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Collaborative Target-Localization and
Information-based Control in Networks of UAVs

Anna Guerra, Member, IEEE, Nicola Sparnacci, Davide Dardari, Senior Member, IEEE
Petar M. Djurić, Fellow, IEEE

Abstract—In this paper, we study the capacity of UAV networks
for high-accuracy localization of targets. We address the problem
of designing a distributed control scheme for UAV navigation and
formation based on an information-seeking criterion maximizing
the target localization accuracy. Each UAV is assumed to be
able to communicate and collaborate with other UAVs that are
within a neighboring region, allowing for a feasible distributed
solution which takes into account a trade-off between localization
accuracy and speed of convergence to a suitable localization of
the target. Such an investigation also considers communication
latency constraints as well as safety requirements such as inter-
UAV and obstacle collision avoidance.

Index Terms—UAV Networks, Information-Seeking Control,
Target Localization, Cramér-Rao Lower Bound.

I. INTRODUCTION

In the future, unmanned aerial vehicles (UAVs) (e.g.,
drones) are expected to become an integral part of our daily
life as they become smaller, cheaper, smarter and more ver-
satile [1], [2]. Most of the actual and foreseen applications
of UAVs require that they are networked and are able to
execute specific tasks. This is typically accomplished through
cooperating UAVs that navigate in a collision-free and energy
efficient manner according to centralized or decentralized
controls [3]. UAV networks are well addressed for outdoor
applications in surveillance, entertainment, precision agricul-
ture, emergency or after-disaster events and also as base
stations [4]–[6]. A potential large interest scenario related to
emergency and rescue situations is depicted in Fig. 1 where
the UAVs serve as a localization network able to guide users
(e.g., firemen) inside a building. In such mixed indoor/outdoor
scenarios, the UAV positions are considered known, e.g.,
retrieved from Global Positioning System (GPS), and the main
goal is to track users that cannot access neither GPS nor ad-
hoc localization infrastructure. The presence of walls requires
dedicated wireless technologies capable of estimating the
distance (ranging) between each UAV and the user (target) in
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Fig. 1. Mixed indoor/outdoor target-localization using a UAV network.

harsh non line-of-sight (NLOS) conditions. An example can be
the Near-Field Electromagnetic Ranging (NFER) technology
working at extremely low frequencies [7], [8].

In this context, the possibility of using UAV networks is
increasingly attractive because of their flexibility and recon-
figurability. Moreover, their capability to dispose in a well-
structured formation and to maintain it during navigation
is an essential feature. The formation goal can be that of
maximizing an information measure (or minimizing an uncer-
tainty measure) by seeking more informative measurements for
better estimating the state of the system (information-seeking),
represented by the position of the target in our case [9]. In this
sense, many research contributions focus on optimal sensor
placement [10]–[12] and optimal control [13], [14], but they
neglect the latency of the network as a figure of merit, which
becomes critical especially when the control is decentralized.
In fact, UAVs need to take decisions in few milliseconds. This
means that in a decentralized setup, there is no time to diffuse
information using multi-hop communications. Conversely, if
multi-hops are used, the forwarded information becomes out-
of-date, thus compromising the performance of the navigation
control necessary to achieve the desired localization accuracy.

In contrast to the common approach of a centralized control,
the goal of this paper is to develop a decentralized control for
UAVs able to assess a trade-off between localization accuracy
and convergence speed. To this end, the network of UAVs
acts as a distributed wireless sensor network (WSN) in which
each UAV exchanges the collected information with its closest
neighbors in order to take into account communication latency
constraints. Then, this information is fused so that a single
UAV becomes able to rapidly decide where to go next in order
to minimize the error in localizing the target.
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Fig. 2. Decentralized block-diagram for joint localization and navigation at the ith UAV.

II. A MODEL OF A UAV NETWORK

We consider a network of N UAVs where each UAV
acts as a (mobile) reference node, i.e., its location p

(k)
i =

[

x(k)
i , y(k)i

]T

, i = 1, 2, . . . , N , is assumed known for all time

slots k = 1, . . . ,K , for instance, because it is derived from
GPS. The purpose of the UAVs network is to infer the position
of a target which is GPS-denied, namely pT = [xT, yT]

T
.

To this end, in each time slot the UAVs communicate
and exchange information about their positions and ranging
measurements with their respective one-hop neighbors within
a radius dhop. For all the UAVs that are located at a greater
distance, measurements and UAV coordinates are collected
through multi-hop communication with a corresponding delay

equal to h(k)
ij time slots, where h(k)

ij is the number of hops

between the ith and jth UAV at time slot k.1 As a consequence,
such information is partially out-of-date.

Starting from the collected information, the aim is to
determine the best control signals for UAVs to minimize the
target localization error. More specifically, given the transition
model of the UAVs,

p
(k+1)
i = p

(k)
i + u

(k+1)
i , (1)

the goal is to compute a control signal u
(k+1)
i =

[

∆x(k+1)
i ,∆y(k+1)

i

]T

in order to minimize the target local-

ization error, i.e., ∥p̂(k)
T i − pT∥2, where p̂

(k)
T i =

[

x̂(k)
T i , ŷ

(k)
T i

]T

is the estimated target position by the ith UAV at time slot k.
This is done in a decentralized manner by each UAV.

A. Observation Model

We denote with z
(k)
i the vector containing the measurements

available at the ith UAV at time slot k,

z
(k)
i =

[

. . . , z(k−h+1)
j , . . .

]T

= h
(k)
i (pT) + v

(k)
i , (2)

where the generic element z(k−h+1)
j is the measurement of

the jth UAV delayed by the number of hops to the ith
UAV. The function h

(k)
i (·) expresses the dependence of the

observations on the target position, and v
(k)
i is a vector of zero-

mean Gaussian measurement noise with covariance matrix

R
(k)
i = diag

(

. . . ,
(

σ(k−h+1)
j

)2
, . . .

)

.

1In order to simplify the notation, in the following we drop the UAV and

time slot indexes, i.e., we use h instead of h
(k)
ij . Moreover, we set h

(k)
ii = 1.

We assume that the measurements represent range estimates
and, therefore, the generic element in (2) related to the ith UAV
at the kth time slot becomes

z(k)i = d(k)i + v(k)i , (3)

where d(k)i = ∥p(k)
i −pT∥2 is the actual distance between the

ith UAV and the target, and v(k)i ∼ N

(

v(k)i ; 0,
(

σ(k)
i

)2
)

. We

model the ranging error as distance-dependent, i.e.,
(

σ(k)
i

)2
= σ2

0

(

d(k)i /d0
)α

+ η(k)i σ2
b , (4)

with σ2
0 being the variance at a reference distance d0, and α the

path-loss exponent [15]. Moreover, we consider an additional
dispersion σ2

b , which is absent when the link is in line-of-sight

(LOS) (η(k)i = 0) and present when in NLOS (η(k)i = 1).
Note that the ranging error is an indicator of the quality of the
corresponding measurement.

Given (3), the (distributed) log-likelihood function at the ith
UAV in the kth time slot is given by

Λ(z(k)i |pT) = ln f
(

z
(k)
i |pT

)

=
N
∑

j=1

ln f
(

z(k−h+1)
j |pT

)

(5)

where f
(

z
(k)
i |pT

)

= N
(

z
(k)
i ;h(k)

i (pT) ,R
(k)
i

)

.

B. Position Error Bound

In general, the localization accuracy depends on the specific
position estimator that is implemented. To keep the controller
“agnostic” with respect to the position estimator, here we
consider the Position Error Bound (PEB) as a cost function.
Specifically, the PEB is a figure of merit related to the
Cramér-Rao lower bound (CRLB) on the position and provides
a measure of the theoretical localization accuracy of any
unbiased estimator. It is defined by [15]

PEB

(

pT;q
(k)
i

)

=

√

tr
(

J−1
(

pT;q
(k)
i

))

, (6)

where tr (·) is the trace operator, J (·) is the Fisher Information

Matrix (FIM), and q
(k)
i =

[

. . . ,p(k−h+1)
j , . . .

]T

is a vector

whose elements are the locations of all the UAVs as known
by the ith UAV at time slot k. In particular, the locations of the
other UAVs incur delays in transmitting their information to
the ith UAV measured by the number of hops between them.

The PEB will be the cost function in the information-
seeking control that follows. According to Fig. 2, each UAV



computes the PEB considering the positions of the neighboring
nodes and the quality of ranging measurements.2 Further
mathematical details are given below.

The FIM is a measure of information about the parameter
of interest, e.g., the position, and it is defined as [16]

J
(

pT;q
(k)
i

)

= −E
z
(k)
i

{

∇pT

[

∇pT Λ(z
(k)
i |pT)

]T
}

, (7)

where E
z
(k)
i

{·} is the expectation over the measurements,

∇pT (·) is the gradient with respect to the target position, and

Λ(z(k)i |pT) is the log-likelihood function defined as in (5).
Following [15], we obtain that the PEB can be written as

PEB

(

pT;q
(k)
i

)

=

√

√

√

√

√

A(k)
i +

∑

j≠i A
(k−h+1)
j

S(k)
x,i S(k)

y,i −
(

S(k)
xy,i

)2 , (8)

where

S(k)
x,i = A(k)

i

(

c(k)i

)2
+
∑

j≠i

A(k−h+1)
j

(

c(k−h+1)
j

)2
,

S(k)
y,i = A(k)

i

(

s(k)i

)2
+
∑

j≠i

A(k−h+1)
j

(

s(k−h+1)
j

)2
,

S(k)
xy,i = A(k)

i c(k)i s(k)i +
∑

j≠i

A(k−h+1)
j c(k−h+1)

j s(k−h+1)
j ,

with A(k)
i = α2

2
(

d
(k)
i

)2 + 1
(

σ
(k)
i

)2 , and

c(k)i =

(

x(k)
i − xT

)

d(k)i

, s(k)i =

(

y(k)i − yT

)

d(k)i

. (9)

Note that the PEB depends on the UAVs and target positions

through (9) and on the ranging error through A(k)
i .

III. UAVS INFORMATION-SEEKING CONTROL

The goal of the joint formation and navigation control is to
find the control signals that minimize the target localization
error for each time instant and for each UAV. This formation
is obtained by solving the following minimization problem:

(

q
(k+1)
i

)∗

= argmin
q
(k+1)
i

∈R2

PEB

(

p̂
(k)
T i ;q

(k+1)
i

)

, (10)

for i = 1, . . . , N . Eq. (10) searches for the optimal UAV
formation that minimizes the PEB at the next time instant.
Note that, unlike in (8) where the target position is assumed
exactly known, here the PEB depends on the target position

estimate p̂
(k)
T i computed by the localization estimator running

at the ith UAV at time slot k.3 Then, recalling the transition
model in (1), the control signal to be applied at the ith UAV
to satisfy (10) is

u
(k+1)
i =

[(

q
(k+1)
i

)∗]

i
− p

(k)
i , (11)

2We suppose that the ranging model in (4) is known to a UAV.
3We assume that an estimate of the target position is always available to a

UAV even in NLOS situations.
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Fig. 3. Example of a scenario with N = 5 UAVs.

where [·]i picks the ith entry of the optimal formation in (10),

i.e.
(

p
(k+1)
i

)∗

. Finally, we consider a constant UAV speed by

imposing
∥

∥

∥
u
(k+1)
i

∥

∥

∥

2
= v ∀i.

The problem in (11) can be solved iteratively using the
steepest descent gradient method for each UAV [17]

u
(k+1)
i = −γ∇

p
(k)
i

PEB

(

p̂
(k)
T i ;q

(k)
i

)

, (12)

where γ represents the spatial step, and ∇
p

(k)
i

(·) is the gradi-

ent operator with respect to the UAVs positions which, taken
with the negative sign, represents the direction of decrease
of PEB. Further, we introduce some constraints regarding the
UAV speed and the inter-UAV, the UAV-target and obstacle
collision avoidance. More specifically, we have

c1 : d(k)ij ≥ d∗U i, j = 1, . . . , N, i ≠ j,

c2 : d(k)i ≥ d∗T ∀i,

c3 : Ti ∩O = ∅ ∀i, (13)

where d(k)ij = ∥p(k)
i − p

(k)
j ∥2 is the inter-UAV distance, d∗U

is the safety distance each UAV should keep from the others
to not collide, d∗T is the safety distance with respect to the
target, Ti is the set of feasible position points in the trajectory
of the ith UAV and O is the set of obstacles present in the
environment. In this paper, we assume that the connectivity
is always guaranteed and that, if by chance a UAV gets
isolated, it is possible to rely on the latest known information.
The projection gradient method can be used to solve the
constrained minimization problem [17]. Thus, we obtain

u
(k+1)
i =−γP∇

p
(k)
i

PEB

(

p̂
(k)
T i ;q

(k)
i

)

−N
(

NTN
)−1

ga,

(14)

where P = I − N
(

NTN
)−1

NT is the projection matrix4

with I being the identity matrix and N = ∇
p

(k)
i

(ga) being

4The notation has been simplified as follows: P
(k)
i = P and N

(k)
i = N.
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the gradient of the V activated constraints collected in ga =
[g1 g2 g3], where

g1 = dU − d∗U, dU =
{

d(k)ij : d(k)ij < d∗U

}

, (15)

g2 = dT − d∗T, dT =
{

d(k)i : d(k)i < d∗T

}

, (16)

and where g3 contains the obstacle avoidance constraints.

IV. RESULTS

The case study proposed here considers a 2D indoor/outdoor
scenario with obstacles (e.g., buildings), represented in gray
in Fig. 3, and with a target, indicated as a green triangle in
the plot, located inside one of the obstacles. The blue and red
dots indicate the initial and final UAV positions, respectively.

For testing the control design strategy, the UAV speed was
set to v = 1 m/step and γ = 1m for each time slot.
The standard deviation of the ranging error at the reference
distance of 1m was σ0 = 0.01m whereas the path loss
exponent was α = 2. The additional standard deviation due
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to NLOS channel conditions was set to σb = 2m. Further,
we considered the following safety distances: the inter-UAV
separation was d∗U = 0.5m, the distance from the target
d∗T = 10m, and from the obstacles 5m. We ran NMC = 100
Monte Carlo iterations, where for each iteration we generated
a different target position and UAV initial locations. In a
real setup, the target position estimate, as shown in Fig. 2,
is provided by the localization estimator. In order to get
results that are independent from any specific localization
estimator, and, hence, that can be used as a benchmark, we
drew the position estimate p̂

(k)
T i from a zero mean 2D Gaussian

distribution with a covariance matrix given by the inverse of
the FIM.5 In Fig. 3, we present a Monte Carlo realization
that illustrates qualitatively how the UAVs are able to avoid
collisions between them and with obstacles.

For getting additional insights about the proposed approach,
we evaluated its performance by computing the average PEB

5The impact of specific localization algorithms can be evaluated through
an ad-hoc study.



and the success rate SRk defined as

SR
(k) =

1

N NMC

NMC
∑

m=1

N
∑

i=1

1
(

PEB

(

p̂
(k)
T im;q(k)

im

)

≤ PEB
∗
)

,

(17)
where 1(x) is the indicator function; 1(x) = 1 if x is true and
0 otherwise, and PEB

∗ is the PEB required by the application.
For each time slot k, this metric quantifies the number of times
that the PEB attains the mission-desired PEB. The index m
indicates that the variables correspond to the mth Monte Carlo
iteration. The results are obtained as a function of the number
of UAVs, the maximum communication range dhop and the
maximum number of allowed hops hmax, which impacts the
amount of measurements available at each UAV.

Figs. 4-5 show the results obtained for hmax = 1 and
dhop = 20m as a function of N . In Fig. 4, we plotted the
PEB, averaged over Monte Carlo realizations, for different
numbers of UAVs as a function of time steps. Notably, an
increased number of UAVs translates in a better localization
accuracy. Moreover, from Fig. 5 it emerges that the use of a
bigger swarm is beneficial also for the convergence speed as
the number of discrete time steps needed to attain the specific
localization accuracy drastically decreases.

Figs. 6-7 show the results obtained for N = 10 and
hmax = 1 as a function of the maximum communication range
dhop in terms of averaged PEB and success rate, respectively.
In particular, in Fig. 6 it can be noticed that in general an
increased dhop allows for the collection of more up-to-date
measurements and, hence, improved performance, especially
when the UAVs are far from each other, reaching the results
one would obtain with a centralized control scheme. By
contrast, at the end of their trajectories, the UAVs are more
grouped and the impact of dhop is less evident. This suggests
that the communication range can be reduced without loss of
performance. The effect of larger communication ranges on the
speed of convergence is evident from Fig. 7, especially when
the desired accuracy is not so demanding (e.g., PEB∗ = 3m).
Finally, Fig. 8 displays the averaged PEB as a function of
hmax. As can be seen, passing from hmax = 1 to hmax = 3,
i.e., collecting more not updated measurements from UAVs
that are further away, does not significantly improve the
performance and, thus, one might argue that the use of multi-
hop communication can be kept limited.

V. CONCLUSIONS

In this paper, we investigated a distributed control law
for a network of UAVs realizing a flexible and dynamic
localization and tracking infrastructure. The observation model
was designed to include realistic propagation effects related
to mixed indoor/outdoor scenarios with the possibility of
NLOS conditions. Our results showed a trade-off between the
positioning accuracy and the convergence speed as a function
of the number of UAVs in the network, the maximum commu-
nication range, and the impact of multi-hops communication.
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