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Highlights

• A cable-suspended robot is presented with a spatial purely translational motion.

• Several special architectures are identified with distinctive and useful features.

• The singularity-free/reachable/interference-free workspaces are analytically found.

• The theoretical findings are validated by experimental tests.

• The robot can perform dynamic trajectories outside the static equilibrium workspace.



Dynamically feasible motions of a class of purely-translational cable-suspended
parallel robots

Giovanni Mottolaa,∗, Clément Gosselinb, Marco Carricatoa

aDepartment of Industrial Engineering, University of Bologna, 40126 Bologna, Italy
bDepartment of Mechanical Engineering, Université Laval, Québec, QC G1V 0A6, Canada

Abstract

We consider dynamic motions of a spatial robot suspended by six cables, arranged so as to form three parallelograms.
Each parallelogram is composed by two parallel cables sharing the same length. Due to this arrangement, the end-effector
can only translate. The cables in each parallelogram can be actuated by one motor: only three motors are then required,
which reduces the robot complexity and cost. This robot may perform pick-and-place operations over large workspaces.
We find tight conditions for feasibility of dynamic trajectories for the general architecture, and also special conditions such
that the robot is dynamically equivalent to a 3-cable robot with a point-mass end-effector: then, the feasibility conditions
previously developed for the dynamic trajectories of 3-cable point-mass robots can be profitably reused for the present
case. To practically realize such dynamic trajectories, we also analyze the reachable, singularity-free and interference-free
workspace, finding analytical expressions of their loci. Finally, we perform experiments where the robot follows dynamic
trajectories outside its static workspace, thus finding confirmation that the orientation remains approximately constant.

Keywords: Cable-driven parallel robots, cable-suspended robots, parallel robots, translational motion, dynamics,
parallelograms.

1. Introduction

In cable-driven parallel robots (CDPRs), the end-effector (EE) is connected to the frame by a number of cables whose
lengths can be controlled. Cable-suspended parallel robots (CSPRs) are special types of CDPRs where cables are kept in
tension mainly by the gravity force pulling the EE down. Fully-constrained CSPRs employ as many cables as the number
of degrees of freedom (DOF) of the EE. The robot studied in this paper falls under this category.

If a CSPR moves in quasi-static conditions, inertia forces can be neglected, and the EE must remain within its static
equilibrium workspace (SEW), defined as the set of poses where static equilibrium is possible with positive tensions in
all cables [1, 2]. Recently, researchers have studied how to take advantage of inertia forces to keep cables in tension as
the robot moves beyond its SEW. Here, a first fundamental distinction should be made between redundantly-actuated,
fully-actuated and under-actuated robots, having a number of actuators respectively greater than, equal to or smaller
than the number of DOFs. Some of the first works about the dynamics of under-actuated robots studied pendulum-like
planar robots performing point-to-point motions [3, 4]. Regarding fully-actuated CSPRs, previous works have defined
periodic or point-to-point feasible motions for 3-DOF spatial point-mass robots [5–11]. More recently, 6-DOF robots (with
a finite-size EE) performing dynamic motions in space were also considered [12, 13]. Finally, some authors considered
redundantly-actuated robots [14]. This approach expands the workspace, and thus the potential applications, of such
robots.

Many applications do not require a full control of the EE pose, but only of the EE position while its orientation
remains constant. A possible architecture that achieves this objective is obtained by suspending the EE by six cables that
are kept pairwise parallel and with the same length, in a parallelogram fashion: this way, the EE can be shown to have only
translational DOFs. A CSPR based on such an architecture was first proposed in [15] for post-disaster rescue operations;
in this article, the authors studied the robot kinematics, proposed a calibration approach, and found the robot SEW
by a numerical approach. A similar concept was used in [16] for an over-constrained 12-cable robot for the construction
sector, focusing on the workspace within which the robot can resist forces and moments of known magnitude with positive
cable tensions (the so-called wrench-feasible workspace). This work was further developed in [17], by performing numerical
simulations on the robot controller along several dynamic trajectories. An overconstrained architecture based on a similar
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idea was presented in [18, 19], where six passive cables were used to control the EE rotation and three active cables to
displace the EE from one point to a target one; in the above contributions, the authors also studied the application of
a gripper on the EE. Translational CSPRs were also proposed for large-scale 3D printing [20], or to help people affected
by motion disabilities to overcome architectural barriers [21]. Other authors presented overconstrained architectures for
CDPRs still based on a parallelogram arrangement of cables, but with positive cable tensions being ensured by antagonistic
additional cables [22–25] or antagonistic jacks [26–29].

In the current contribution, we consider a general spatial robot with a finite-size EE suspended by six cables that
define three parallelograms, so that the EE orientation remains constant as the robot moves. The CSPRs presented
in [15, 20, 30] can be seen as special cases of the general architecture studied here. Since cables have pairwise identical
lengths, this architecture allows the robot to be controlled by three actuators, thus simplifying design and reducing cost.
The goal of our work is to use inertial effects acting on the EE to help in keeping cables taut. In this way: (i) the robot is
controlled by only six cables (which is the minimum number for a fully-constrained architecture, cf. [31]) and there is no
need for external tensioning devices; (ii) the workspace that can be reached by the robot is expanded. In this perspective,
we combine and extend previous works on translational cable robots and dynamically feasible trajectories: our interest
was in applying the wealth of scientific works already available on 3-DOF point-mass robots [5–11] to robots still having 3
DOFs but with a finite-size EE, which is a more realistic model. As seen above, CSPRs of this kind having a parallelogram
actuation have found applications in various fields, but the possibility of using dynamic motions was not considered. This
can be helpful when the robot footprint is limited due to space reasons: while the SEW is constrained by said footprint,
dynamic motions allow the EE to reach a much wider workspace. This can be useful for robots that have to perform pick-
and-place operations over large workspaces, if the EE follows a point-to-point trajectory such as those presented in [5, 7],
where each target point is reached with zero velocity (but nonzero acceleration). Also, dynamic motions can be used to
recover a robot in case of a cable breakdown [32]; if a robot with parallelogram actuation having more than 6 cables, for
instance those presented in [17, 21–25], undergoes a sudden cable break, it could be brought back to its safe post-failure
workspace by using dynamic trajectories such as those presented here for a 6-cable robot. Finally, cable robots can also be
used for entertainment, as suggested in [33] where a robotic rollercoaser was proposed having a capsule driven by 3 cables
for passengers to ride in; a translational parallel robot performing dynamical trajectories could provide a entertaining ride
while avoiding rotational motions that could cause discomfort to passengers in some cases.

After introducing the robot geometry in Sec. 2, we present the conditions for positive cable tensions under the as-
sumption that the only forces acting on the EE (other than the cable tensions) are gravity and inertia; we also model the
cables as massless and infinitely stiff straight line segments, while the EE is an ideal rigid body. In Sec. 3 we consider
the most general architecture, while in Sec. 4 we find special conditions that allow the dynamic equations to be greatly
simplified, thus leading to a virtual 3-cable robot with a point-mass EE that is dynamically equivalent to our original
robot. By this result, the feasibility conditions for dynamic trajectories of 3-cable point-mass robots [9] can be fully reused
here. A method to define purely-translational dynamic trajectories for a finite-size EE controlled by six cables was already
presented in [13]: however, the architecture proposed in [13] does not take advantage of parallelogram actuation and,
thus, requires six motors to be independently controlled. Under the conditions given in Sec. 4, the robot SEW can be
analytically defined, and has a very simple representation (cf. [15, 16], where the SEW was only numerically found).

For dynamic trajectories to be actually feasible, active and passive constraint singularities must be avoided, and
practical limits due to cables’ finite lengths and their possible interference must be taken into account. The corresponding
loci are analytically derived in Secs. 5 and 6, respectively.

Our theoretical findings were tested on a prototype and the experimental results are presented in Sec. 7. The conclusions
in Sec. 8 highlight the advantages of the architecture studied in this paper and outline our future work on the topic.

2. Robot geometry

Consider a spatial robot whose EE is connected to the base by six cables whose lengths can be controlled. The ith
cable (i = 1, ..., 6) exits from the frame at point Ai, and it is attached to the EE at point Bi (Fig. 1a). P is the EE centre
of mass. Oxyz is a fixed coordinate system, with the z-axis pointing upward in the vertical direction. If ai = Ai − O,
bi = Bi − P , and p = P − O, the ith cable length is ρi = ‖ai − p− bi‖ (for obvious practical reasons, we may assume
ρi > 0), whereas the cable direction is given by the unit vector ei = (ai − p− bi) /ρi.

Motors are controlled so that, at every instant, ρ1 = ρ2, ρ3 = ρ4, and ρ5 = ρ6. This allows the number of actuators
to be reduced to three, since each motor can simultaneously actuate two cables. Furthermore, the fixed and mobile cable
attachment points are placed so that: ‖a2 − a1‖=‖b2 − b1‖, ‖a4 − a3‖=‖b4 − b3‖, and ‖a6 − a5‖=‖b6 − b5‖. Also,
in the initial configuration, cables 1 − 2, 3 − 4 and 5 − 6 are mounted in such a way that they are pairwise parallel,
so that e1 = e2, e3 = e4, and e5 = e6. As a result, the EE is suspended by three planar parallelograms: A1B1B2A2,
A3B3B4A4, and A5B5B6A6. As long as all cables are taut, the parallelogram formed by cables i and j prevents the EE
rotation about the direction nij normal to the parallelogram plane Πij . If n12, n34 and n56 are linearly independent, all
rotations are prevented, and the EE can only translate. Furthermore, all parallelograms remain planar for finite motions.
This architecture is similar to that of the Delta robot [15, 34].
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Figure 1: Left: a 6-cable CSPR with three translational DOFs. Right: The planar parallelogram formed by cables i and j.

Since the EE preserves its orientation throughout any non-singular motion, all vectors fixed to the EE, such as bi
(i = 1, . . . , 6), are constant.

3. Kinetostatic model

The forces exerted by the parallel cables i and j on the EE are Fi = τiei and Fj = τjej = τjei. The resultant force
and the resultant moment about P are, respectively (Fig. 1b)

Ftotij = Fi + Fj = ei(τi + τj) (1a)

Mtotij = bi × Fi + bj × Fj = (τibi + τjbj)× ei (1b)

It can be easily shown that this system of two forces is equivalent to a single force Fij = eiτtot,ij applied in point Bij
whose position is given by p + bij , where τtot,ij = τi + τj , and

bij =
τibi + τjbj
τtot,ij

= σibi + σjbj = σibi + (1− σi)bj (2)

where σi, σj are the tension ratios2 defined as

σi =
τi

τtot,ij
, σj =

τj
τtot,ij

= 1− σi (3)

By definition (2), Bij lies on the line passing through Bi and Bj . Bij coincides with one of the endpoints if either σi = 0
or σi = 1; from Eq. (3), this is equivalent to τi = 0 or τj = 0, respectively. If both cables are taut, then 0 ≤ τi, τj ≤ τtot,ij ,
so 0 ≤ σi, σj ≤ 1 and, consequently, Bij lies on the segment BiBj .

If m is the EE mass, g = [0, 0,−g]T is the gravitational acceleration, and no wrenches other than gravity and inertia
act on the platform, the dynamic equilibrium of the robot yields

6∑
i=1

eiτi = mp̈−mg = −Fe (4a)

6∑
i=1

bi × eiτi = 0 (4b)

where the sum of gravity and inertial effects, Fe = m(g−p̈), does not contribute to the moment equilibrium around P . We
thus have a linear system of six equations in six unknowns, i.e. the cable tensions τ1, . . . , τ6. This system can be simplified

2The definitions in Eqs. (2) and (3) are not valid if τtot,ij = 0; however, this means either that one of the tensions is negative (against the
assumption of cables being taut) or that τi = τj = 0. In this case, the parallelogram is not constraining the rotation along direction nij , and
the robot can no longer be considered translational.
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by replacing the two cable forces Fi and Fj in each parallelogram by their resultant force Fij = Fi+Fj = τtot,ijei applied
in point Bij . The equilibrium equations can thus be written as

Mτ tot = −We (5)

where τ tot = [τ1 + τ2, τ3 + τ4, τ5 + τ6]T is the vector of total cable tensions, We =
[
FTe ,0

T
]T

is the total wrench on the
EE, and M is the 6× 3 matrix:

M =

[
e1 e3 e5

b12 × e1 b34 × e3 b56 × e5

]
=

[
Msup

Minf

]
(6)

Equation (5) again defines a system of six equations in six unknowns, in this case the components of τ tot and tension
ratios σi’s in position vectors bij ’s, but it is decoupled, as τ tot can be computed by the first three relations in Eq. (5),
and subsequently bij can be derived from the remaining ones. Indeed, by inverting the upper 3 × 3 block of M, we can
find the total cable tensions as

τ tot = −M−1
supFe (7)

Matrix Msup =
[
e1 e3 e5

]
is invertible as long as vectors e1, e3 and e5 are linearly independent. In order to interpret

this condition in a more intuitive way, we define the auxiliary point A∗i (i = 1, . . . , 6) in the fixed frame given by the position
vector a∗i = ai−bi. We notice that, for two cables i and j in the same parallelogram, a∗i = (aj−bj)+[(ai−aj)−(bi−bj)] =
aj − bj = a∗j , since ai − aj = bi − bj (Fig. 1b). Accordingly, we let A∗ij = A∗i = A∗j and a∗ij = a∗i = a∗j . The locations
of points A∗ij ’s do not depend on the robot pose, since ai and bi are constant. By expressing the ith-cable direction as

ei =
(
a∗ij − p

)
/‖a∗ij − p‖ = ej , we see that Msup is singular if and only if points P , A∗12, A∗34 and A∗56 are coplanar. A

special case of this condition occurs when points A∗ij ’s are collinear. If we exclude this degenerate architecture (which can
be easily avoided at the design stage), we can define a singularity plane Π passing through points A∗12, A∗34 and A∗56. If P
is not on Π, Msup is invertible, and τ tot is given by Eq. (7).

We can now consider an equivalent robot with a point-mass EE controlled by three virtual cables passing through the
auxiliary points A∗ij ’s. The cable tensions in the equivalent robot equal the total tensions τtot,ij in the original robot. If �
denotes component-wise inequality, we must have

τ tot � 0 (8)

otherwise cable tensions in our translational CSPR cannot be all positive. The conditions for τ tot to be component-wise
positive are the same as those presented in [9] for a point-mass EE suspended by three cables, namely,

µij := [p× (amn − akl) + amn × akl]
T

(p̈− g) > 0 (9)

where indices k, l, m and n depend on indices i and j as follows:
i = 1, j = 2→ k = 5, l = 6,m = 3, n = 4

i = 3, j = 4→ k = 1, l = 2,m = 5, n = 6

i = 5, j = 6→ k = 3, l = 4,m = 1, n = 2

(10)

The points A∗12, A∗34 and A∗56 must be numbered clockwise (when seen along the positive z direction) and P must remain
below Π. For example, all periodic and transition trajectories from [9] and point-to-point motions from [5] can be re-used
here, and the total tensions are guaranteed to be always positive.

Requiring τ tot to be component-wise positive is a necessary, but not sufficient condition to guarantee that cable tensions
in our translational CSPR are positive, since we might have τtot,ij > 0 with τi > 0 and τj < 0 (or vice versa). A second
condition to satisfy emerges from the last three equations in Eq. (5), namely

(b12 × e1)τtot,12 + (b34 × e3)τtot,34 + (b56 × e5)τtot,56 = 0 (11)

By considering the expression of bij in Eq. (2), and defining vector dij = bi − bj (which is a constant for a given
robot, Fig. 1b), we may re-write Eq. (11) as

Aσ135 = −b246 (12)

where
A =

[
(d12 × e1)τtot,12 (d34 × e3)τtot,34 (d56 × e5)τtot,56

]
(13)

σ135 =
[
σ1 σ3 σ5

]T
(14)

and
b246 = (b2 × e1)τtot,12 + (b4 × e3)τtot,34 + (b6 × e5)τtot,56 (15)
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Figure 2: Schematic of the special architecture: the external force Fe acts on P , which is the intersection of segments B1B2, B3B4 and B5B6.

Equation (12) is a system of three equations in the unknowns σ1, σ3, σ5, which can be solved once one knows the total
tensions τ tot. The second and final condition for positive tensions in all cables is, thus3:

0 � σ135 � 1 (16)

Note that fulfilling Eqs. (8) and (16) only guarantees positive cable tensions, but this could be not sufficient: one may also
require that a tension limit τmax is not exceeded.

4. Special architecture

In this section we introduce a special robot architecture that allows us to define global conditions on a given trajectory
so that condition (16) is always satisfied.

Let P lie at the intersection of lines B1B2, B3B4, and B5B6 (Fig. 2). Vectors bi and bj are then aligned, so bj = αijbi,
where αij is a generic scalar, and thus dij = bi(1− αij). Equation (12) becomes∑

ij

(bi × ei)τtot,ij(1− αij)σi = −
∑
ij

(bi × ei)τtot,ijαij (17)

where the indices in the summations on both sides take values (i, j) ∈ {(1, 2), (3, 4), (5, 6)}.
By comparing the left and the right hand side of Eq. (17), it can be seen that the equality always holds if (1−αij)σi =

−αij , namely

σ135 =
[ α12

α12−1
α34

α34−1
α56

α56−1

]T
(18)

Since the problem is linear, this is the only solution to Eq. (17), and it depends on neither the position p nor the external
force Fe.

It can be easily shown that the condition that we require for positive cable tensions, namely 0 ≤ σi ≤ 1, becomes in
this case αij ≤ 0. This in turn means that P , the centre of mass of the robot, must lie on segment BiBj between points
Bi and Bj .

In summary, if:

• the three segments B1B2, B3B4, and B5B6 pass through a common point P ,

• the resultant wrench We has zero moment about P (e.g., P is the centre of mass and We is only due to gravity and
inertia),

3Note that we could also solve Eq. (11) for the other three tension ratios as

Aσ246 = b135

with
σ246 =

[
σ2 σ4 σ6

]T
b135 = (b1 × e1)τtot,12 + (b3 × e3)τtot,34 + (b5 × e5)τtot,56

In this case, condition (16) could equivalently be set as 0 � σ246 � 1.

5



then the tension ratios are constant, and in order to verify that cable tensions are positive we can simply check the total
tensions τtot,ij , namely condition (8).

It is worth observing that this result also leads to a very simple formulation of the static equilibrium workspace (SEW)
for the robot at hand. Indeed, for the most general geometry of our translational robot, the SEW is the set of poses for
which, when Fe = mg, τ tot � 0 (Eq. (8)) and 0 � σ135 � 1 (Eq. (16)). In general, these conditions define a complex
volume in space: for instance, it may be proven that σ135 � 0 defines a 3rd-degree variety in x, y, z. However, for the
special architecture introduced in this section, condition (16) is always satisfied, and only condition (8) must be checked.
Due to the equivalence between this robot (with a finite-extension EE) and a 3-cable robot with a point-mass EE, we can
immediately see that τ tot � 0 defines a vertical triangular prism having its upper vertices in A∗12, A∗34 and A∗56 [35].

A particular design of the special architecture described in this section was proposed in [30]: in the latter article, P

lies in the middle of the three segments B1B2, B3B4, and B5B6, so that αij = −1 and σ135 = [1/2, 1/2, 1/2]
T

. Hence, the
two cables in each parallelogram always have the same tension.

The result obtained in this section can also be compared with that found in [36] for a planar case, where the authors
study a 3-cable planar CSPR with a finite-size EE, and with cables 2 and 3 defining a parallelogram, so that the EE
motion is purely translational. The authors of [36] found that, if the applied forces (gravity and inertia) are applied in a
point P lying on the segment through the attachment points of cables 2 and 3, and cable 1 is attached to P , this robot is
dynamically equivalent to a 2-cable point-mass robot.

5. Singularities

We have seen in Section 3 that the robot reaches a singular configuration when matrix Msup in Eq. (7) is not invertible
and, thus, total cable tensions cannot be computed. This occurs when P lies on the plane Π defined by A∗12, A∗34 and A∗56.
A second type of singularity emerges when tension ratios cannot be calculated, since matrix A in Eq. (12) is not of full
rank. In both cases, matrix M in Eqs. (5)-(6) is undefined, since it comprises vectors bij ’s that depend on cable tensions
τi’s, which are undefined when the robot is at a singular configuration4. The union of the singularity loci of Msup and A
provides the complete singularity locus of the manipulator.

While the singularity given by det(Msup) = 0 defines an actuation singularity, det(A) = 0 defines a constraint
singularity [37, 38], since in the latter case the robot gains an additional freedom. Indeed, if A is re-written as

A =
[
c12 c34 c56

]
(19)

with
cij = (dij × ei)τtot,ij (20)

and in Eq. (8) the strict inequality holds (i.e. τtot,ij > 0), A is singular when c12, c34 and c56 are coplanar (assuming
‖cij‖ 6= 0; the special case ‖cij‖ = 0 will be discussed later in this section). However, cij has the same direction as the
vector nij orthogonal to the plane Πij through Ai, Bi, Aj and Bj (see Section 2), since dij × ei is orthogonal to both
dij = Bi − Bj and ei (Fig. 1b). Therefore, if vectors cij ’s are coplanar, vectors nij ’s must be coplanar too: this is the
condition where the robot is no longer purely translational and gains a rotational freedom.

The poses where A is singular are given by

det(A) =
τtot,12τtot,34τtot,56

ρ1ρ3ρ5
{[d12 × (a∗12 − p)] × [d34 × (a∗34 − p)]} · [d56 × (a∗56 − p)] = 0 (21)

Since ρi and τtot,ij are nonzero, this reduces to finding the roots of the determinant of a matrix A′ having column
vectors dij ×

(
a∗ij − p

)
functions of position p. After expanding and simplifying, this turns out to be a 2nd-degree variety

in x, y, z, namely a quadric Σ.
In order to obtain an explicit formulation for Σ, we introduce some auxiliary parameters. First, we define the cross

products

λij,kl = dij × dkl (22a)

λa,ij = dij × a∗ij (22b)

where indices i, j, k and l range from 1 to 6, and pairs ij and kl denote two different parallelograms of the manipulator.
We also define the cross products

λa,ij,kl = λa,ij × λa,kl (23)

4This is equivalent to having the 6× 6 coefficient matrix in the kinetostatic problem (4) to be singular.
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and the two matrices

Λ =
[
λ34,56 λ56,12 λ12,34

]
(24a)

Λa =
[
λa,12 λa,34 λa,56

]
(24b)

Since a general quadric in space can be expressed as

pTe Qpe = 0 (25)

where pe = [x, y, z, 1]T and Q is a 4 × 4 matrix with real coefficients, it can be proven that the quadric defined by
det(A′) = 0 has

Q =

[
Q3,3 t
tT kQ

]
(26)

where the blocks composing Q are

Q3,3 = −1

2

[
ΛaΛ

T + ΛΛT
a

]
(27a)

t = −1

2
[d12 × λa,34,56 + d34 × λa,56,12 + d56 × λa,12,34] (27b)

kQ = −λa,12,34 · λa,56 = −λa,34,56 · λa,12 = −λa,56,12 · λa,34 (27c)

(the three definitions of kQ are equivalent).
The full singularity locus for the manipulator is then given by det(Msup) det(A′) = 0, where det(Msup) = 0 gives the

plane Π and det(A′) = 0 defines the quadric Σ. As a result, the singularity locus is given by a third-degree polynomial
in x, y and z. This is coherent with the results reported in [39], where the authors found that the singularity locus of the
general Gough-Stewart platform in the Cartesian space (for a given orientation of the platform) is a 3rd-degree polynomial
in x, y and z. The manipulator at hand can be seen as a particular type of Gough-Stewart platform (assuming that all
cables are taut and work as rigid legs) where the orientation of the EE is constant; the remarkable result is that the
complex polynomial defined by Eq. (32) and Table 4 of the cited reference [39] can here be factored in two simpler terms
of lower degree.

Analogous results were found for the 3-UPU translational manipulator in [40, 41], where the authors distinguished
between translational and rotational singularities, showing that, for a specific architecture, the former define a plane and
the latter define the union of a plane and a right cylinder. In [42], the author found the singularity locus for Delta-
like translational manipulators of general architecture, but provided no explicit formulation as a function of the platform
position. A rigid-link robot with three actuators and three translational DOFs, based on a parallelogram actuation system,
was presented in [43]; our cable-driven architecture is conceptually similar. The singularity conditions of the robot in [43]
were studied by assuming a symmetric architecture and by taking into account only the translational singularities: it can
be shown that the singularity conditions provided in [43] correspond to the plane Π defined here. Another example can
be found in [44], where the authors study a translational robot with three legs, and prove that the singularity surface is
given by the union of a quadric and a plane (but in this case there are no constraint singularities, provided that some
conditions on the robot architecture are fulfilled).

Fig. 3 qualitatively illustrates the singularity surface Σ for the robot at hand. Vector n34 (in green) is orthogonal to
the plane Π34 passing through cables 3 and 4 (also in green). Idem for vectors n12 (in red) and n56 (in blue). Since n12,
n34 and n56 are coplanar (i.e. they are parallel to plane ΠΣ), there is a direction, orthogonal to ΠΣ, around which the
robot is free to rotate.

To help the reader visualize quadric Σ, we note that it has the following properties:

• It emerges from Eq. (21) that det(A) = 0 if p is equal to a∗12, a∗34 or a∗56. The three points A∗ij ’s are thus contained
in Σ.

• Similarly, det(A) = 0 if a∗ij−p is aligned to dij , so that the cross product of these two vectors is zero (this corresponds
to the case ‖cij‖ = 0). Thus, the line rij defined by p = a∗ij +βijdij , with βij ∈ R, is contained in Σ; note that there
are in fact three such lines, one for each parallelogram. It is known from projective geometry that there is one and
only one quadric through a given set of three skew lines [45]; the quadric is then either a hyperbolic paraboloid (if the
three vectors dij are all parallel to a single plane, but not to each other) or a hyperboloid of one sheet (otherwise). If
instead the lines are not skew, the quadric could be a cylinder (either elliptic, parabolic or hyperbolic), a cone or the
union of two planes (either parallel, intersecting or coincident). The possibility of the quadric being a cylinder can
be ruled out by a geometric reasoning: if this were the case, the three lines r12, r34 and r56 would be parallel, and so
would be d12, d34 and d56. In this case the three vectors n12, n34 and n56 would have a common normal, and the
robot would be architecturally singular. Accordingly, an architecture with all vectors dij ’s parallel is a degenerate
case to be avoided. In a similar manner, it can be shown that Σ cannot be a cone: this could only happen if lines rij
passed through a common point, but again, this would lead to a singular architecture.

We found two special architectures, described in the following, that lead to a simplified shape for Σ.
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Figure 3: The singularity surface Σ for a translational cable-suspended robot with a general architecture.

5.1. Two spools are parallel

We first consider the case when vectors dij and dkl are parallel, namely dij = fdkl, f ∈ R. Since dij = bi−bj = ai−aj ,
this implies that segments AiAj and AkAl are parallel too. See Fig. 4 for an illustration of a possible implementation,
where cables i and j (resp. k and l) in the same parallelogram are controlled by one spool rotating around an axis parallel
to line AiAj (resp. AkAl).

If dij = fdkl, the polynomial det [A′(x, y, z)] = 0 can be factored out in two linear terms, and surface Σ degenerates to
the union of two planes Πij,kl,α and Πij,kl,β . These planes are generally unrelated to the plane Π defined by det(Msup) = 0.
It can also be proved that:

• Plane Πij,kl,α passes through points A∗ij and A∗kl, whereas Πij,kl,β passes through point A∗mn. Here, m and n are the
indices of the two cables in the third parallelogram (in general, dmn is parallel to neither dij nor dkl).

• Plane Πij,kl,α is orthogonal to vector fλa,kl − λa,ij , whereas plane Πij,kl,β is orthogonal to both λij,mn and λkl,mn
(which are parallel in this case).

5.2. All spools are parallel to the same plane

Another case of practical interest is found when the three vectors dij are all parallel to the plane Π defined by A∗12,
A∗34 and A∗56, as in Fig. 5. An example of such a robot is found in [30], where the authors show a design where all points
Ai’s are on the same horizontal plane Π, and all points Bi’s are on the horizontal plane through P . Notice that, in the
more general architecture illustrated in Fig. 5, neither points Ai’s nor points Bi’s are coplanar.

By choosing, without loss of generality, the fixed coordinate frame Oxyz so that O lies in and z is normal to Π, the z
components of both points A∗ij ’s and vectors dij ’s are all zero. With these simplifications, det(A′) = 0 becomes

det(A′) = −(ΛΛT
a )3,3z

2 = 0 (28)

where (·)3,3 denotes the 3rd element on the 3rd row of matrix (·). Clearly, Σ is in this case a degenerate quadric defined
by two coincident planes with z = 0, so Σ ≡ Π.

6. Reachable workspace and cable interference

In order to be feasible, dynamic trajectories must satisfy, other than kinematic and kinetostatic constraints concerning
cable tensionability and singularity avoidance, also physical constraints related to cable extension and interference. With
regard to the former issue, the reachable workspace (RW) is the set of poses that can be reached with cable lengths
comprised between a minimum and maximum value, that is, ρi ∈ [ρmin, ρmax], i = 1, . . . , 6. It can then be proved that
point P must be comprised within two spheres, centred in A∗ij and having radii ρmin and ρmax. The RW thus has spherical
surfaces for boundaries: Fig. 6 shows the RW and the SEW for the robot used during the experiments described in Sec. 7.

Another issue to be considered is the possibility of cables interfering with each other, as this limits the workspace.
The problem of defining the interference-free workspace of cable robots when the EE orientation is constant was studied
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in [46–48]. Two cables i and j in the same parallelogram are on parallel lines, so they can intersect only if the lines coincide:
Ai, Aj , Bi and Bj must then be aligned, which is easily ruled out in practice. We thus consider two cables from different
parallelograms: if they cross, they must be coplanar (this condition is necessary, but not sufficient, since cable lines might
cross outside the cable span). In [47], it was shown that cables i and k are coplanar if and only if

(∆aki × dki) · (p− ai + bi) = 0 (29)

where ∆aki = ak − ai. Equation (29) holds in these cases:

a) ∆aki = 0 or dki = 0, namely if Ai = Ak (respectively Bi = Bk): the cables cross in Ai = Ak (resp. Bi = Bk).

b) ∆aki is parallel to dki, so ∆aki × dki = 0: this is a special architecture in which cables i and k are always coplanar5.

c) p− ai + bi = 0: this can only happen if the i-th cable has zero length, since p− ai + bi is the vector from Ai to Bi.

d) ∆aki × dki is orthogonal to p− ai + bi, which is the general case considered in [47].

Excluding special cases a to c, Eq. (29) defines a plane Ωik: if P ∈ Ωik, cables i and k are coplanar and thus can cross.
A special architecture can be usefully considered here, with all points Ai’s lying on a plane Γ and all points Bi’s

lying on a plane parallel to Γ . In this case, the singularity plane Π through A∗12, A∗34 and A∗56 is also parallel to Γ 6:
we are thus in a special case of the architecture seen in Subsection 5.2. It can then be seen that Ωik coincides with the
singularity plane Π ≡ Σ. For a robot such as the one in [30], then, there can be no cable interference unless the robot
is at a singular configuration. This makes such an architecture attractive as the singularity-free and the interference-free
workspaces coincide and very simple to visualize: therefore, this architecture was used for our tests (see Section 7).

7. Experimental tests

In this section, we present the results of the tests performed on a prototype at Université Laval. The robot was designed
so that the cable attachment points Bi’s define a regular hexagon, with the centre of mass P in its centre. The cable
exit points Ai’s are placed on the sides of an equilateral triangle, as shown in Fig. 7a. The six cables are wound on
three motorized winches, each moving two cables simultaneously. The winches are composed of two coaxial pulleys (both
connected to a servomotor) of the same radius; the cables in each parallelogram wind simultaneously on different pulleys,
in order to avoid interference between cables. In this way, if the pulley rotates by a given angle, the two cables wind on
the pulleys by the same amount (since the winding radius is the same) and thus their lengths remain equal, provided that
they were equal at the beginning of the motion. The motor axes pass through the auxiliary points A∗ij ’s, and in this case
Ai and Aj are symmetrical with respect to A∗ij . The location of the motors and the cable exit points was chosen so as to
have a large workspace and avoid cable interference. The final prototype is shown in Fig. 7b and the winches are in Fig.
7c. The prototype is controlled via a Simulink model where the user can set the desired trajectory and its parameters; the
platform coordinates in Cartesian space are converted in corresponding rotation angles in the joint space by the inverse
kinematics. The motors’ target positions are then sent to the real-time control system of the robot, based on a PID control
loop.
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Figure 7: (a): a schematic of the prototype in the reference pose. The fixed frame Oxyz has its origin in the plane of points Ai’s, in the centre
of the SEW. (b): top view of the prototype developed at Université Laval. (c): a photo of one of the robot winches, with two cables (highlighted
by dashed lines) coiling on the same pulley.

The results can be seen in the attached video, showing the robot as it performs dynamic trajectories such as those
presented in [5, 9]; the video shows the robot from two different viewpoints, one frontal and another above the robot. The
robot is clearly moving outside the SEW (marked by a grey volume in the video) while keeping positive cable tensions
and maintaining a constant orientation; also, it is easy to see that the cables remain parallel as the robot moves.

The video is divided in two parts:

• First, the robot performs a dynamic periodic trajectory such as those presented in [9]: the robot starts from rest
and oscillates with increasing motion amplitudes until it moves along a horizontal circle centred in the centre of the
SEW and having a radius larger than the workspace. After a few cycles, the robot is slowed down to its starting
point (see Fig. 8a for a 3D plot of the trajectory).

• In the second part, we perform point-to-point dynamic motions reaching outside the SEW. At the target points the
robot velocity is zero, but not the acceleration (the robot cannot be at rest out of the SEW); here, we used the
method in [5] to plan the trajectories (see Fig. 8b).

The robot used for the tests is a prototype meant to be a proof of concept, thus not fully engineered. In any case,
we verified that the desired trajectories were followed with an acceptable degree of accuracy, given the limitations of the
prototype. We compared the desired position pd along the motion with the estimated actual one pe: this is obtained by
solving the forward kinematics with the real cable lengths ρi,e as inputs (measured by the encoders on the robot motors).
The plots of the norm of the difference dp = pe − pd between the desired and the actual periodic and point-to-point
trajectories are shown in Figs. 8c and 8d, respectively. We found that the maximum positioning error during the periodic

5In this case, the two cables are either always crossing or never crossing, for any position of the robot.
6P does not have to be in the plane through points Bi’s; if it is so, then Π ≡ Γ .
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Figure 8: (a): 3D plot of the periodic motion. (b): 3D plot of the point-to-point motion. (c): plot of the position error ‖dp‖ along the periodic
motion (dp is the distance between desired position pd and the actual one pe). (d): plot of ‖dp‖ along the point-to-point motion.

motion was 1.205× 10−2 m, with an average error of 5.36× 10−3 m (respectively, 6.5× 10−3 m and 3.2× 10−3 m for the
point-to-point motion). Considering the limitations of the prototype and that the robot was moving with high accelerations
(up to ∼ 6.6 m/s2 during our tests) in a workspace that is meters wide, these errors can be considered to be acceptable.

To verify that the orientation was constant as the robot moved, we recorded the roll, pitch and yaw angles of the
platform during the experiments by using the Inertial Measurement Unit (IMU) in a common smartphone that was
secured on the robot platform. An example of the results can be seen in Fig. 9: the platform never rotated by more
than 3◦ with respect its start pose, which seems an acceptable error given the approximations in the measurement of
the architecture parameters. Such results are compatible with what was observed in [21], where the authors performed
a multibody simulation of the dynamic behavior of a CSPR with a cable architecture similar to the one proposed here
(except that the robot only moved in a vertical plane and employed eight cables, thus being overconstrained), observing
a variation of the EE Euler angles not bigger than 1◦. Given that in our case the accelerations are an order of magnitude
higher and the robot moves outside its SEW, a larger orientation error is to be expected, also considering the very simple
mechanical realization of the tested prototype. 7

A potential issue of the special architecture defined in Sec. 4 is that it requires a careful design of the EE to ensure
that its center of mass (CoM) is sufficiently close to the position of P , as an error in the estimation of the CoM location
can produce an orientation error on the EE. Indeed, during some of our tests we did experience small orientation errors
when the CoM was displaced from its nominal position in P ; in any case, in the experiments presented in this paper the
location of the CoM was accurately chosen in order to respect the condition in Sec. 4.

7Since a smartphone IMU is not a precision instrument (the RMS error on the orientation angles in dynamic conditions can be up to roughly
2◦ [49]), the results reported in Fig. 9 must not be intended as an accurate quantitative assessment of the orientation error. However, they
provide a clear indication that the EE orientation remains reasonably constant.
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Figure 9: Yaw, pitch and roll angles of the robot, as measured by an IMU on the EE, with respect to the start position (where we set the three
angles equal to zero) along a circular horizontal motion (see video).

8. Conclusions

In this paper, we investigated the properties of a general class of purely-translational cable-suspended parallel robots
(CSPRs), with an end-effector (EE) of finite dimensions. We found that, under a rather general placement for the mobile
cable attachment points, the robot can be modeled as a 3-cable CSPR with a point-mass EE. Under these conditions, the
robot can be moved, while keeping a constant orientation of the EE, beyond its static workspace, by using the dynamic
trajectories studied in [5, 9].

In order to perform dynamic trajectories feasible in practice, we also studied the singularity-free workspace, the
reachable workspace, and the interference-free workspace, finding in all cases analytical formulations of the corresponding
loci.

The robot at hand has vast motion capabilities and a stable behaviour during motion. Several special architectures
were identified with distinctive and useful features.

The results from this paper combine ideas from previous works [9, 15] in a novel way.
Future plans include the study of the effect of control errors on the robot motion: since the translational properties of

the CSPR under study assume that cables share pairwise the same length, we plan to study how orientation changes when
small control errors are introduced. Also, the effect of the cable flexibility ought to be taken into account. Another possibility
is to apply a gripper on the end-effector, as proposed in [18, 19]: given the high rotational stability that we observed in
the experiments, the robot could be used to perform pick-and-place operations. As observed during experiments (Sec. 7),
small errors in the EE’s orientation can appear if the CoM’s position is not accurately known; investigating sensitivity of
the robot orientation to manufacturing errors with respect to the design parameters will be the object of future research.
Finally, guaranteeing that maximum tensions are below a required threshold τmax along a dynamic motion is left as future
work.
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(Eds.), On Advances in Robot Kinematics, Springer, 2004, pp. 211–218. doi:10.1007/978-1-4020-2249-4_23.

15

http://dx.doi.org/10.1007/s11044-005-3985-6
http://dx.doi.org/10.5772/5035
http://dx.doi.org/10.1007/978-3-319-61431-1_29
http://dx.doi.org/10.1007/978-3-319-61431-1_27
http://dx.doi.org/10.1177/0278364915595277
http://dx.doi.org/10.1007/978-3-319-56802-7_35
http://dx.doi.org/10.1109/ROBOT.2004.1302503
http://dx.doi.org/10.1109/ROBOT.2004.1302503
http://dx.doi.org/10.1115/1.2826720
http://dx.doi.org/10.1109/TRO.2009.2020353
http://dx.doi.org/10.1177/02783640022066860
http://dx.doi.org/10.1115/1.1471530
http://dx.doi.org/10.1023/A:1010359523780
http://dx.doi.org/10.1177/0278364904039689
http://dx.doi.org/10.1115/1.4040885
http://dx.doi.org/10.1115/1.1563637
http://dx.doi.org/10.1007/978-1-4020-2249-4_23


[47] S. Perreault, P. Cardou, C. Gosselin, M. Otis, Geometric determination of the interference-free constant-orientation
workspace of parallel cable-driven mechanisms, ASME J. Mech. Rob. 2 (3) (2010) 031016. doi:10.1115/1.4001780.

[48] L. Blanchet, J.-P. Merlet, Interference detection for cable-driven parallel robots (CDPRs), in: 2014 IEEE/ASME
Int. Conf. on Advanced Intelligent Mechatronics, Besançon, France, 2014, pp. 1413–1418. doi:10.1109/AIM.2014.
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