural networks
with low precision weights and activations. arXiv:1609.07061, 2016.

[3] B. Moons et al. Minimum energy quantized neural networks. In 2017
51st Asilomar Conference on Signals, Systems, and Computers, pages
1921–1925, Oct 2017.

[4] T. B. Preußer et al. Inference of quantized neural networks on hetero-
geneous all-programmable devices. In 2018 Design, Automation Test in
Europe Conference Exhibition (DATE), pages 833–838, March 2018.

[5] M. Gautschi et al. Near-Threshold RISC-V Core With DSP Extensions
for Scalable IoT Endpoint Devices. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 25(10):2700–2713, October 2017.

[6] M. Rusci et al. Design automation for binarized neural networks: A
quantum leap opportunity? In Circuits and Systems (ISCAS), 2018 IEEE
International Symposium on. IEEE, 2018.


	frontespizio_wip_esweek
	ESWEEK_2018_CAMERAREADY

