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ABSTRACT
A major challenge in indoor localization is the presence or
absence of line-of-sight (LOS). The absence of LOS, denoted
as non-line-of-sight (NLOS), directly affects the accuracy of any
localization algorithm because of the induced bias in ranging. The
estimation of the spatial distribution of NLOS-induced ranging bias
in indoor environments remains a major challenge. In this paper,
we propose a novel crowd-based Bayesian learning approach to
the estimation of bias fields caused by LOS/NLOS conditions. The
proposed method is based on the concept of Gaussian processes and
exploits numerous measurements. The performance of the method
is demonstrated with extensive experiments.

Index Terms— Indoor localization, crowd sourcing, Gaussian
processes, spatial field, NLOS

I. INTRODUCTION

Indoor localization systems are a key technology for
enabling Location-based Services (LBS) [1]. There are several
methodologies for localization including fingerprinting and model-
based methods [2], [3]. Here, we are interested in the latter,
where localization algorithms are designed so that a user computes
its location in real-time based on its own past and current
measurements. In this context, there is the need to specify a
model (usually probabilistic) that maps the measurements to
geometric quantities (distance, angle, position, etc.) with some
uncertainty. The adopted model often depends critically on some
(potentially unknown) conditions and/or parameters, which are
typically location-dependent such as the LOS/NLOS condition [4]–
[6], or the ranging bias and variance [4], [5], [7]. When a subset of
model parameters is unknown, a number of approaches for their
improved estimation have been investigated, including methods
based on cooperation and learning [8]–[17].

The aforementioned learning schemes typically require a huge
amount of measurements to be reliable, which in turn must
come from expensive training sessions that become out-of-date
after a short time. Alternatively, due to the widespread use of
mass market devices with sensing capabilities, mobile crowd

EA has been supported by the Spanish Ministry of Economy and
Competitiveness and the Spanish National Research Agency under grant
TEC2016-78434-C3-2-R (AEI/FEDER, EU), by the European Union
(FEDER) and by Junta de Andalucı́a (TIC-155). DD has been supported
by the European H2020 project XCycle (Grant 635975). PMD has been
supported by NSF under Awards CCF-1618999 and CNS-1642965.

sensing has emerged as an appealing paradigm to enable large-
scale applications [18]. In many practical scenarios, one may
have measurements acquired by hundreds or thousands of people
navigating through an indoor environment in different hours, days
and months and which can be exploited for improved localization
[19], [20]. In this context one challenging aspect is the “Big data”
issue. Considering that in crowd sensing scenarios the number
N of measurements grows exponentially, we investigate learning
approaches whose memory and computational burden do not
increase with N .

The main contribution of this article is a novel methodology
for range-based indoor localization which relies on estimating a
spatial field related to the LOS/NLOS conditions. In particular, in
time-based ranging, the NLOS condition gives rise to an estimated
range larger than the true distance. Of interest in this paper is
the estimation of the spatial field of the bias. Specifically, we
propose a method for joint positioning and learning the bias
field by exploiting the power of the crowd and whose memory
and computational burden do not increase with the number of
measurements. The method is based on modeling the bias field by
a Gaussian process (GP), where we represent the process in a form
that allows for bounded use of memory. GPs have already been
used in the literature of cognitive radio for detecting the presence
of primary users, e.g., [21]. Our method follows a line of reasoning
presented in our previous paper [22], where we have adopted a
“loose coupling” approach with two separate estimators, one for
the position and one for the field. These estimators “ping-pong”
their estimates as new measurements are being acquired. Here we
propose a different and improved version of this approach.

While a user moves in the area of interest, the central unit
estimates the location and velocity of the user by taking advantage
of the estimated field obtained from measurements of previous
users. Further, the central unit updates the estimate of the field
by the measurements of this user. Thereby, subsequent users can
also benefit by using the field for their own localization. We point
out that our scheme is capable of accounting for spatial correlation.

The paper is organized as follows. First, in Section II, we provide
the problem statement and the adopted model for the spatial fields.
In Section III, we present the details of the proposed estimation
method. Numerical results that demonstrate the performance of
the method are shown in Section IV. Section V contains final
conclusions.



II. CROWD ENHANCED LOCALIZATION

II-A. Problem Statement
Mobile users enter an indoor environment at random times, roam

in it along random trajectories, and then leave it. This environment
could be, for example, a shopping mall or a business center. The
movement of the kth mobile user is modeled by

xt,k = Akxt�1,k + ut,k, (1)

where xt,k = [xt,k,1 xt,k,2 ẋt,k,1 ẋt,k,2]
> is a state vector of

the kth user whose elements are the Cartesian coordinates of its
location (xt,k,1 and xt,k,2) and its velocity components (ẋt,k,1 and
ẋt,k,2) at discrete time t; Ak is a 4 ⇥ 4 known matrix, which
models the user’s movement; and ut,k, is a random perturbation
with zero mean Gaussian distribution, i.e., ut,k ⇠ N (0,Rk), with
Rk = ⇢2kR0, where ⇢2k is unknown and user dependent and the
4⇥ 4 matrix R0 is known. The samples ut,k for different t and k
are assumed independent.

While the users move in the indoor area, they acquire
measurements of signals (e.g., their time-of-arrival) transmitted by
fixed nodes, referred to as anchors, deployed in the environment
at known positions l[n], n = 1, 2, · · · , Na. The corresponding
distance measurements acquired by the kth user from the nth
anchor at time t are modeled as

y[n]
t,k =

��Pxt,k � l[n]
��+ f [n] (xt,k) + ⌫[n]

t,k , (2)

where n = 1, 2, · · · , Na and
��Pxt,k�l[n]

�� is the distance between
user k and anchor n at time t with P being a 2 ⇥ 4 matrix
instrumentally used to extract the position components from the
full state vector.

The symbol f [n] (xt,k) represents a bias field that models
position-dependent deviations of the observations from anchor n
to the location of the user caused by NLOS / LOS conditions, and
⌫[n]
t,k is the measurement noise modeled as a zero mean Gaussian

random variable (RV) with unknown standard deviation �[n]
⌫ . Recall

that there are Na anchors located at l[n], n = 1, 2, · · · , Na, and
therefore there are Na bias fields. We denote them by f(x) =n
f [1](x), f [2](x), . . . , f [NA](x)

o
.

Next, we assume that the user acquires the measurements from
all the anchors at the same time slot, and we denote them by yt,k,

where yt,k =
h
y[1]
t,k y[2]

t,k · · · y[Na]
t,k

i>
. When the users enter the

environment, based on the received measurements yt,k, the system
tracks the users. Much improved tracking can be accomplished if
the system knows the Na bias fields.

In this paper, we address the problem of joint tracking the user’s
position and learning the fields f [n] (x), 8n, from measurements
of the users.

II-B. Model for Spatial Fields
In absence of specific and accurate models for f [n](x), we

assume that f [n](x) is a sample from a GP

f [n](x) ⇠ GP
⇣
µ[n](x),[n] �x,x0�⌘ (3)

with mean µ[n](x) and covariance function [n] (x,x0).
Given a set of 2D orthogonal basis functions in the area of

interest  (x) = [ 1(x) 2(x), . . . , J(x)]
>, we propose to model

f [n](x) by

f [n] (x) =  >(x) c[n], (4)

where the vector  (x) is of size J ⇥ 1, and c[n] is a J ⇥ 1
Gaussian vector of coefficients that corresponds to the nth anchor
and that is used for modeling the bias field of that anchor. Thus,
if c[n] ⇠ N (µ[n]

c ,⌃[n]
c ), then

f [n](x) ⇠ N ( >(x)µ[n]
c , >(x)⌃[n]

c  (x)). (5)

We point out that µ[n]
c and ⌃[n]

c are moments estimated by crowd
sensing. We will elaborate more on the process of estimating these
moments in the next section.

Thanks to (4), the problem of representing and estimating
the bias field f [n](x) translates into characterizing the vector of
coefficients c[n] that do not depend on x and that do not increase
in size with the increase of the number of measurements. The key
to the crowd sensing idea is to use the information collected by
all the past users for estimating the means and covariance matrices
µ[n]

c and ⌃[n]
c , 8n. In this modeling, we are assuming that the

anchor’s fields are independent among each of them.
We rewrite (2) by using (4) in a vector-matrix form as follows:

y[n]
k = s[n]

k + Tk,kc
[n] + ⌫ [n]

k , (6)

where y[n]
k = [y[n]

1,k y[n]
2,k · · · y[n]

Tk,k
]> is a Tk ⇥ 1 vector with

Tk elements representing all the measurements collected by user k
from anchor n, s[n]

k = [s[n]
1,k s[n]

2,k · · · s[n]
Tk,k

]> is a Tk ⇥ 1 vector
whose entries are defined by s[n]

t,k =
��Pxt,k � l[n]

��, the matrix
 Tk,k is a Tk ⇥ J matrix whose tth row is given by  >(xt,k),
and ⌫ [n]

k = [⌫[n]
1,k ⌫

[n]
2,k · · · ⌫[n]

Tk,k
]> is a Tk ⇥ 1 vector containing

the measurement noise values. We note that the elements of the
matrix  Tk,k are functions of the locations of the kth user in the
time interval 1 to Tk, x1:Tk,k. For the sake of notation simplicity
we omit such dependence.

Next we suppose that the central unit keeps receiving the
measurements y[n]

t,k, 8n. Based on these measurements, this unit
has to estimate the state vector xt,k and to update the estimate of
the coefficients c[n], 8n. To that end, in [22] a “loose coupling”
approach was proposed in which two separate methods for
estimating the two sets of unknowns “communicate” with each
other throughout the estimation. Here we propose a different and
improved version of this approach.

III. A NOVEL LOOSE COUPLING APPROACH
We want to track the unknown process xt,k and we note that this

would require knowledge of f [n] (xt,k) , 8n (see (2)). According
to our model, to know f [n] (xt,k) means basically to know the
statistics of c[n], i.e., µ[n]

c and ⌃[n]
c . From (6), it is clear that the

estimation of these statistics would be easy if we knew xt,k. We
observe that we could design an algorithm that would estimate all
of these unknowns jointly or we could use the principle divide

and conquer and have two processing blocks, where each block is
assigned simpler tasks. More specifically, one block would estimate
µ[n]

c and ⌃[n]
c , and the other would only track xt,k. We present an

approach based on assigning the tasks to two separate processors,
and we call this approach a loose coupling approach.

The tracker is based on a particle filtering (PF) algorithm [23],
[24]. Let us assume that before we observe yt,k, we have an
approximation of the marginal posterior p

�
x0:t�1,k

��y1:t�1,k

�
of



the state sequence x0:t�1,k. The approximation is given by the
probability random measure

pM
�
x0:t�1,k

��y1:t�1,k,bc1:t�1,k

�
=

MX

m=1

w(m)
t�1,k�(x0:t�1,k�x(m)

0:t�1,k),

(7)
where x(m)

0:t�1,k is the mth stream of particles, w(m)
t�1,k is the

weight associated to the stream x(m)
0:t�1,k, �(·) is the Dirac delta

function, M is the total number of streams, and y1:t�1,k and
bc1:t�1,k represent all the observations y[n]

1:t�1,k, and estimates
bc[n]
1:t�1,k, n = 1, 2, . . . , Na. The particle filter is based on the model

given by (1) and (6), where c[n] is assumed known because it is
obtained from the other processing block.

The filter propagates the particles x(m)
t�1,k by

x(m)
t,k ⇠ p(xt,k|x(m)

t�1,k), (8)

which is a Student’s t-density (because of the unknown ⇢2k), and
then computes their weights according to

w(m)
t,k /

NaY

n=1

p
⇣
y[n]
t,k

��y[n]
1:t�1,k,x

(m)
0:t,k,bc

[n]
1:t�1,k,D

[n]
k�1

⌘
, (9)

where p
⇣
y[n]
t,k

��y[n]
1:t�1,k,x

(m)
0:t,k,bc

[n]
1:t�1,k,D

[n]
k�1

⌘
are t-densities of

the form [25, p. 70]

p
⇣
y[n]
t,k

��y[n]
1:t�1,k,x

(m)
0:t,k,bc

[n]
1:t�1,k,D

[n]
k�1

⌘

= T
⇣
ȳ[n](m)
t,k ,⌥[n](m)

t,k ,t�1,k

⌘
, (10)

with

ȳ[n](m)
t,k =

��Px(m)
t,k � l[n]

��+ >(x(m)
t,k )bc[n]

t�1,k , (11)

⌥[n](m)
t,k =

�[n](m)
t�1,k

t�1,k
, (12)

and

t�1,k = k�1 +
1
2
(t� 1), �[n](m)

t�1,k = �[n]
k�1 +

t�1X

⌧=1

r[n](m)
⌧,k ,

(13)

r[n](m)
⌧,k =

1
2

⇣
y[n]
⌧,k � ȳ[n](m)

⌧,k

⌘2
, (14)

k�1 =
1
2

k�1X

i=1

Ti, �[n]
k�1 =

k�1X

i=1

TiX

⌧=1

MX

m=1

w(m)
⌧,i r[n](m)

⌧,i . (15)

The values D[n]
k�1 = {k�1 , �

[n]
k�1} account for the statistics of past

users.
From the obtained weights and particles, the tracker computes

the estimate of xt,k according to

bxt,k =
MX

m=1

w(m)
t,k x(m)

t,k . (16)

This estimate, bxt,k, is now passed on to the estimator of c[n]. The
estimator works with “observations” given by

bz[n]
t,k = y[n]

t,k � |P bxt,k � l[n]|. (17)

We can express bz[n]
t,k by

bz[n]
t,k =  >(bxt,k)c

[n]
t�1,k + ⌫[n]

t,k , n = 1, 2, · · · , Na. (18)

Because the unknown coefficients are linear parameters given the
trajectory of the user, we readily deduce that we can easily update
them with recursive least-squares equations by [26]

bc[n]
t,k = bc[n]

t�1,k + k[n]
t

⇣
bz[n]
t,k � >(bxt,k)bc[n]

t�1,k

⌘
, (19)

where k[n]
t is a J ⇥ 1 vector defined by

k[n]
t =

⌃[n]
c,t�1 (bxt,k)

1 + >(bxt,k)⌃
[n]
c,t�1 (bxt,k)

, (20)

where
⌃[n]

c,t =
⇣
I� k[n]

t  
>(bxt,k)

⌘
⌃[n]

c,t�1 . (21)

The new estimates bc[n]
t,k are communicated to the tracker, which

proceeds with estimating xt+1,k.

III-A. Summary of statistics of past users
When the kth user leaves the area, the central unit keeps a

summary D[n]
k = {k , �

[n]
k } of the statistics of the previous users

for n = 1, 2, . . . Na. One set of statistics critical for computing the
weight coefficients and deduced from (15) is given by

k = k�1 +
1
2
Tk , (22)

�[n]
k = �[n]

k�1 +
TkX

⌧=1

MX

m=1

w(m)
⌧,k r[n](m)

⌧,k , (23)

8n, and where 0 = 0 and �[n]
0 = 0. In total, the system keeps

Na + 1 statistics for tracking the state.
For the field estimates, the system needs to keep bc[n]

Tk,k
and⌃[n]

c,Tk

8n. Therefore, the system maintains a total of Na vectors of size
J ⇥ 1 and Na covariance matrices of size J ⇥ J .

As already pointed out, the size of the above statistics neither
depends on the number of users that have provided measurements
nor on the total number of measurements.

IV. NUMERICAL RESULTS
Now we present some numerical results in which the observation

values are based on real measurements. In particular, the scenario
where the measurement campaign was carried out is shown in Fig.
1, which represents a typical office indoor environment with walls
made of concrete. We have considered 4 anchors, denoted in the
figure as txi, i = {1, 2, 3, 4}. The figure shows also a set of 20
locations where 1500 range measurements were taken for each
anchor using a commercial ultrawide-band (UWB) radio operating
in the 3.2 - 7.4GHz band. The detailed setup of the experiment is
described in [16]. For each anchor and each of the 20 test locations,
the mean and the standard deviation of the range measurements
were computed. Then the bias for each pair anchor-test location
was obtained as the difference between the mean range observation
and the true distance. The result of interpolating this set of bias
values at a given location was considered as the true bias field for
that location for simulation purposes. As can be noticed, most test
locations are in NLOS with respect to the anchors, thus making the
localization and fields estimation processes quite challenging.

In the simulations, we allowed users to move randomly in a
square area of side L = 9 meters in Fig. 1. Regarding the
2D orthogonal basis function  (x) used by the learning process,
we considered the 2D Fourier series expansion of the periodical



 

Fig. 1. Floor plan of the office environment considered in the case
study. The locations of the anchors and the test locations are shown.

repetition of f [n](x) with a period L in each dimension and
truncated to J = 81 terms. A total of 50 measurements were
taken for each user during his/her movement at intervals of 1s.
The covariance of the random perturbation in (1) was Rk = ⇢2k I,
where ⇢k = 0.1 and I is the identity matrix. The measurement
noise variance was �[n]

⌫ = 0.1m. For each user, we ran the
proposed algorithm with 500 particles and the method in [22]
with an extended Kalman filter (EKF). For comparison, a simple
technique assuming always LOS (and thus, zero bias) and a method
with perfect knowledge of bias at every instant, both based on
EKF, were also considered. This last method is unrealistic and is
included as a benchmark. The process was repeated for 500 Monte
Carlo iterations. For each iteration, the crowd based methods started
without any knowledge about the true bias field, taking for the first
user as initial value bc[n]

0,0 a vector of zeros and ⌃[n]
c,0 = I.

It is worth noting that in [22] an initial training phase was
considered in which several collaborating users navigated the area
along prescribed trajectories. By contrast, in this paper we focus
on the challenging situation where no training phase is considered.
The results in terms of (empirical) cumulative distribution function
(CDF) are shown in Figs. 2-3. These curves encompass all
the values of localization error (i.e., distance between true and
estimated location) for each of the 50 measurements per user and
each of the 500 iterations.

Specifically, Fig. 2 shows the results for the crowd-based method
with EKF in [22]. It can be observed that as the number of users
grows, the crowd mapping approach outperforms the simple method
assuming LOS.

The results for the crowd-based method with PF proposed in
this paper are reported in Fig. 3. These results are remarkably
better than those in Fig. 2, even from the beginning of the crowd
sensing process (a few users). For example, if one sets a target
performance at 0.5 m, with the new loose approach, after only 6
users having navigated in the area, more than 41% of locations meet
the target performance (covered) with respect to 26% assuming

Fig. 2. CDF of positioning error for the crowd-based method in
[22] with EKF in the absence of any calibration.

Fig. 3. CDF of positioning error for the proposed crowd-based
method with PF in the absence of any calibration.

always LOS and 36% with the method in [22]. As the number
of users grows, a progressive improvement of performance of the
crowd-based method can be observed. The results show that about
60% of the area has the same target performance after 100 users.

V. CONCLUSIONS

Simulation results, based on real measurements, confirm that the
proposed method is capable of enhancing the knowledge about
the fields of NLOS-induced bias even in the challenging case
of absence of any calibration. Additionally, the complexity and
memory requirements do not grow with the number of users and
measurements. The results in terms of CDF show that the proposed
method improves the localization performance as the number
of users increases, outperforming a previously proposed crowd
mapping method without any calibration. Despite this remarkable
result, the gap between the ideal case of perfect knowledge of
the bias and our method suggests that there is room for further
improvement in future work, for example, by using available
information on the floor plan.
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