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Exploring Arm Posture and Temporal Variability in Myoelectric Hand
Gesture Recognition

Bojan Milosevic1, Elisabetta Farella1 and Simone Benatti2

Abstract— Hand gesture recognition based on myoelectric
(EMG) signals is an innovative approach for the development
of intuitive interaction devices, ranging from poliarticulated
prosthetic hands to intuitive robot and mobile interfaces. Their
study and development in controlled environments provides
promising results, but effective real-world adoption is still
limited due to reliability problems, such as motion artifacts
and arm posture, temporal variability and issues caused by
the re-positioning of sensors at each use. In this work, we
present an EMG dataset collected with the aim to explore
postural and temporal variability in the recognition of arm
gestures. Its collection of gestures executed in 4 arm postures
over 8 days allows to evaluate the impact of such variability on
classification performance. We implemented and tested State-
of-the-Art (SoA) recognition approaches analyzing the impact
of different training strategies. Moreover, we compared the
computational and memory requirements of the considered
algorithms, providing an additional evaluation criteria useful
for real-time implementation. Results show a decrease in the
recognition of inter-posture and inter-day gestures up to 20%.
The provided dataset will allow further exploration of such
effects and the development of effective training and recognition
strategies.

I. INTRODUCTION

The Electromyogram (EMG) is the biopotential signal
resulting from muscular activity, it can be sensed using non-
invasive surface electrodes and processed to implement myo-
electric Human-Machine Interfaces (HMIs). Recent research
highlights its potential to enable new interaction paradigms
in applications such as natural prosthetic control [1], robot
interaction [2], game or mobile interfaces [3]. Hand gesture
recognition based on forearm EMG signals is an enabling
technology for the development of advanced and intuitive
interaction strategies [4]. Its application to the development
of naturally-controlled poliarticulated hand prosthesis is an
interesting research challenge with promising results and
the potential to dramatically improve the quality of life for
forearm amputees [5], [6].

Additional application scenarios include HMI for indus-
trial robot control [7], [8], interactions for virtual environ-
ments [9] or rehabilitation [10]. Industrial interest and the
availability of first commercial solutions taking advantage
of EMG-based interaction highlight the potential of this
approach and its wider use [11], [12].

Several studies have proven recognition capabilities in
controlled environments, but effective real-world adoption
of EMG-based HMIs is still limited due to reliability
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problems [11], [13]. Research efforts now focus on more
complex evaluations including postural effects and long
term reliability [14], however the efforts of the research
community are still fragmented and suffer from the lack of
common benchmarks and datasets suitable for the analysis
of variability.

In this work, we present a dataset, which aims to ex-
plore the effects of arm posture and temporal variability
in myoelectric hand gesture recognition. Building on the
preliminary analysis in [15], the dataset includes 7 subjects
performing 6 discrete gestures in 4 arm postures and repeated
for 8 days, totaling 224 independent sessions. The acquisition
is based on 4 commercial bipolar electrodes interfaced with
an embedded 16-bit ADC, providing a repeatable setup suit-
able for integrated prosthetic controllers [16]. Its composition
and acquisition setup make it the first EMG dataset to date
to include both postural and temporal variability and the
public availability1 will help further research efforts in the
development of reliable myoelectric HMIs.

With the collected data, we analyze SoA recognition
approaches, focusing on the impact of the composition of
training and testing data. In particular, we analyze intra-
(training and test from same posture/day) and inter-(training
and test from different postures/days) combinations, which
highlight the impact of such variability on the different
algorithms. Results show a classification accuracy higher
than 90% for intra-posture and day analysis, which suffers a
degradation of up to 20% when testing on data from different
postures or days, in accordance with existing literature [17],
[18]. Therefore, in this paper we demonstrate that accuracy
decline is mitigated by using combinations of data from
multiple sessions to train the recognition algorithms and the
presented dataset provides a unique opportunity to further
develop effective training strategies.

As an additional contribution, we compare the selected
recognition algorithms in terms of computation and memory
needs, considering both training and prediction requirements.
We observe that different algorithms with different com-
putational loads are similarly affected by data variability
and similarly improves their performance with the training
set. This is of paramount importance when selecting an
algorithm for a real-time implementation targeting embedded
and resource-constrained platforms.

II. RELATED WORK

The influence of arm posture during the execution of ges-
tures is an important effect to be addressed when evaluating

1github.com/simonebenatti/EMG_UNIBO_FBK_DATASET



Fig. 1. Data acquisition setup and the architectural diagram of the acquisition board.

recognition strategies. The work in [17] evaluates feature
extraction approaches to classify 8 discrete gestures in 5
arm postures, while [19] evaluates a regression technique to
proportionally estimate wrist movements in 6 arm postures.
The recognition of 6 different gestures in 3 arm orientations
is analyzed in [20] and all the three works report similar
findings with recognition accuracy above 90% when training
and testing with data from the same postures. However,
performance declines of up to 20% when training and testing
are performed on data from different postures.

Long term use and temporal reliability are further effects
to be addressed, including issues such as fatigue, user adap-
tation and the variability introduced from the re-positioning
of electrodes at each data collection session. In [18], one
subject performed 10 discrete gestures over a period of
21 days, for a total of 121 sessions and such data was
used to test commonly adopted algorithms when trained on
different combinations of preceding sessions. Results show
that training on the first 5 sessions caused mean errors higher
than 20%, while training on the latest 5 or all previous ses-
sions lowered the mean error at 10-12%. In [21], 5 subjects
performed 8 gestures over 5 days and intra-day accuracy was
evaluated by random 5-fold cross validation, while inter-day
accuracy was evaluated training with a whole day’s session
and testing on all the others. In this case, the authors observed
that the classification performance decreased monotonically
on average by 4.1% a day. User adaptation in the execution
of 13 gestures over 11 days was studied in [22]. The authors
evaluated between-day performance training on one day at
a time and testing on the next day and on the 3rd day. The
results show that in both cases the error is higher for the
first days and then decreases, indicating that the differences
in gesture execution decrease over time.

The above works provide interesting results on the effects
of postural or temporal variability, however they do not
provide the collected data and hence limit the research
efforts towards improvement. Significant contribution in this
direction was provided by the Ninapro database [23], which
collects acquisitions totaling 67 subjects performing up to
52 hand movements. It focuses on gesture and subject
variability collecting single day sessions, but the authors
recently published an extension with data from 10 subjects

performing 7 gestures over 5 days, with 2 sessions per day
[24]. The recognition of afternoon sessions when training
on morning data shows a decrease in accuracy of 27%. The
dataset presented in this work provides the widest variability
to date, including both postural and temporal evaluations
with a total of 224 independent sessions. Such features allows
us to study the performance of classification approaches in
a more realistic scenario and to evaluate training approaches
capable to improve the recognition accuracy.

III. MATERIALS AND METHODS

A. EMG signal

The EMG signal is a major index of the muscular activity.
The depolarization of the tissue cell membrane, caused by
the Na+ and K− ions flow, propagates along the fibers
during a muscular contraction. Such stimulus starts from the
central nervous system and goes through the motoneurons
that are innervated in the muscular tissue. These potentials
are named Action Potentials (APs) and they can be detected
by an instrumentation amplifier with the positive and negative
terminals each one connected to 2 metal plates placed on the
skin surface. The superposition of all the underlying APs
detected by the amplifier forms the EMG signal.

B. Acquisition Setup

The EMG signal amplitude ranges from 10µV to 10mV ,
depending on size and distance of the muscles underlying
the electrodes, while the signal bandwidth stays within
2kHz. Several noise sources affect such signals, e.g. motion
artifacts, floating ground noise, crosstalk and Power Line
Interference (PLI) [25]. In order to provide a reliable and
repeatable setup, we used a commercial sensor, the Ottobock
13E200 pre-amplified single-ended EMG electrode. It ampli-
fies and integrates the raw EMG signal to reach an output
span of 0−3.3V , suitable for the single-ended interface of the
ADC of an embedded microcontroller. The sensors integrate
an analog notch filter to remove the PLI noise, while their
bandwidth spans between 90 and 450Hz. The output analog
signals were acquired with a custom embedded board based
on an NXP K40 ARM Cortex M4 microcontroller equipped
with an internal 16-bit SAR ADC [26]. The architectural
diagram of the board is shown in Fig.1. Digitalized signals



Fig. 2. Classification rates when training and testing using different splits from the same session, averaged across all subjects. Left: average for all data;
Center: average for the different arm postures; Right: average for the different days.

were then streamed via Bluetooth to a laptop where they
were stored and used for offline data analysis performed in
Matlab.

C. Experimental protocol

For the dataset collection we selected common hand
gestures used in daily life, i.e. power grip, 2 fingers pinch
grip, 3 fingers pinch grip, pointing index and open hand. We
also included the rest position, recorded when muscles are
relaxed between 2 subsequent movement repetitions. During
the experiment, the subjects worn an elastic armband with 4
Ottobock sensors placed on the forearm muscles (Fig. 3)
involved in the selected movements (i.e. extensor carpi
ulnaris, extensor comunis digitorum, flexor carpi radialis and
flexor carpi ulnaris). Sensors were placed on the proximal
third at 30mm respectively on the left and on the right side
of 2 axial lines ideally traced on the forearm. No markings
were used for the positioning of the sensors, but for each
session they were carefully placed at the same position on
the subject’s arm.

The data collection includes 7 healthy subjects (all male,
29.5 ± 12.2 years) with gestures acquired in 4 sessions
per day, one for each posture, over 8 days totaling 224
independent sessions. The study was approved by the lo-
cal ethics committee and the subjects signed an informed
consent prior to their participation. Each session contains
10 repetitions of each gesture, with 3 second contractions
interleaved by 3 seconds of muscular relaxation (i.e. the
rest gesture). The collected arm postures are: proximal (P1),
distal (P2), distal with the palm oriented down (P3) and distal
with the arm lifted up by 45 degrees (P4). The posture and
gesture sequences were randomized at each session. At the

Fig. 3. Forearm muscle structure and sensors placement.

end of a session, each trace has been visually inspected to
check the quality of the acquisition. Gesture segmentation
was performed with a combination of manual inspection and
an adaptive threshold to separate contractions from rest. The
dataset is made publicly available with a series of Matlab
scripts, to help users in its analysis.

D. Data Analysis

Several machine learning algorithms, with varying ap-
proaches regarding signal acquisition, pre-processing and
feature extraction have been successfully applied to EMG
gesture recognition [4]. In this work, we aim to exploit the
postural and temporal variability represented in the dataset to
analyze the performance and for well established recognition
approaches. Such analysis allows us to get a step out of
the lab and closer to the complexity of real-life scenarios.
The algorithms we choose to compare are: Support Vector
Machine (SVM), Neural Networks (NN), Random Forest
(RF) and Linear Discriminant Analysis (LDA). Recently,
also deep learning techniques have been used with promising
results when applied to large datasets and multidimensional
inputs [27]. However, with a more limited setup such as the
one used here, the improvement over standard techniques is
limited [28]. This work does not include the deep learning
approaches, which will be considered for future work, as
we want to focus on the impact of different training strate-
gies and on the comparison of the most used and robust
approaches for EMG classification.

We use a low-pass filter as the pre-processing stage and
we feed such filtered signals as input for the recognition
algorithms without further feature extraction. Such choice
allows us to provide a common processing pipeline for all the
considered algorithms and was based on preliminary analysis
and literature results showing good performance of similar
features such as the mean absolute value [23], [24].

A preliminary analysis was also used to optimize the
parameters of each algorithm. In particular, we used a subset
of 32 randomly selected sessions and performed a grid search
for the main algorithm variants and their parameters. The
resulting best configuration was used for the rest of the
analysis as follows: filter: low-pass exponential IIR filter
with α = 0.01; SVM: RBF kernel with C = 1; NN: two-
layer fully connected feed-forward network with 8 sigmoid
hidden and 6 softmax output neurons; RF: 40 trees with
2 randomly chosen features; LDA: δ = 0, γ = 0. For all
the performed evaluations, we use the mean of 5 runs, with
randomly initialized parameters.



Fig. 4. (Left) Average recognition accuracy when training with data from a single posture and testing on itself (intra-P) or on the others (inter-P). (Right)
Average accuracy loss between intra-P and inter-P accuracy.

Fig. 5. (Left) Average recognition accuracy when training with data from a 2 postures and testing on the same ones (intra-P) or on the others (inter-P).
(Right) Average accuracy loss between intra-P and inter-P accuracy.

IV. RESULTS

A. Single session training and recognition

To provide a reference performance, we used each individ-
ual session to train and test the recognition algorithms and
evaluate their accuracy within the different postures/days.
Available studies use various methods to partition training
and test data, even in single-session analysis. Alternatives
include 5-fold cross validation [21] or using some of the
first contractions [17], [20] or using contractions spaced
throughout the session, simulating a more equally distributed
division [23], [24]. In order to evaluate their effects, we
performed the following train/test splits on each session’s
data: Training 20% (5-fold linear split alternating 1 fold
for training and the rest for test), Training 50% (2-fold
linear split, alternating them for training/test), Training 80%
(5-fold linear split alternating 4 folds for training and the
remaining for test), Training 50%D (10-fold linear split,
alternating the odd and the even ones for training/test). All
the splits were performed preserving the integrity of gesture
contractions: with 10 repetitions per gesture, each contraction
was assumed to represent 10% of the session data.

The mean classification accuracy over all the available
sessions is reported in Fig. 2 (left) and we can note how the
four considered algorithms have a very close performance.
Moreover, the amount and distribution of training data has
a notable influence, specially for NN and RF. Overall, the
SVM has a slightly better performance, while the LDA is the
one less subject to the influence of training data selection.

In addition to the average over all the sessions, we also
grouped the results by postures and by days. Such analysis
is reported in Fig. 2 (center) for the different postures and in
Fig. 2 (right) for the different days. In both cases, here we

report the Training 50% split as an example, while the other
ones had similar results. Regarding the different postures,
we can see an almost equal performance, with the mean
differences within 2% for each algorithm. The performance
on the different days has a major variability, but there is not
a defined pattern or trend among the days.

B. Inter-posture recognition

To evaluate inter-posture recognition capabilities, we
trained the different algorithms on data from a given posture
and tested them on all the others. In this case, we used the
first 50% of data to train each posture’s models and applied
it to the other 50% to evaluate the intra-posture accuracy or
to all data from the other postures of the same day for inter-
posture accuracy. We used a contiguous split of data at the
beginning of a session to simulate a user-performed training.
Different amounts of training data did not produce significant
differences, except an overall shift in accuracy aligned with
the single-session case.

The recognition accuracy is reported in Fig. 4 (left) and the
decrease in recognition for out-of-posture gestures is reported
in Fig. 4 (right). SVM has the highest absolute accuracy, but
the LDA has the lower out-of-posture degradation. Moreover,
using P1 for training consistently leads to higher accuracy
loss when compared to the other postures. While P1 is
the most commonly used posture in EMG literature, it
differs from P2-P4 that all have the arm fully extended
and hence have more homogeneous results. Moreover, P3
has a different wrist orientation, which introduces additional
difference compared to P2 and P4.

In addition to single-posture training, we also tested the
ability of the algorithms to better generalize when trained
on data from 2 postures. In this case, we again used 50%



Fig. 6. Average accuracy when training on different combinations of days and testing on the subsequent days.

of data, always using P1 as a standard and natural training
position and adding a second one. Results for such analysis
are in Fig. 5. In this case, on the trained postures we have a
loss of accuracy when compared to the single posture case,
but the out-of-posture recognition improves with a smaller
accuracy loss.

C. Inter-day recognition

Given the variety of the collected dataset, numerous
temporal train/test combinations can be analyzed. We aim
to simulate user-performed training, hence we enforce a
temporal progression and we restrict the inter-day tests only
on days following the training one(s). For the same reason,
we use the first 50% of data from a given day for training
and test on the remaining data to evaluate intra-day accuracy
or on data from the following days. The analyzed training
combinations include: single day, the first two days, the last
two days and all the previous days. Figure 6 summarizes the
results, where for clarity we plot a subset of combinations
with training on days 1 to 5 and testing on the last 3 days.

All the evaluated algorithms show a marked decline of
up to 20% in inter-day recognition accuracy when trained
with data from a single day. Using data from the first 2 days
(D1+D2) improves the performance, but with a limited effect
on the later days. More effective improvement is provided
when including data from the latest days. Using the last two
days (D4+D5) provides the best results, while using all the
previous days (D1 to D5) does not add significant advantage.
Such results also show an user adaptation effect: training with
data from the last available 2 days provides better results for
the later days (e.g. training D4+D5, test D6), when compared
to the earlier ones (e.g. training D1+D2, test D3).

D. Computational and memory requirements

An effective real-world deployment should also consider
the computational and memory requirements of a recognition
approach and the computing platforms needed for its imple-
mentation. However, such aspects are usually ignored when
providing evaluations of EMG-based recognition strategies.
Despite the offline approach adopted for our analysis, we
wanted to evaluate and compare the selected algorithms also
from a computational perspective, to add further insights in
their performance.

In this work, all the analysis of the recognition capabilities
was performed offline and implemented in Matlab. In addi-
tion to the recognition results, we logged the times needed for
the training/recognition tasks and the memory requirements
for the resulting models. We used the implementations of

TABLE I
COMPUTATIONAL AND MEMORY REQUIREMENTS FOR THE TESTED

ALGORITHMS. AVERAGE RESULTS WITH 50% TRAINING DATA FROM

EACH CONSIDERED SESSION.

Train time per session (s) SVM NN RF LDA
Training 1 Session 23.39 16.09 15.33 0.11

Training 2 Postures 96.90 41.45 36.07 0.22

Training 2 Days 81.30 40.28 35.16 0.26

Training 4 Days 412.63 119.01 79.79 0.43

Predict time per sample (µs)
Training 1 Session 254.00 0.60 27.10 1.01

Training 2 Postures 735.00 0.53 30.60 1.04

Training 2 Days 534.04 0.55 33.69 1.04

Training 4 Days 1724.71 0.49 31.29 1.02

Memory Occupation (kB)
Training 1 Session 830 39 10996 26

Training 2 Postures 2186 39 28400 26

Training 2 Days 1557 39 19009 26

Training 4 Days 4884 39 60327 26

the different algorithms as provided by the Matlab’s na-
tive Statistical and Neural Network Toolboxes (ver. Matlab
R2016b) and all the processing was performed on a PC (dual
core 64 bit CPU Intel i5-4310U, 2.60GHz, 8Gb RAM, with
Windows 10 64 bit). For the training times, we consider the
time needed to train each model, regardless of the exact size
of the training data set. For the prediction times, we still
measured the time needed to process the whole test set and
we normalized the results dividing by the number of samples
to have an estimate of the processing time per sample. The
average results for this analysis are collected in Table I. The
computational evaluation is highly dependant on the exact
implementation and computing architecture used, hence the
absolute results may be of little general interest. However,
having a consistent setup and using the same implementation
and computing platform for all the algorithms, their relative
comparison is of general validity. Regarding training and
prediction times, our results show that the SVM has up to 3
orders of magnitude higher requirements when compared to
the other algorithms and the LDA exhibits the lowest needs.
Moreover, NN and LDA have constant prediction times,
while for SVM and RF they depend on the complexity of the
trained models. The same holds for memory requirements,
where again NN and LDA have constant and considerably



smaller memory footprints.
For all the algorithms the training times increase with

the increase of the training data set, but for the SVM this
effect has the most evident impact. With larger and more
complex training data, the SVM model needs more support
vectors to effectively separate the different classes and this
impacts directly the resource needs. Similarly, the RF suffers
from very high memory requirements increasing with the
complexity of the model, but its computational requirements
remain limited. NN and LDA, exhibit the best performance,
with very limited and constant prediction and memory re-
quirements driven by the nature of such algorithms, which
have fixed models.

V. CONCLUSION

In this work, we presented a dataset for the evaluation
of arm posture and temporal variability in myoelectric hand
gesture recognition. The results can be used as guidelines
for the development of training and recognition approaches
for gesture-based EMG HMIs. In particular, it is clear that
multi-posture and multi-day training strategies are needed
to improve the performance of the classification algorithms.
The evaluated algorithms have similar recognition perfor-
mance with the SVM providing the highest accuracy and the
LDA providing the lowest accuracy losses for inter-posture
and day analysis. Moreover, results on temporal variability
show a progressive user adaptation trend and indicate that
(re)training strategies should prioritize the availability of
recent data. From a computational resources perspective,
the algorithms exhibit important differences, with the SVM
having up to 3 orders of magnitude higher needs for both
training and prediction tasks. Even if the reported results
can be drastically improved by the optimization of the
algorithms implementations, their comparison offers useful
insights to weight the recognition results when targeting real-
time implementations. This work conducted a preliminary
analysis on the collected dataset, which unique postural and
temporal variability allows for further development of robust
recognition approaches. The public release of such data
aims to provide a starting point for the research community
to address reliability issues and advance myoelectric HMIs
towards effective adoption.
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