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Abstract

We study subgame-perfect equilibria of the classical quality-price, multistage game of vertical product
di¤erentiation. Each of two �rms can choose the levels of an arbitrary number of qualities. Consumers�
valuations are drawn from independent and general distributions. The unit cost of production is increasing
and convex in qualities. We characterize equilibrium prices, and the e¤ects of qualities on the rival�s equilib-
rium price in the general model. Equilibrium qualities depend on what we call the Spence and price-reaction
e¤ects. For any equilibrium, we characterize conditions for quality di¤erentiation.
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1 Introduction

Firms using di¤erentiated products to soften intense Bertrand price competition is a basic principle in

industrial organization. Following Hotelling (1929), D�Aspremont, Gabszewicz and Thisse (1979) clarify

theoretical issues and solve the basic horizontal di¤erentiation model. Gabszewicz and Thisse (1979), and

Shaked and Sutton (1982, 1983) work out equilibria of the basic vertical di¤erentiation model.

The standard model of horizontal-vertical product di¤erentiation is the following multistage game between

two �rms: in Stage 1, �rms choose product attributes or qualities; in Stage 2, �rms choose prices, and then

consumers pick a �rm to purchase from. In the literature, models have seldom gone beyond two possible

qualities, have assumed that consumers�quality valuations are uniformly distributed, and have let production

or mismatch costs be nonexistent, linear, or quadratic. We make none of these assumptions. In this paper,

each of two �rms produces goods with an arbitrary number of quality attributes. Consumers�valuations

on each quality follow a general distribution. A �rm�s unit production cost is an increasing and convex

function of qualities. In this general environment, we characterize subgame-perfect equilibria of the standard

di¤erentiation model. By doing so, we show that results in the literature are less general than previously

thought.

Using the uniform quality-valuation distribution and the separable cost assumptions, researchers have

managed to solve for equilibrium prices explicitly as functions of qualities. Equilibrium qualities then can

be characterized. What has emerged in the literature are a few classes of equilibria with largest or smallest

di¤erences in equilibrium qualities (see the literature review below, in particular the �Max-Min-...-Min�

result by Irmen and Thisse (1998)). In equilibrium, �rms may successfully di¤erentiate their products only

in some qualities. We show that uniform distributions and separable quality costs (or mismatch disutility)

are drivers for nondi¤erentiation results. Indeed, when valuations are uniformly distributed and costs are

separable, multidimensional models can be simpli�ed to single-dimensional ones. However, how robust are

maximal or minimal di¤erentiation results? To what extent are they driven by these assumptions? What

are the fundamental forces that determine product di¤erentiation?

In this paper we solve the tractability-generality dilemma that has been posed by the literature. For the
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quality-price, multistage game, we characterize subgame-perfect equilibria. First, we �nd out how qualities

a¤ect equilibrium prices� without solving for the equilibrium prices explicitly in terms of qualities. Second,

we identify two separate e¤ects for the characterization of equilibrium qualities. The �rst is what we call the

Spence e¤ect (because it is originally exposited in Spence (1975); see footnote 7). For maximum pro�t, a �rm

chooses a quality which is e¢ cient for the consumer who is just indi¤erent between buying from the �rm and

its rival. Consumers must buy from one of the two �rms, so �rms share the same set of indi¤erent consumers.

The Spence e¤ect says that each �rm should choose those qualities that are e¢ cient for the equilibrium set

of indi¤erent consumers. The Spence e¤ect alone is a motivation for minimal product di¤erentiation.

The second e¤ect is what we call the price-reaction e¤ect, which is how a �rm�s quality in Stage 1 a¤ects

the rival �rm�s price in Stage 2. Prices are strategic complements, so each �rm would like to use its qualities

in Stage 1 to raise the rival�s price in Stage 2. The two �rms engage in a race, each trying to solicit a positive

price reaction from the rival by increasing qualities. However, higher qualities raise the unit production cost.

Equilibrium qualities re�ect each �rm balancing between the bene�t from price-reaction e¤ects and higher

unit cost, against the rival�s strategy. The entire quality pro�le, not just one single quality, determines the

overall e¤ects on production costs and the rival�s price reactions.

In an environment where consumers� quality valuations are uniformly distributed, �rms� equilibrium

price-reaction e¤ects are equal. In addition, when cost is separable in qualities, �rms�balancing between

price reaction and higher quality cost pushes them to produce equal qualities except in one dimension.

Nevertheless, when �rms�price-reaction e¤ects are not proportional to the quality marginal cost di¤erence,

or when cost is nonseparable, �rms likely choose di¤erent qualities in equilibrium. Thus, �rms that produce

�high-end�products will still di¤erentiate� if only in small details of their product qualities. For example,

BMW and Lexus are companies that di¤erentiate even in the high qualities of their cars. All BMW and

Lexus cars are high-quality automobiles, but the common consensus is that BMW has a higher �performance�

quality than Lexus, but the opposite is true when it comes to the �comfort�quality. However, any car by

BMW or Lexus will be a better performer and more comfortable than any car by Yugo. In fact, in the

automobile and most other markets, it is impossible to �nd products that have identical quality attributes.

These observations are consistent with the general tenet of product di¤erentiation.
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What is behind our solution to the tractability-generality dilemma? The key is to show that equilibrium

prices and equilibrium demands can be decomposed into two systems. The equilibrium prices must satisfy the

usual inverse demand elasticity rule, whereas the equilibrium set of indi¤erent consumers which determines

demands, must satisfy an integral equation. Furthermore, the solution of the integral equation takes the

form of a set of implicit and explicit functions of the model primitives. Then a �rm�s equilibrium price can

be characterized in terms of qualities, through the solution of the integral equation. In other words, we

dispense with the need for computation of equilibrium prices, which would require explicit speci�cation of

the model primitives.

We use a vertical di¤erentiation model, but Cremer and Thisse (1991) show that for the usual model

speci�cation, the Hotelling, horizontal di¤erentiation model is a special case of the vertical di¤erentiation

model. The intuition is simply that �rms�demand functions in a Hotelling model can be directly translated

to the demand functions in a quality model. Cremer and Thisse (1991) state the result for a single location

or quality dimension, but their result extends straightforwardly to an arbitrary number of such dimensions.

(A model with a combination of horizontal and vertical dimensions can also be translated to a model with

only vertical dimensions.) Hence, our results in this paper apply to horizontal di¤erentiation models. In

particular, our method of solving for equilibrium prices is valid for Hotelling models.1

Whereas we have here characterized subgame-perfect equilibria of a general quality-then-price duopoly,

our analysis is incomplete. We take for granted the existence of subgame-perfect equilibria. Our methodology

is to exploit equilibrium properties. To date, the only known equilibrium-existence results are for models

with i) a single generally distributed dimension of consumer locations (or valuations) and quadratic cost,

and ii) multiple uniformly distributed dimensions of consumer locations and quadratic costs (see Anderson,

Goeree and Ramer (1997) and Irmen and Thisse (1998), discussed below). Our results can be regarded

as necessary conditions, so can be used to obtain candidate equilibria. This already simpli�es the search

for equilibria. (In fact, in Subsection 4.2.1, we verify that one candidate equilibrium of an example is an

equilibrium, whereas another candidate fails to be an equilibrium.) In any case, our characterization uses no

1Di¤erences between horizontal and vertical models may also be due to speci�cation of the strategy sets. Here,
we allow qualities to take any positive values; in location models, �rms�positions may not vary as much.
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assumptions except those for existence of equilibria in the price subgame, so does not present any impediment

on existence research.

We continue with a subsection on the literature. In Section 2, we de�ne consumers�preferences and �rms�

technology. Then we set up the quality-price, multistage game. Section 3 is divided into four subsections.

In Subsection 3.1, we characterize subgame-perfect equilibrium prices. Lemma 1 presents the solution of the

integral equation, the key step in expressing equilibrium prices as functions of qualities. In Subsection 3.2,

we characterize how prices change with qualities. In Subsection 3.3, we characterize equilibrium qualities,

and establish the price-reaction and Spence e¤ects. Subsection 3.4 presents a number of implications. We

specialize our model by adopting common assumptions (uniform quality-valuation distribution and separable

cost function), and draw connections between earlier results and ours. A number of examples are studied

in Section 4. These examples illustrate our general results and how they can be used. We also verify the

existence of equilibria in some examples. The last section contains some remarks on open issues. Proofs of

results and statements of some intermediate steps are in the Appendix. Mathematica �les for computations

in Subsections 4.1. and 4.2 are available online.

1.1 Literature review

The modern literature on product di¤erentiation and competition begins with D�Aspremont, Gabszewicz and

Thisse (1979), Gabszewicz and Thisse (1979) and Shaked and Sutton (1982, 1983). In the past few decades,

the principle of product di¤erentiation relaxing price competition has been stated in texts of industrial

organization at all levels: Tirole (1988), Anderson, De Palma, and Thisse (1992), and Belle�amme and

Peitz (2010) for graduate level, as well as Cabral (2000), Carlton and Perlo¤ (2005), and Pepall, Richards,

and Norman (2014). Many researchers use the basic horizontal and vertical di¤erentiation models as their

investigation workhorse.

The research here focuses on equilibrium di¤erentiation. In both horizontal and vertical models, a com-

mon theme has been to solve for subgame-perfect equilibria in the quality-price, multistage game in various

environments.2 First, earlier papers have looked at single or multiple horizontal and vertical dimensions of

2As we have already mentioned, Cremer and Thisse (1991) (following on a suggestion by Champsaur and Rochet
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consumer preferences. Second, most papers have adopted the assumption that these preferences are uni-

formly distributed. Third, most papers in the horizontal model have used a quadratic consumer mismatch

disutility function, whereas those in the vertical model have assumed that the unit production cost is either

independent of, or linear in, quality.

Single dimension models

Anderson, Goeree and Ramer (1997) study equilibrium existence and characterization in a single-dimension

horizontal model. They use a general consumer preference distribution but quadratic mismatch disutility.

Our multidimensional vertical model can be recast into the single-dimensional model in Anderson, Goeree

and Ramer. A few other papers have adopted nonuniform distributions on consumer locations. Neven

(1986) shows that �rms tend to locate inside the market when consumers�densities are higher near the cen-

ter. Tabuchi and Thisse (1995) assume a triangular distribution and �nd that there is no symmetric location

equilibria but that asymmetric location equilibria exist. Yurko (2010) uses a vertical model for studying

entry decisions, but her results are based on numerical simulations. Benassi, Chirco, and Colombo (2006)

allow consumers the nonpurchase option. They relate various trapezoidal valuation distributions to degrees

of equilibrium quality di¤erentiation. Finally, Loertscher and Muehlheusser (2011) consider sequential loca-

tion entry games without price competition. They study equilibria under the uniform and some nonuniform

consumer-location distributions.

Multiple dimensions models

A few papers have studied vertical models with two dimensions. These are Vandenbosch and Weinberg

(1995), Lauga and Ofek (2011), and Garella and Lambertini (2014). All three papers use the uniform

valuation distribution. In the end of Subsection 3.4, we will present the relationship between our results here

to those in these papers. Here, we note that these papers have assumed zero production cost, or unit cost

that is linear or discontinuous in quality. By contrast, we use a strictly convex quality cost function.

In a recent paper, Chen and Riordan (2015) have proposed using the copula to model consumers�corre-

lated multidimensional preferences on product varieties. In their formulation, each variety is a distinct good,

(1989)) show that horizontal-location models are special cases of vertical models.
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and a consumer considers buying some variety. Their analysis has assumed that average production cost

is �xed, so a �rm�s variety choice has no cost consequences. By contrast, we let consumers�preferences on

di¤erent qualities be independent, but all qualities are embedded in a good. We also let the unit production

cost be increasing and convex in qualities.

For horizontal models with multiple dimensions, the key paper is Irmen and Thisse (1998), who set up

an N dimensional model to derive what they call �Max-Min-...-Min�equilibria. We will relate our results to

those in Irmen and Thisse in Subsection 3.4, right after Corollary 4. Tabuchi (1994) and Vendorp and Majeed

(1995) are special cases of Irmen and Thisse (1998) at N = 2. Ansari, Economides, and Steckel (1998) study

two and three dimensional Hotelling models, and derive similar results as in Irmen and Thisse (1998). All

assume that consumers�locations are uniformly distributed, and that the mismatch disutility is Euclidean

and therefore separable. We are unaware of any paper in the multidimensional horizontal literature that

adopts general consumer preferences distributions, or general, nonseparable mismatch disutility.

Finally, Degryse and Irmen (2001) use a model with both horizontal and vertical di¤erentiation. For the

horizontal dimension, consumer locations are uniformly distributed. For the vertical dimension, consumers

have the same valuation (as in the model in Garella and Lambertini (2014)). However, the mismatch disutility

depends also on quality, which corresponds to the case of a nonseparable mismatch disutility or quality cost

function. This can be thought of as a special case of the model here.

2 The Model

We begin with describing consumers and their preferences. Then we present two identical �rms. Finally, we

de�ne demands, pro�ts, and the extensive form of quality-price competition.

2.1 Consumers and preferences for qualities

There is a set of consumers, with total mass normalized at 1. Each consumer would like to buy one unit of

a good, which has N � 2 quality attributes. A good is de�ned by a vector of qualities (q1; q2 :::; qN ) 2 <N+ ,

where qi is the level of the ith quality, i = 1; 2; :::; N .
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A consumer�s preferences on goods are described by his quality valuations, represented by the vector

(v1; :::; vi; :::; vN ) 2
QN
i=1[vi; vi] � <N++. The valuation on quality qi is vi, which varies in a bounded, and

strictly positive interval. If a consumer with valuation vector (v1; :::; vi; :::; vN ) � v buys a good with qualities

(q1; q2 :::; qN ) � q at price p, his utility is v1q1+v2q2+ :::+vNqN �p. (We may sometimes call this consumer

(v1; :::; vN ) or simply consumer v.) The quasi-linear utility function is commonly adopted in the literature

(see such standard texts as Tirole (1988) and Belle�amme and Peitz (2010)). (Throughout the paper, a

vector is a mathematical symbol without a subscript; components of a vector are distinguished by subscripts

(either numerals or Roman letters). Besides, we use v�i to denote the vector v with the ith component

omitted. Any exception should not create confusion.)

Consumers�heterogeneous preferences on qualities are modeled by letting the valuation vector be random.

We use the standard independence distribution assumption: the valuation vi follows the distribution function

Fi with the corresponding density fi, i = 1; :::; N , and these distributions are all independent. Each density

is assumed to be di¤erentiable (almost everywhere) and logconcave. The logconcavity of fi implies that the

joint density of (v1; :::; vi; :::; vN ) � v is logconcave,3 and it guarantees that pro�t functions, to be de�ned

below, are quasi-concave (see Proposition 4 in Caplin and Nalebu¤ 1991, p.39).

2.2 Firms and extensive form

There are two �rms and they have access to the same technology. If a �rm produces a good at quality vector

(q1; q2 :::; qN ) � q, the per-unit production cost is C(q). There is no �xed cost, so if a �rm produces D units

of the good at quality q, its total cost is D multiplied by C(q). We assume that the per-unit quality cost

function C : RN+ ! R+ is strictly increasing and strictly convex. We also assume that C is continuous and

di¤erentiable, and satis�es the usual conditions: limq!0 C(q) = 0, limq!0dC(q) = 0, limq!1 C(q) = 1,

and limq!1dC(q) =1 (where q is a quality vector, 0 stands for a zero or an N -vector of all zeros, and 1

stands for an in�nity or an N -vector of in�nities, and dC is a vector of C�s �rst-order derivatives).4 If a �rm

3Because of independence, the joint density of (v1; :::; vi; :::; vN ) is
QN
i=1 fi. Hence, ln

Q
fi =

P
ln fi. Because

ln fi is concave, so is
P
ln fi.

4The Inada conditions do not necessarily imply that all equilibrium qualities must be strictly positive; this is due
to price-reaction e¤ects to be derived below. However, they do eliminate nondi¤erentiation due to marginal costs
being too high at very low quality levels.

7



sells D units of the good with quality vector q at price p, its pro�t is D � [p� C(q)].

The two �rms are called Firm A and Firm B. We use the notation q for Firm A�s vector of qualities

(q1; q2; ::::::qN ) � q. We use the notation r for Firm B�s vector of qualities (r1; r2; ::::::rN ) � r. Hence, when

we say quality qi, it indicates the level of Firm A�s ith quality attribute, whereas when we say quality ri, it

indicates the level of Firm B�s ith quality attribute. Let Firm A�s price be pA, and Firm B�s price be pB .

We use the notation p for the price vector (pA; pB).

Given the two �rms�quality choices, consumer v = (v1; ::; vN ) obtains utilities v1q1+v2q2+:::+vNqN�pA

and v1r1 + v2r2 + :::+ vNrN � pB from Firm A and Firm B, respectively. Consumer v purchases from Firm

A if and only if v � q� pA > v � r� pB . If the consumer is indi¤erent because v � q� pA = v � r� pB , he picks

a �rm to buy from with probability 0:5. For given quality vectors and prices, the demands for Firm A and

Firm B are, respectively,

Z
� �
ZZ

v�q�pA�v�r�pB

dF1dF2 � �dFN and
Z
� �
ZZ

v�q�pA�v�r�pB

dF1dF2 � �dFN :

The two �rms�pro�ts are8<:
Z
� �
ZZ

v�q�pA�v�r�pB

dF1dF2 � �dFN

9=; [pA � C(q)] � �A(pA; pB ; q; r) (1)

8<:
Z
� �
ZZ

v�q�pA�v�r�pB

dF1dF2 � �dFN

9=; [pB � C(r)] � �B(pA; pB ; q; r): (2)

In case q = r, and pA = pB , each �rm sells to one half of the mass of consumers.

We study subgame-perfect equilibria of the standard multistage game of quality-price competition:

Stage 0: Consumers�valuations are drawn from respective distributions.

Stage 1: Firm A and Firm B simultaneously choose their product quality vectors q and r, respectively.

Stage 2: Firm A and Firm B simultaneously choose their product prices, pA and pB , respectively. Then

each consumer picks a �rm to buy from.
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3 Equilibrium product di¤erentiation

We begin with the subgame in Stage 2, de�ned by �rms� quality vectors q and r in Stage 1. If Firm

A�s and Firm B�s prices are pA and pB , respectively, consumer v = (v1; :::; vN ) now buys from Firm A if

v � q � pA > v � r � pB . The set of consumers who are indi¤erent between buying from Firm A and Firm B

is given by the equation v1q1 + :::+ vNqN � pA = v1r1 + :::+ vNqN � pB . For q1 6= r1 we solve for v1 in this

equation to de�ne the following function:

ev1(v�1; p; q; r) � pB � pA
r1 � q1

�
NP
k=2

vk
rk � qk
r1 � q1

; (3)

where v�1 = (v2; :::; vN ) is the vector of valuations of the second to the last quality attributes. The vector

(ev1(v�1; p; q; r); v2; :::; vN ) � (ev1(v�1; p; q; r); v�1) describes all consumers who are indi¤erent between buying
from the two �rms.

The function ev1 in (3) is linear in the valuations, and this is an important property from the quasi-linear

consumer utility function. The function is illustrated in Figure 1 for the case of two qualities (N = 2).

There, we have the valuation v1 on the vertical axis, and the valuation v2 on the horizontal axis. For this

illustration, we have set q1 < r1, q2 < r2 and pA < pB . The function ev1 is the negatively sloped straight line
with the formula ev1(v2; p; q; r) = pB � pA

r1 � q1
� v2

r2 � q2
r1 � q1

. Prices a¤ect only the intercept, whereas qualities

a¤ect both the intercept and the slope.

Consumer (v01; v2; :::vN ) buys from Firm B if and only if v01 > ev1(v�1; p; q; r): Firm B�s product is more

attractive to a consumer with a higher valuation v1. In Figure 1, the set of consumers who buy from Firm

B consists of those with v above ev1. We reformulate the �rms�demands as:
Firm A Firm BZ vN

vN

:::

Z v2

v2

Z ev1
v1

v�q�pA�v�r�pB

�Ni=1dFi(vi)

=

Z vN

vN

:::

Z v2

v2

F1(ev1(v�1; p; q; r))�Nk=2dFk(vk)

Z vN

vN

:::

Z v2

v2

Z v1

ev1
v�q�pA�v�r�pB

�Ni=1dFi(vi)

=

Z vN

vN

:::

Z v2

v2

[1� F1(ev1(v�1; p; q; r))]�Nk=2dFk(vk):
For some values of q, r, and prices pA and pB , as v�1 varies over its ranges, the value of the formula in (3)

may be outside the support [v1; v1]. We can formally include these possibilities by extending the valuation
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Figure 1: Consumers�choices given prices and qualities

support over the entire real line, but set f1(x) = 0 whenever x lies outside the support [v1; v1]. For easier

exposition, we will stick with the current notation.

We use the following shorthand to simplify the notation:

Z
v�1

stands for
Z vN

vN

:::

Z v2

v2

and dF�1 stands for �Nk=2dFk(vk):

Pro�ts of Firms A and B are, respectively:

�A (pA; pB ; q; r) =

Z
v�1

F1(ev1(v�1; p; q; r))dF�1 � [pA � C(q)] (4)

�B (pA; pB ; q; r) =

Z
v�1

[1� F1(ev1(v�1; p; q; r))]dF�1 � [pB � C(r)] : (5)
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3.1 Subgame-perfect equilibrium prices

In subgame (q; r), if q = r, the equilibrium in Stage 2 is the standard Bertrand equilibrium so each �rm will

charge its unit production cost: pA = pB = C(q) = C(r).

We now turn to subgames in which q 6= r. By a permutation of quality indexes and interchanging

the �rms� indexes if necessary, we let q1 < r1. A price equilibrium in subgame (q; r) is a pair of prices

(p�A; p
�
B) that are best responses: p

�
A = argmaxpA �A(pA; p

�
B ; q; r) and p

�
B = argmaxpB �B(p

�
A; pB ; q; r), where

the pro�t functions are de�ned by (4) and (5). The existence of a price equilibrium follows from Caplin

and Nalebu¤ (1991). Furthermore, because of the logconcavity assumption on the densities, a �rm�s pro�t

function is quasi-concave in its own price.

As we will show, the characterization of equilibrium prices boils down to the properties of the solution

of an integral equation. We begin with di¤erentiating the pro�t functions with respect to prices:

@�A
@pA

=

Z
v�1

F1(ev1(v�1; p; q; r))dF�1 � Z
v�1

f1(ev1(v�1; p; q; r))dF�1 � �pA � C(q)
r1 � q1

�

@�B
@pB

=

Z
v�1

[1� F1(ev1(v�1; p; q; r))]dF�1 � Z
v�1

f1(ev1(v�1; p; q; r))dF�1 � �pB � C(r)
r1 � q1

�
;

where we have used the derivatives of ev1(v�1; p; q; r) in (3) with respect to pA and pB .
The equilibrium prices (p�A; p

�
B) � p� satisfy the �rst-order conditions:

p�A � C(q) =

Z
v�1

F1(ev1(v�1; p�; q; r))dF�1Z
v�1

f1(ev1(v�1; p�; q; r))dF�1 � (r1 � q1) (6)

p�B � C(r) =

Z
v�1

[1� F1(ev1(v�1; p�; q; r))]dF�1Z
v�1

f1(ev1(v�1; p�; q; r))dF�1 � (r1 � q1) (7)

where

ev1(v�1; p�; q; r) = p�B � p�A
r1 � q1

�
NP
k=2

vk
rk � qk
r1 � q1

; vk 2 [vk; vk]; k = 2; :::; N: (8)

Equations (6) and (7) say that the price-cost margins follow the usual inverse elasticity rule, a standard

11



result.5 The complication is that (8) sets up a function ev1 that depends on N � 1 continuous variables vk,

k = 2; ::; N , and the quality vector (q; r), and this is to be determined simultaneously with the prices in (6)

and (7).

Let p� = (p�A; p
�
B) be the subgame-perfect equilibrium prices in Stage 2 in subgame (q; r). The equilibrium

prices are functions of the quality vector, so we write them as p�(q; r). Let ev1(v�1; p� (q; r) ; q; r) be the
solution to (8) at the subgame-perfect equilibrium. Now we de�ne ev�1(v�1; q; r) � ev1(v�1; p� (q; r) ; q; r),
which describes the set of consumers who are indi¤erent between buying from Firm A and Firm B in an

equilibrium in subgame (q; r).

By substituting the equilibrium prices (6) and (7) into ev1(v�1; p� (q; r) ; q; r) in (8) above, we have:
ev�1(v�1; q; r) =

Z
x�1

[1� 2F1(ev�1(x�1; q; r))]dF�1Z
x�1

f1(ev�1(x�1; q; r))dF�1 +
C(r)� C(q)
r1 � q1

�
NP
k=2

vk
rk � qk
r1 � q1

; (9)

where for the variables of the integrals we have used the notation x�1 to denote (x2; :::; xN ) with xk 2 [vk; vk]

following distribution Fk, k = 2; ::; N . This is an integral equation in ev�1 , a function that maps v�1 and
quality vectors q and r to a real number, and the solution holds the key to the characterization of the price

equilibrium. Indeed, we have decomposed the system in (6), (7) and (8) into two systems: a single integral

equation (9), and those two equations in (6) and (7).

The integral equation (9) is independent of prices. Using the solution to (9), we can then proceed to

solve for the equilibrium prices in (6) and (7). We are unaware that any paper in the extant literature of

multiple qualities has decomposed the equilibrium prices and demand characterization in this fashion. Yet,

using this decomposition, we can characterize the functional relationship between quality and equilibrium

prices. Notice that because the price equilibrium in subgame (q; r) exists (from Caplin and Nalebu¤ (1991)),

a solution to (9) must exist.

Lemma 1 The solution of the integral equation (9) takes the form ev�1(v�1; q; r) = �(q; r)�PN
k=2 vk�k(q; r),

5 If we divide (6) by p�A, it can easily be seen that the right-hand side is the inverse elasticity of demand, which is

obtained from the demand
Z
v�1

F1(ev1(v�1; p; q; r))dF�1:

12



for vk 2 [vk; vk]; k = 2; :::; N , where the functions �(q; r) and �k(q; r) are de�ned by

�(q; r) =

Z
x�1

h
1� 2F1(�(q; r)�

PN
k=2 xk�k(q; r))

i
dF�1Z

x�1

f1(�(q; r)�
PN

k=2 xk�k(q; r))dF�1
+
C(r)� C(q)
r1 � q1

(10)

�k(q; r) =
rk � qk
r1 � q1

; k = 2; :::; N: (11)

From (6) and (7), a �rm�s qualities a¤ect equilibrium prices of both �rms. In turn, when equilibrium

prices change, the set of indi¤erent consumers changes accordingly. The composition of the quality e¤ect on

equilibrium prices, and then the e¤ect of equilibrium prices on the equilibrium set of indi¤erent consumers is

the solution in Lemma 1. The equilibrium set of indi¤erent consumers takes the linear form, so the intercept

� and all the slopes �k, k = 2; :::; N are functions of the qualities.

Lemma 1 is a remarkable result. First, the solution to the integral equation (9) takes a manageable

form: it consists of one implicit function �(q; r) in (10) and N � 1 explicit (and simple) functions �k(q; r),

k = 2; :::; N , in (11). Equation (10) is no longer an integral equation (for a solution ev�1(v�1; q; r)). Equation
(10) de�nes implicitly one function �(q; r) whose arguments are qualities q and r but not v�1.

Lemma 1 is a sort of aggregative result. The set of indi¤erent consumers determines �rms�market

shares, and qualities determine the intercept and slopes of the multi-dimensional line for the set of indi¤erent

consumers. Although the integral equation (9) can be likened to a continuum of equations, Lemma 1 says

that the solution can be aggregated into just N equations.

From Lemma 1, the equilibrium prices boil down to solving for the solutions of just three equations. By

substituting the expressions for (10) and (11) to the right-hand side of (6) and (7), we can state the following

proposition (proof omitted):
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Proposition 1 In subgame (q; r), equilibrium prices are the solution of p�A in (12) and p
�
B in (13):

p�A � C(q) =

Z
v�1

F1(�(q; r)� v�1 � ��1(q; r))dF�1Z
v�1

f1(�(q; r)� v�1 � ��1(q; r))dF�1
(r1 � q1) (12)

p�B � C(r) =

Z
v�1

�
1� F1(�(q; r)� v�1 � ��1(q; r))

�
dF�1Z

v�1

f1(�(q; r)� v�1 � ��1(q; r))dF�1
(r1 � q1); (13)

with �(q; r) implicitly de�ned by (10), and �k(q; r) =
rk � qk
r1 � q1

; k = 2; :::; N:

The importance of Proposition 1 is this. The equilibrium price p�A is given by (12), a function of qualities.

Thus, a direct di¤erentiation of p�A with respect to qualities yields all the relevant information of how any

of Firm B�s quality choices changes Firm A�s equilibrium price. The same applies to p�B and (13). The

common link between p�A in (12) and p
�
B in (13) is the implicit function (10), the explicit functions (11), and

the distributions of quality valuations.

3.2 Qualities and equilibrium prices

We now determine how qualities change equilibrium prices, and begin with writing equilibrium prices p�A in

(12) and p�B in (13) as

p�A � C(q)
r1 � q1

= G
�
�; ��1

�
and

p�B � C(r)
r1 � q1

= H
�
�; ��1

�
,

where the functions: G
�
�; ��1

�
: <N ! <, and H

�
�; ��1

�
: <N ! < are de�ned by

G �

Z
v�1

F1(�� v�1 � ��1)dF�1Z
v�1

f1(�� v�1 � ��1)dF�1
and H �

Z
v�1

�
1� F1(�� v�1 � ��1)

�
dF�1Z

v�1

f1(�� v�1 � ��1)dF�1
: (14)

The functions G and H (with their arguments omitted) are �rms�equilibrium price-cost markups per unit

of quality di¤erence. The numerators of G and H are, respectively, Firm A�s and Firm B�s demands.

By Proposition 1, we directly di¤erentiate p�A with respect to Firm B�s qualities ri, i = 1; ::; N , and

di¤erentiate p�B with respect to Firm A�s qualities qi, and these derivatives,
@p�A
@ri

and
@p�B
@qi

, are the price-

reaction e¤ects. In the Appendix, we show these derivatives right after the proof of Lemma 1. There, we
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present two intermediate results (Lemmas 2 and 3) that help us to simplify the price-reaction e¤ects. As it

turns out, product di¤erentiation is determined by di¤erences between price-reaction e¤ects, and the next

proposition presents them.

Proposition 2 In subgame (q; r), for quality j, j = 2; :::; N , the di¤erence in the price-reaction e¤ects can

be written in two ways:

@p�B(q; r)

@qj
� @p

�
A(q; r)

@rj

=

(r1 � q1)
@

@rj

"Z
v�1

f1(�� v�1 � ��1)dF�1

#
 Z

v�1

f1(�� v�1 � ��1)dF�1

!2 + Z [Cj (q)� Cj (r)] (15)

= �
(r1 � q1)

@

@qj

"Z
v�1

f1(�� v�1 � ��1)dF�1

#
 Z

v�1

f1(�� v�1 � ��1)dF�1

!2 + Z [Cj (q)� Cj (r)] ; (16)

where

Z =

1 +H(�; ��1)

Z
v�1

f 01(�� v�1 � ��1)dF�1Z
v�1

f1(�� v�1 � ��1)dF�1

3�G(�; ��1)

Z
v�1

f 01(�� v�1 � ��1)dF�1Z
v�1

f1(�� v�1 � ��1)dF�1

;

and Cj denotes the jth partial derivative of C.

The proposition says that the di¤erence in �rms�price-reaction e¤ects of a quality is determined by i) how

the quality changes the total density of the equilibrium set of indi¤erent consumers,
Z
v�1

f1(��v�1���1)dF�1,

and ii) by the di¤erence in the marginal costs of quality [Cj (q)� Cj (r)]. Indeed, the sum of the markups

per unit of quality di¤erence is G + H =

(Z
v�1

f1(ev�1)dF�1
)�1

. The �rst term in each of two equivalent

expressions in Proposition 2 is the derivative of the sum of markups with respect to a quality j, j = 2; :::; N .

This is point i). Also, Firm A�s quality on the total density of the set of indi¤erent consumers is equal and

opposite to that of Firm B�s, so this accounts for the equivalence of (15) and (16). For ii), we just note that
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the second term in each of the two expressions is the di¤erence in �rms�marginal costs of a quality adjusted

by Z.

Finally, when f1 is a step function, f 01(�� v�1 � ��1) = 0, expressions (15) and (16) simplify to the term

related to the di¤erence in marginal costs:

@p�B(q; r)

@qj
� @p

�
A(q; r)

@rj
=
1

3
[Cj (q)� Cj (r)] : (17)

That is, when the di¤erentiated dimension has a uniform-distribution valuation, the leading case in the

literature, each �rm�s quality raises the markup by the same amount, so the relative price-reaction e¤ects

fall entirely on the marginal-cost di¤erence.

3.3 Equilibrium qualities

Now we characterize equilibrium qualities. When �rms produce the same qualities, q = r, the continuation

is a strict Bertrand game, so each �rm makes a zero pro�t. Clearly, there is no equilibrium in which �rms

choose identical qualities. We use the convention that �rms�qualities di¤er in the �rst dimension, q1 < r1.

The pro�t functions in Stage 1 in terms of qualities are:

�A(p
�
A(q; r); p

�
B(q; r); q; r) =

Z
v�1

F1(ev1(v�1; p�; q; r))dF�1 � [p�A(q; r)� C(q)] (18)

�B(p
�
A(q; r); p

�
B(q; r); q; r) =

Z
v�1

[1� F1(ev1(v�1; p�; q; r))]dF�1 � [p�B(q; r)� C(r)] ; (19)

where p�A(q; r) and p
�
B(q; r) are equilibrium prices in Stage 2, and ev1(v�1; p�; q; r) � p�B(q; r)� p�A(q; r)

r1 � q1
�PN

k=2 vk
rk � qk
r1 � q1

is the set of equilibrium indi¤erence consumers. Given subgame-perfect equilibrium prices,

p�, equilibrium qualities are q� and r� that are mutual best responses:

q� � (q�1 ; :::; q
�
N ) = argmax

q

Z
v�1

F1(ev1(v�1; p�(q; r�); q; r�))dF�1 � [p�A(q; r�)� C(q)]

r� � (r�1 ; :::; r
�
N ) = argmax

r

Z
v�1

[1� F1(ev1(v�1; p�(q�; r); q�; r))]dF�1 � [p�B(q�; r)� C(r)] ;
where p�(q; r) � (p�A(q; r); p�B(q; r)).
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Qualities qi, i = 1; :::; N , a¤ect Firm A�s pro�t (18) in three ways. First, they have a direct e¤ect

through costs and demand. Second, they a¤ect the pro�t through Firm A�s own equilibrium price p�A(q; r).

Third, they a¤ect the pro�t through Firm B�s equilibrium price p�B(q; r), captured by @p
�
B=@qi. Because

the equilibrium prices p�A(q; r) and p
�
B(q; r) are mutual best responses in the price subgame in Stage 2, the

envelope theorem applies. That is, Firm A�s qualities qi, i = 1; :::; N , have second-order e¤ects on its own

pro�t (18) through its own equilibrium price; the second e¤ect can be ignored.

The �rst-order derivative of (18) with respect to qi is

�
"Z

v�1

F1(ev1(v�1; p�(q; r�); q; r�))dF�1#Ci(q) +
@

@qi

(Z
v�1

F1(ev1(v�1; p�(q; r�); q; r�))dF�1)� [p�A(q; r�)� C(q)]| {z }
e¤ects of quality qi on cost and demand

(20)

+
@

@p�B

(Z
v�1

F1(ev1(v�1; p�(q; r�); q; r�))dF�1) @p�B
@qi

� [p�A(q; r�)� C(q)]| {z }
e¤ect of quality on Firm B�s price

; i = 1; :::; N; (21)

where the partial derivative of pro�t with respect to pA has been ignored. The terms in (20) describe how

a quality a¤ects cost and demand, whereas the term in (21) describes the strategic e¤ect of a quality on

the rival�s price. We can also write out the derivative of pro�t (19) with respect to ri to obtain a similar

expression. For brevity, we have omitted the expressions.

We now state the main result on equilibrium qualities. We obtain the set of equations in the next

proposition by �rst simplifying the �rst-order derivatives and then setting them to zero. For simpli�cation,

we use the basic demand function (3) and equilibrium prices (12) and (13) in Proposition 1, and �nally drop

common factors in the �rst-order derivatives. (Details are in the proof.)

Proposition 3 For the quality-price, multistage game in Subsection 2.2, equilibrium qualities (q�; r�) (under
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the convention that q�1 < r
�
1) must satisfy the following 2N equations:

@p�B
@q1

+

Z
v�1

f1(�� v�1 � ��1)ev�1dF�1Z
v�1

f1(�� v�1 � ��1)dF�1
� C1(q�) = 0 (22)

@p�A
@r1

+

Z
v�1

f1(�� v�1 � ��1)ev�1dF�1Z
v�1

f1(�� v�1 � ��1)dF�1
� C1(r�) = 0; (23)

and for j = 2; :::; N ,

@p�B
@qj

+

Z
v�1

f1(�� v�1 � ��1)vjdF�1Z
v�1

f1(�� v�1 � ��1)dF�1
� Cj(q�) = 0 (24)

@p�A
@rj

+

Z
v�1

f1(�� v�1 � ��1)vjdF�1Z
v�1

f1(�� v�1 � ��1)dF�1
� Cj(r�) = 0; (25)

where � and �j are the functions in (10) and (11), respectively, and ev�1 is ev�1(v�1; q�; r�), the solution of the
integral equation in Lemma 1.

The properties of equilibrium qualities in (22) and (24) can be explained as follows. There are two e¤ects.

The �rst term in each expression is the price-reaction e¤ect : it describes how Firm A�s qualities q1 and qj ,

j = 2; :::; N a¤ect the rival�s price in the continuation subgame (see (33) to (36) in the Appendix).

The second e¤ect concerns the average valuation of the jth quality among the equilibrium set of indi¤erent

consumers� the integrals in (22) and (24)� and the jth quality�s marginal contribution to the per-unit cost,

Cj(q) �
@C(q)

@qj
. These two terms together form the Spence e¤ect.6 Indeed, Spence (1975) shows that a

pro�t-maximizing �rm chooses the e¢ cient quality for the marginal consumer (and then raises the price to

extract the marginal consumer�s surplus).7 The same price-reaction and Spence e¤ects apply to Firm B�s

6 In the literature, various authors have used such terms as demand and market-share e¤ects to describe the direct
e¤ect of a quality (or a location) on marginal consumers. See, for example, Tirole (1988, pp.281-2) and Vandenbosch
and Weinberg (1995, p.226). These earlier works, however, have assumed either zero or linear quality cost, so must
limit the quality to a bounded interval.

7Let P (D; q) be the price a �rm can charge when it sells D units of its good at quality q = (q1; :::; qN ). Let C(D; q)
be the cost when the �rm produces D units at quality q. Pro�t is DP (D; q)�C(D; q). The pro�t-maximizing quality
qi is given by D

@P

@qi
=
@C

@qi
. Hence, the quality valuation of the marginal consumer

@P

@qi
is equal to the marginal

contribution of quality i to per-unit cost
@C=@qi
D

. See Spence (1975, p.419; equation (8)).
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equilibrium quality choices described in (23) and (25).

Because the two �rms face the same equilibrium set of indi¤erent consumers, the Spence e¤ect pushes

them to choose the same qualities. The price-reaction e¤ects generally put the �rms in a race situation.

Prices are strategic complements, so each �rm wants to use its qualities to raise the rival�s price. The

price-reaction e¤ect dictates how much a �rm�s equilibrium quality deviates from the e¢ cient quality for the

equilibrium set of indi¤erent consumers. The �rm that has a stronger price-reaction e¤ect deviates more.

If the two �rms were playing another game in which prices and qualities were chosen concurrently (one

with merged Stages 1 and 2 in the extensive form in Subsection 2.2), the price-reaction e¤ect would vanish.

Then the Spence e¤ect would dictate equilibrium strategies. Each �rm would choose qualities optimal for

the average valuations of the common set of marginal consumers, so would choose the same level for each

quality attribute. Firms must then set their prices at marginal cost. (For an illustration of a game with

�rms choosing prices and qualities concurrently, see Ma and Burgess (1993).)

We have stated Proposition 3 in terms of a set of equations, so we implicitly assume that �rms do not

set qualities at zero. If �corner�equilibrium qualities are to be included, the equalities in the Proposition

will be replaced by weak inequalities. If �rms choose to have zero level of a certain quality, then (trivially)

product di¤erentiation does not happen in that quality. Obviously, when a quality valuation support has

a high lower bound, �rms will �nd it optimal to produce a strictly positive quality, so zero quality can be

avoided simply by raising the support.

3.4 Quality di¤erentiation

Proposition 3 draws a connection between the price-reaction e¤ects and qualities�marginal contributions to

unit production cost. Recalling that Cj(q) � @C(q)=@qj , we state this formally:

Corollary 1 At the equilibrium (q�; r�), a �rm�s jth quality contributes more to its own unit production cost

than a rival�s jth quality contributes to the rival�s unit production cost if and only if the �rm�s price-reaction

e¤ect of that quality is stronger than the rival�s. That is, for each j = 2; :::; N , the following are equivalent:

i) Cj(q�) < Cj(r�),
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ii)
@p�B(q

�; r�)

@qj
<
@p�A(q

�; r�)

@rj
,

iii) the two equivalent expressions on the right-hand side of (15) and (16) in Proposition 2 are negative at

equilibrium (q�; r�).

Corollary 1 o¤ers a general perspective. What matter are not quality levels. The key is how each quality

contributes to the unit production cost. From Proposition 3 we have for any quality:

@p�B(q
�; r�)

@qj
� Cj(q�) =

@p�A(q
�; r�)

@rj
� Cj(r�): (26)

The statements in the Corollary simply re�ect this property: how product quality raises the rival�s price and

its own unit production cost must be equalized among the two �rms in an equilibrium.

However, the corollary does not directly address the equilibrium quality levels. We have used a general

cost function, so it is quite possible that Cj(q�) = Cj(r�) but the qualities q�j and r
�
j are di¤erent.

8 Sharper

results can be obtained from the following (with proof omitted):

Corollary 2 Suppose that the cost function C is additively separable:

C(q) = C(q1; q2; :::; qN ) = 1(q1) + 2(q2) + :::+ N (qN );

where i is an increasing, di¤erentiable and strictly convex function, so Ci(q) = 
0
i(qi), i = 1; 2; :::; N . In an

equilibrium (q�; r�), for j = 2; :::; N ,

q�j < r
�
j ()

@p�B(q
�; r�)

@qj
<
@p�A(q

�; r�)

@rj
:

With separable cost, a quality�s contribution to the unit production cost is independent of other qualities.

A �rm having a stronger price-reaction e¤ect at a quality than its rival�s must choose a higher quality than

the rival�s quality. Notice that the Corollary gives a su¢ cient condition. In particular, when a cost function

is separable in some, but not all, qualities, di¤erentiation in some qualities may still be manifested according

to the relative strength of the price-reaction e¤ects.

8For example, if the cost function is C(q1; q2) = q21 + �q1q2 +
1
2
q22 , for some parameter � 6= 0, then C1(q1; q2) =

2q1 + �q2, and C1(r1; r2) = 2r1 + �r2. Even if 2q1 + �q2 = 2r1 + �r2, qi may not be equal to ri, i = 1; 2.
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In the literature, the separable-cost assumption has been adopted. According to Corollaries 1 and 2 the

fundamental issue is how a quality contributes to the production cost. For a model with many qualities,

a quality�s contribution to production cost depends on the entire quality pro�le, and a cost function that

assumes away cost spillover is restrictive. We illustrate this point by some examples below, but �rst we

consider speci�c quality-valuation density functions commonly used in the literature:

Corollary 3 Suppose that f1 is a step function, so f 01 = 0 almost everywhere. In an equilibrium (q�; r�),

Cj(q
�) = Cj(r

�) and
@p�B(q

�; r�)

@qj
=
@p�A(q

�; r�)

@rj
, j = 2; :::; N . Furthermore, if C is additively separable,

then q�j = r
�
j , j = 2; :::; N ; in other words, qualities 2 through N are nondi¤erentiated.

Corollary 3 presents a striking result. Recall that in an equilibrium, there must be at least one quality

for which �rms produce at di¤erent levels. This is our convention for labeling that equilibrium di¤erentiated

quality as quality 1. Now if consumers� valuations of quality 1 is a step function (of which the uniform

distribution is a common example in the literature), Proposition 2 says that the di¤erence in price-reaction

e¤ects, from (17), is:
@p�B(q; r)

@qj
� @p�A(q; r)

@rj
= 1

3 [Cj (q)� Cj (r)], j = 2; :::; N . Corollary 1 also says that

this price-reaction di¤erence is equal to [Cj (q)� Cj (r)], j = 2; :::; N (see (26)), so we have Cj (q) = Cj (r),

j = 2; :::; N . Next, if the cost function is additively separable (another common assumption in the literature),

Corollary 2 applies, so in equilibrium, �rms produce identical qualities 2 through N !

Uniform valuation distributions and additively separable cost are the drivers for quality nondi¤erentia-

tion. Here is a simple example to show that even when valuations are uniformly distributed, cost consider-

ation will give rise to equilibrium product di¤erentiation. Use the following cost function for two qualities:

C(q1; q2) =
1
2q
2
1+�q1q2+

1
2q
2
2 . The marginal costs are C1(q1; q2) = q1+�q2, and C2(q1; q2) = �q1+q2. Suppose

that f1 is a step function, so �rms�price-reaction e¤ects satisfy:
@p�B
@q2

� @p�A
@r2

= 1
3 [C2(q1; q2)� C2(r1; r2)]

(see (17)). According to Corollary 3, C2(q�1 ; q
�
2) = C2(r

�
1 ; r

�
2). In other words, �q

�
1 + q

�
2 = �r�1 + r

�
2 , and

�(r�1 � q�1) = q�2 � r�2 . By assumption, we have q�1 < r�1 in the equilibrium. We conclude that q�2 > r�2 if and

only if � > 0. When qualities have positive spillover on cost (� > 0), then Firm A�s product has one superior

quality and one inferior quality compared to Firm B�s. By contrast, when qualities have negative spillover

(� < 0), Firm A�s qualities are always lower than Firm B�s.
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Whereas Corollary 3 presents a set of su¢ cient conditions for equilibria with minimum di¤erentiation,

we also present, as an addendum, a set of necessary conditions in Corollary 5 at the end of the Appendix.

Corollary 3 has used the convention that, in the equilibrium, q�1 < r
�
1 . The following explains the scope

of the convention.

Corollary 4 Consider the game de�ned by valuation densities fi, i = 1; :::; N , and the separable cost function

C =
NX
i=1

i. Suppose that at least one of the densities is a step function.

i) In every subgame-perfect equilibrium, �rms choose an identical level for at least one quality.

ii) If in an equilibrium (q�; r�) there is di¤erentiation in the jth quality, so that q�j 6= r�j , and fj is a step

function, j = 1; :::; N , then there is no di¤erentiation in any other quality, so q�k = r�k, for k = 1; 2; :::; N ,

and k 6= j

iii) For the special case of N = 2, in every subgame-perfect equilibrium, one and only one quality will be

di¤erentiated.

In this corollary, we have gotten rid of the convention that in equilibrium Firm A chooses a �rst quality

di¤erent from Firm B�s. Consider all equilibria of the multistage game, given valuation densities and the cost

function. The e¤ect of any uniform quality-valuation distribution and the separable cost function is strong.

Suppose that the jth quality has a uniform valuation distribution. If it so happens that in equilibrium �rms

choose q�j 6= r�j , then Corollary 3 applies to the jth quality, so all equilibrium qualities except the jth must

be identical. The only case in which equilibrium di¤erentiation happens in more than one quality is when

q�j = r�j . Then Corollary 3 does not apply to the j
th quality. But this means that there is (at least) one

nondi¤erentiated quality.

Corollary 4 clari�es the �Max-Min-Min...-Min�results in Irmen and Thisse (1998). They consider an N -

dimensional Hotelling model (which can be translated into our N -dimensional quality model). Consumers�

locations are uniformly distributed on the N -dimensional unit hypercube. Consumers�mismatch disutility

is the (weighted) N -dimensional Euclidean distance. Irmen and Thisse derive a subgame-perfect equilibrium

in which the two �rms choose the maximum distance between themselves in one dimension but zero distance

in all other dimensions (p.90, Proposition 2). Although Corollary 4 does not address existence of equilibria,
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it is consistent with the Irmen-Thisse result. To see this, we can rewrite Corollary 4 as follows: if M of the

qualities have uniformly distributed valuations, 1 � M � N , then at least minfM;N � 1g qualities will be

nondi¤erentiated. This is a slightly more general result than in Irmen and Thisse (1998). In their model, all

valuations are uniformly distributed, so M = N . Therefore exactly N � 1 qualities will be nondi¤erentiated.

Vandenbosch and Weinberg (1995) and Lauga and Ofek (2011) are two related papers in the vertical

di¤erentiation literature. They use a linear cost function, and restrict each of two qualities to be in its own

bounded interval. In the notation here, in both papers, N = 2, valuation density fi is uniform, quality qi is

to be chosen from interval [q
i
; qi], i = 1; 2, and unit production cost at quality q is C(q) = c1q1 + c2q2, for

constants c1 and c2. (In fact, the values of c1 and c2 are set at 0 in some cases.) The linear cost function

does not satisfy our assumption of strict convexity. Equilibria with maximum or minimum di¤erentiation

arise due to corner solutions of �rms�pro�t maximization.9

We can interpret these results in terms of price-reaction and Spence e¤ects. First, according to Corol-

lary 3, because quality valuations are uniformly distributed, price-reaction e¤ects di¤er according to the

marginal-cost di¤erence, independent of the density of the set of indi¤erent consumers. Second, because

the cost is linear, a quality�s marginal contribution to unit production cost Ci(q) is constant. The Spence

e¤ect generically does not specify an interior solution under linear cost. Hence, the maximum-minimum

di¤erentiation results are driven by the combination of linear costs and uniform valuation distributions.

Garella and Lambertini (2014) use a discontinuous cost function: a �rm producing z units of the good

at quality (q1; q2) has a total cost of cz + T (q1; q2) if q1 > q
1
, but only T (q1; q2) if q1 = q

1
, where q

1
> 0

and c > 0 are �xed parameters, and T is increasing when q1 > q1. Consumers have homogenous preferences

on the second quality, but their valuations on the �rst quality follow a uniform distribution. They derive

equilibria in which �rms choose di¤erent levels in both qualities. We use a continuous cost function, so our

results do not apply to their model.

9However, for some parameter con�gurations, Vandenbosch and Weinberg (1995) exhibit an interior choice of one
quality.
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4 Examples on two quality dimensions

In this section, we present two sets of examples of a model with two quality dimensions (N = 2). Besides

verifying results, we also use these examples to address existence of equilibria. For these examples, we

assume that cost is quadratic: C(q1; q2) = 1
2q
2
1 + �q1q2 +

1
2q
2
2 , which exhibits a positive cost spillover if

and only if � > 0, and which is separable if � = 0. Next, we assume that consumers�valuations of both

qualities belong to the interval [1; 2], and that v1 follows the uniform distribution. Consumers�valuation on

the second quality, v2, follows a trapezoid distribution. For a parameter k, �1 � k � 1, the density function

is f2(v2) = 1 � k + 2k(v2 � 1) (so f2 is a straight line, and has densities 1 � k at v2 = 1, and 1 + k at

v2 = 2), with the corresponding distribution F2(v2) = (1� k)(v2� 1)+ k(v2� 1)2. Notice that at k = 0, the

distribution is uniform, and at k = 1, the density is triangular on [1; 2].

Solving for � (q; r) in (10) in Lemma 1, we obtain a unique solution (see the Mathematica program in

the online supplements):

� (q; r) =

�
3q1(6 + q1) + 2(9 + k)q2 + 3q

2
2 � 3r1(6 + r1)� 2(9 + k)r2 � 3r22 � 6� (q1q2 + r1r2)

18(q1 � r1)

�
; (27)

which will be used in the following two subsections.

4.1 Quadratic cost function and two uniform distributions

The �rst set of examples uses the general quadratic cost function with spillover (� 6= 0) and two uniform

distributions of consumers�valuations (k = 0). Setting k = 0 and rearranging terms in (27), we obtain

� (q; r) =
1

6

�
q21 + q2 (6 + q2)� r2 (6 + r2) + 2q1 (3 + �q2)� r1 (6 + r1 + 2�r2)

q1 � r1

�
: (28)

The equilibrium set of marginal consumers is

ev�1(v2; q; r) = �q21 + q2 (6 + q2)� r2 (6 + r2) + 2q1 (3 + �q2)� r1 (6 + r1 + 2�r2)6(q1 � r1)

�
� r2 � q2
r1 � q1

v2:

The expressions for G (�; �2) and H (�; �2) are

G (�; �2) =

�
q21 + q2 (q2 � 3)� r2 (r2 � 3) + 2�q1q2 � r1 (r1 + 2�r2)

6(q1 � r1)

�
H (�; �2) = 1�

�
q21 + q2 (q2 � 3)� r2 (r2 � 3) + 2�q1q2 � r1 (r1 + 2�r2)

6(q1 � r1)

�
:
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Price e¤ects are:

@p�A
@r1

= G+ (r1 � q1)
@G

@r1
=
r1 + �r2

3
;

@p�B
@q1

= �H + (r1 � q1)
@H

@q1
=
�3 + q1 + �q2

3

@p�A
@r2

= (r1 � q1)
@G

@r2
=
�3 + 2r2 + 2�r1

6
; and

@p�B
@q2

= (r1 � q1)
@H

@q2
=
�3 + 2q2 + 2�q1

6
: (29)

A �rm�s in�uence on the rival�s price is independent of the rival�s qualities, a consequence of the uniform-

distribution assumption. We verify (17):

@p�B (q; r)

@q2
� @p

�
A (q; r)

@r2
=
C2(q1; q2)� C2(r1; r2)

3
=
q2 � r2 + � (q1 � r1)

3
:

Solving the system of equations of the �rst-order conditions in Proposition 3 we �nd:

q�1 =

�
3

4

��
1� 2�
1� �2

�
; q�2 =

�
3

4

��
2� �
1� �2

�
; r�1 =

�
3

4

��
3� 2�
1� �2

�
; r�2 =

�
3

4

��
2� 3�
1� �2

�
: (30)

Any equilibrium qualities must be in (30). Moreover, substituting the qualities in (30) into the expressions

for the price e¤ects,
@p�A (q; r)

@r2
and

@p�B (q; r)

@q2
, in (29), respectively, we verify that price e¤ects of the second

qualities are identical at an equilibrium.

Finally, for some speci�c values of the parameter �, we have

(1) If � = 0; q�1 =
3

4
q�2 =

3

2
r�1 =

9

4
r�2 =

3

2

(2) If � =
1

4
; q�1 =

2

5
q�2 =

7

5
r�1 = 2 r�2 = 1

(3) If � = �1
2
; q�1 = 2 q�2 =

5

2
r�1 = 4 r�2 =

7

2
:

(31)

Case (1) in (31) illustrates Corollary 3 and Corollary 4(iii): with a separable cost function and uniform

distributions, only the �rst dimension of quality is di¤erentiated. Moreover, in equilibrium, the two �rms

must choose q�2 = r
�
2 = E [v2]. This is the same result in Irmen and Thisse (1998). In Case (2), for positive

cost spillover, Firm A produces a superior second quality than Firm B. Conversely, in Case (3), for negative

cost spillover, Firm A produces an inferior second quality than Firm B. Cases (2) and (3) con�rm that the

nondi¤erentiation result in Irmen and Thisse (1998) depends on the separable mismatch disutility.
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4.2 Separable quadratic cost function, and one uniform distribution and one
trapezoid distribution

This second set of examples uses a separable quadratic cost function (� = 0), and one uniform distribution

and one trapezoid distribution (k 6= 0). Setting � at 0 in (27), we obtain the equilibrium set of marginal

consumers:

ev�1(v2; q; r) = �3q1(6 + q1) + 2(9 + k)q2 + 3q22 � 3r1(6 + r1)� 2(9 + k)r2 � 3r2218(q1 � r1)

�
� r2 � q2
r1 � q1

v2:

Using equation ev�1(v2; q; r) to compute the equilibrium prices p�A in (12) and p
�
B in (13), we derive the pro�ts

as functions of qualities and the parameter k. We then solve the system of equations of the �rst-order

conditions with respect to the qualities to obtain:

�1 � k � 1 q�1 =
3

4
q�2 =

3

2
+
k

6
r�1 =

9

4
r�2 =

3

2
+
k

6

(4) If k = 0 q�1 =
3

4
q�2 =

3

2
r�1 =

9

4
r�2 =

3

2

(5) If k = 1 q�1 =
3

4
q�2 =

3

2
+
1

6
r�1 =

9

4
r�2 =

3

2
+
1

6
:

(32)

The results are consistent with Corollary 3 and Corollary 4(iii). Because q�1 < r�1 , and f1 is uniform,

the second quality dimension must not be di¤erentiated for any members of the trapezoid distributions.

Solution (4) matches case (1) (� = 0) of (31) in the previous subsection. In fact, the consequence of a

valuation distribution that puts more density on higher valuations than the uniform is higher equilibrium

quality q�2(= r
�
2). Also, in Solution (5), �rms have equal shares of the market (� =

3

2
, and ev�1(v2; q�; r�) = �);

Firm A sells a product with a lower quality at a lower price, and the opposite is true for Firm B: p�A =

2:42014 < p�B = 4:67014. However, because unit costs are increasing in qualities, pro�ts are the same for the

two �rms: ��A = �
�
B = 0:375.

4.2.1 Existence of equilibria

Our characterization results can be interpreted as necessary conditions for subgame-perfect equilibria. Our

results do not provide a proof of the existence of equilibria. The general di¢ culty regarding existence has

to do with multiple qualities that maximize pro�ts. Consider for now just the �rst quality. For some given

Firm B�s quality r1, Firm A�s pro�t-maximizing quality may not be unique; say, they are qualities q01 and

26



q001 , and q
0
1 < r1 < q

00
1 (but any convex combination of q

0
1 and q

00
1 does not maximize pro�t). For other values

of r1, Firm A0s pro�t-maximizing quality may be unique, but it may be larger than r1, or it may be smaller.

Thus, the requirement that a candidate equilibrium has q1 smaller than r1 may be di¢ cult to verify. We are

unaware of results for the existence of �xed points that serve as mutual quality best responses.

Nevertheless, our results allow us to construct candidate equilibria, as in the previous two subsections.

Therefore, one may verify that they are mutual best responses. We have in fact done that for Solution

(5) in the previous subsection: at k = 1 for the trapezoid distribution (q1; q2) = (
3

4
;
3

2
+
1

6
) and (r1; r2) =

(
9

4
;
3

2
+
1

6
) are mutual best responses. To do so we have written a Mathematica program to compute pro�ts

�A (q1; q2; r
�
1 ; r

�
2) and �B (r1; r2; q

�
1 ; q

�
2) in (18)and (19) for all demand con�gurations.

10 The program is in

the online supplement.

It is important to note that some candidate equilibria may fail to be equilibria. For the case of k = 1 in

the previous subsection, another candidate equilibrium could have �rms producing identical qualities in the

�rst dimension (valuations following a uniform distribution), but di¤erent qualities in the second (valuations

following a trapezoid distribution). We have used Mathematica to compute such a candidate equilibrium.

The numerical method yields (q�1 ; q
�
2) = (1:50; 0:62), and (r

�
1 ; r

�
2) = (1:50; 1:96). However, our computation

indicates that Firm A has a pro�table deviation. In other words, for k = 1 there is no equilibrium in which

�rms produce identical qualities in the dimensions where valuations are uniform.

5 Concluding remarks

We reexamine the principle of product di¤erentiation relaxing price competition in the classical quality-price

game. The environment for analysis in our model is more general than existing works. Yet, we are able

to characterize equilibria without having to solve for equilibria explicitly. Product quality is used by each

�rm to raise a rival �rm�s equilibrium price, so �rms engage in a race. A product quality�s contribution to

10We make sure that for any combination of qi and ri, valuations of the indi¤erent consumer ev�1(v2; q; r) must reside
in [1; 2] as v2 varies over [1; 2]. The Mathematica program computes max

q1;q2
�A (q1; q2; r

�
1 ; r

�
2) at r

�
1 =

9

4
; r�2 =

5

3
. (We do

not place any restriction on q1 or q2.) We have found that indeed the maximum pro�t is achieved at (q1; q2) = (
3

4
;
5

3
).

Then we perform the corresponding computation for Firm B�s pro�t and have found that the maximum pro�t is

achieved at (r1; r2) = (
9

4
;
5

3
).
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marginal costs is equal among �rms when �rms are equal rivals in this race. Generally, �rms have di¤erent

capabilities of raising the rival�s equilibrium price, due to nonuniform consumer valuations or cost spillover,

so product di¤erentiation tends to be common. The outcome of minimum di¤erentiation in all but one

dimension in earlier works can be attributed to consumers�quality valuations (or location) being uniformly

distributed and quality cost (or mismatch disutility) being separable.

Various open questions remain. First, we have used only necessary conditions of equilibria, not conditions

of existence of equilibria. Existence of price equilibrium in any quality subgame is guaranteed by the

logconcavity of the valuation functions (as in Caplin and Nalebu¤ (1991)). Further restrictions may need to

be imposed for existence of the equilibrium qualities (as in the case of Anderson, Goeree and Ramer (1997) for

the single-dimension Hotelling model with a general location distribution and quadratic transportation). Our

necessary conditions of equilibria characterize all candidate equilibria. Hence, one may develop algorithms

to check if a candidate equilibrium constitutes best responses. Uniqueness of equilibrium seems too much to

expect in our general setting, but our characterization applies to each equilibrium.

Second, we assume linear preferences: each quality bene�ts a consumer at a constant rate. The linearity

assumption is so ubiquitous in modern microeconomics that relaxing this is both challenging and conse-

quential. Third, our approach does make use of the independence of consumer valuations across di¤erent

qualities. However, there are actually two ways for qualities to become related. We have already incorpo-

rated one way� that the cost function allows for positive or negative spillover between qualities. Correlation

in valuations is the other way. A full model that allows valuation correlation and cost spillover will be for

future research.

Fourth, we have assumed that consumers must buy a product from a �rm. Although the �fully-covered-

market�assumption is convenient, it obviously imposes restrictions on speci�c applications. Also, in a single

dimensional model without production costs, existence of duopoly equilibria is not easily established when

consumers have the nonpurchase option (Benassi, Chirco, and Colombo (2015)). The consumer nonpurchase

option can be formally likened to a model with three �rms: the two original �rms, and one (new but arti�cial)

�rm that produces a good at zero quality and sells it a zero price. This covered-market issue is related to
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the duopoly assumption. If there are more than two �rms, obviously strategic interactions become complex.

Future research may shed light on these problems.
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Appendix: Proofs of Lemmas, Propositions, and Corollaries

Proof of Lemma 1: Equilibrium prices p�A and p
�
B depend on qualities (q; r), so the right-hand side of (8)

is (a¢ ne) linear in v2; :::; vN . The solution ev�1(v�1; q; r) of (9) also satis�es (8), so it must also be linear in
v2; :::; vN . Therefore, we write ev�1(v�1; q; r) = �(q; r)�PN

k=2 vk�k(q; r), vk 2 [vk; vk]; k = 2; :::; N for some

functions �, and �k, k = 2; :::; N . Then we substitute ev�1(v�1; q; r) by �(q; r)�PN
k=2 vk�k(q; r) in (9) to get

�(q; r)�
NP
k=2

vk�k(q; r) =

Z
x�1

h
1� 2F1(�(q; r)�

PN
k=2 xk�k(q; r))

i
dF�1Z

x�1

(f1(�(q; r)�
PN

k=2 xk�k(q; r))dF�1

+
C(r)� C(q)
r1 � q1

�
NP
k=2

vk
rk � qk
r1 � q1

; for vk 2 [vk; vk]; k = 2; :::; N:

Because this is true for every v2; :::; vN , the equations (10) and (11) in the lemma follow. �

Steps and Lemmas for Proposition 2:

By partially di¤erentiating p�A and p
�
B in (12) and (13) with respect to qualities, we obtain

@p�A
@r1

=
@(r1 � q1)G

�
�; ��1

�
@r1

= G
�
�; ��1

�
+ (r1 � q1)

"
@G

@�

@�

@r1
+

NX
k=2

@G

@�k

@�k
@r1

#
(33)

@p�B
@q1

=
@(r1 � q1)H

�
�; ��1

�
@q1

= �H
�
�; ��1

�
+ (r1 � q1)

"
@H

@�

@�

@q1
+

NX
k=2

@H

@�k

@�k
@q1

#
; (34)

and

@p�A
@rj

= (r1 � q1)
@G
�
�; ��1

�
@rj

= (r1 � q1)
�
@G

@�

@�

@rj
+
@G

@�j

@�j
@rj

�
; j = 2; :::; N (35)

@p�B
@qj

= (r1 � q1)
@H

�
�; ��1

�
@qj

= (r1 � q1)
�
@H

@�

@�

@qj
+
@H

@�j

@�j
@qj

�
; j = 2; :::; N: (36)

Because we label a di¤erentiated quality attribute as the �rst attribute (q1 < r1), there is a slight di¤erence

between the form of price-reaction e¤ects of the �rst quality and the other qualities. We now present two

lemmas that are used for Proposition 2.
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Lemma 2 In any subgame (q; r), the sum of the proportional changes in the �rms� equilibrium price-cost

markups and the proportional change in the total density of the equilibrium set of indi¤erent consumers must

vanish:

d ln[G(�; ��1) +H(�; ��1)] + d ln
Z
v�1

f1(�� v�1 � ��1)dF�1 = 0. (37)

It follows that the sum of the partial derivatives of G(�; ��1) and H(�; ��1) with respect to � and �j,

j = 2; :::; N are

@G

@�
+
@H

@�
=�

Z
v�1

f 01(�� v�1 � ��1)dF�1 Z
v�1

f1(�� v�1 � ��1)dF�1

!2 (38)

@G

@�j
+
@H

@�j
=

Z
v�1

f 01(�� v�1 � ��1)vjdF�1 Z
v�1

f1(�� v�1 � ��1)dF�1

!2 : (39)

Proof of Lemma 2: From the de�nitions of G and H in (14), at each (q; r), we have:

G(�; ��1) +H(�; ��1) =
1Z

v�1

f1(�� v�1 � ��1)dF�1
:

Hence

d ln(G+H) + d ln
Z
v�1

f1(�� v�1 � ��1)dF�1 = 0;

so the �rst statement of the lemma follows.

Because (37) holds for each (q; r), we can partially di¤erentiate it with respect to � and �j , j = 2; :::; N ,

to obtain (38) and (39).�

Lemma 2 allows us to present how qualities change the equilibrium price markups. This then allows

us to �nd how the intercept and slopes of the equation for the equilibrium set of indi¤erent consumers are

impacted by qualities.
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Lemma 3 In any subgame (q; r), in equilibrium, for i = 1; :::; N ,

@�j(q; r)

@qi
+
@�j(q; r)

@ri
= 0 and

@�(q; r)

@qi
+
@�(q; r)

@ri
=

Ci (r)� Ci (q)

(r1 � q1)
�
1 +

@G

@�
� @H
@�

� : (40)

Proof of Lemma 3: From (11), the functions �j(q; r) are �j =
rj � qj
r1 � q1

, j = 2; :::; N . Hence,

@�j
@q1

=
rj � qj
(r1 � q1)2

= �
@�j
@r1

; and
@�j
@qj

= � 1

r1 � q1
= �

@�j
@rj

; j = 2; :::; N; (41)

and all partial derivatives of �j with respect to qk or rk, k = 2; :::; N , k 6= j, vanish. These prove the �rst

equality in (40).

From de�nitions of G and H in (14), we write (10) as

�+G
�
�; ��1

�
�H

�
�; ��1

�
=
C(r)� C(q)
r1 � q1

: (42)

We totally di¤erentiate (42) to obtain�
1 +

@G

@�
� @H
@�

�
d�+

NX
k=2

�
@G

@�k
� @H

@�k

�
d�k = d

�
C(r)� C(q)
r1 � q1

�
:

Then we have�
1 +

@G

@�
� @H
@�

�
@�

@q1
+

NX
k=2

�
@G

@�k
� @H

@�k

�
@�k
@q1

=
@

@q1

�
C(r)� C(q)
r1 � q1

�
= � C1(q)

(r1 � q1)
+

�
C(r)� C(q)
(r1 � q1)2

�
�
1 +

@G

@�
� @H
@�

�
@�

@r1
+

NX
k=2

�
@G

@�k
� @H

@�k

�
@�k
@r1

=
@

@r1

�
C(r)� C(q)
r1 � q1

�
=

C1(r)

(r1 � q1)
�
�
C(r)� C(q)
(r1 � q1)2

�
;

where Ci(q) �
@C(q)

@qi
denotes the ith partial derivative of the cost function C. Using (41), we obtain

@�

@q1
+
@�

@r1
=

C1 (r)� C1 (q)

(r1 � q1)
�
1 +

@G

@�
� @H
@�

� :
Next, we have, for j = 2; :::; N ,�

1 +
@G

@�
� @H
@�

�
@�

@qj
+

NX
k=2

�
@G

@�k
� @H

@�k

�
@�k
@qj

=
@

@qj

�
C(r)� C(q)
r1 � q1

�
= � Cj(q)

(r1 � q1)�
1 +

@G

@�
� @H
@�

�
@�

@rj
+

NX
k=2

�
@G

@�k
� @H

@�k

�
@�k
@rj

=
@

@rj

�
C(r)� C(q)
r1 � q1

�
=

Cj(r)

(r1 � q1)

Using (41), we obtain

@�

@qj
+
@�

@rj
=

Cj (r)� Cj (q)

(r1 � q1)
�
1 +

@G

@�
� @H
@�

� :
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We have proven the second equality in (40).�

Proof of Proposition 2: From (35) and (36), we have

@p�B(q; r)

@qj
� @p

�
A(q; r)

@rj
= (r1 � q1)

��
@H

@�

@�

@qj
+
@H

@�j

@�j
@qj

�
�
�
@G

@�

@�

@rj
+
@G

@�j

@�j
@rj

��
; j = 2; :::; N:

Using Lemma 3, we have
@�

@qj
=

Cj (r)� Cj (q)

(r1 � q1)
�
1 +

@G

@�
� @H
@�

� � @�

@rj
and

@�j
@qj

= �
@�j
@rj

, and substitute them

into the above to obtain:

@p�B(q; r)

@qj
� @p

�
A(q; r)

@rj

= (r1 � q1)

8>><>>:
2664@H@�

0BB@ Cj (r)� Cj (q)

(r1 � q1)
�
1 +

@G

@�
� @H
@�

� � @�

@rj

1CCA� @H

@�j

@�j
@rj

3775� �@G@� @�@rj + @G

@�j

@�j
@rj

�9>>=>>;
= (r1 � q1)

��
�@H
@�

@�

@rj
� @H

@�j

@�j
@rj

�
�
�
@G

@�

@�

@rj
+
@G

@�j

@�j
@rj

��
+
@H

@�

[Cj (r)� Cj (q)]�
1 +

@G

@�
� @H
@�

�
= �(r1 � q1)

��
@G

@�
+
@H

@�

�
@�

@rj
+

�
@G

@�j
+
@H

@�j

�
@�j
@rj

�
+
@H

@�

[Cj (r)� Cj (q)]�
1 +

@G

@�
� @H
@�

� :
Next, we de�ne

Z � @H

@�

1�
1 +

@G

@�
� @H
@�

� :
We use (38) and (39) in Lemma 2 to obtain

@p�B(q; r)

@qj
� @p

�
A(q; r)

@rj

= (r1 � q1)

2666664
Z
v�1

f 01(�� v�1 � ��1)dF�1 Z
v�1

f1(�� v�1 � ��1)dF�1

!2
3777775
@�

@rj

�(r1 � q1)

2666664
Z
v�1

f 01(�� v�1 � ��1)vjdF�1 Z
v�1

f1(�� v�1 � ��1)dF�1

!2
3777775
@�j
@rj

+ Z [Cj (q)� Cj (r)]

=

(r1 � q1)
 Z

v�1

f 01(�� v�1 � ��1)dF�1
@�

@rj
�
Z
v�1

f 01(�� v�1 � ��1)vjdF�1
@�j
@rj

!
 Z

v�1

f1(�� v�1 � ��1)dF�1

!2 (43)

+Z [Cj (q)� Cj (r)] :
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Then we further write the �rst term in (43) as

(r1 � q1)

@

@rj

"Z
v�1

f1(�� v�1 � ��1)dF�1

#
 Z

v�1

f1(�� v�1 � ��1)dF�1

!2 : (44)

Hence, we have shown (15). Next, from Lemma 3, we have
@�

@rj
=

Cj (r)� Cj (q)

(r1 � q1)
�
1 +

@G

@�
� @H
@�

� � @�

@qj
and

@�j
@rj

= �
@�j
@qj

, so (44) also equals

�
(r1 � q1)

@

@qj

"Z
v�1

f1(�� v�1 � ��1)dF�1

#
 Z

v�1

f1(�� v�1 � ��1)dF�1

!2 :

Therefore, (15) equals (16).

Finally, from the de�nition of G
�
�; ��1

�
and H

�
�; ��1

�
in (14), we have:

@

@�
G
�
�; ��1

�
= 1�

Z
v�1

f 01(�� v�1 � ��1)dF�1
Z
v�1

F1(�� v�1 � ��1)dF�1 Z
v�1

f1(�� v�1 � ��1)dF�1

!2

@

@�
H
�
�; ��1

�
= �1�

Z
v�1

f 01(�� v�1 � ��1)dF�1
Z
v�1

�
1� F1(�� v�1 � ��1)

�
dF�1 Z

v�1

f1(�� v�1 � ��1)dF�1

!2 :

After we substitute these into the de�nition of Z, we obtain the same expression for Z in the Proposition.�

Proof of Proposition 3: We begin by simplifying Firm A�s �rst-order derivatives with respect to

qualities. First, for (20) we use (3) to obtain

@

@qj

Z
v�1

F1(ev1(v�1; p�(q; r�); q; r�))dF�1
=

1

r1 � q1

Z
v�1

f1(ev1(v�1; p�(q; r�); q; r�))vjdF�1 j = 2; :::; N:

Second, for (21), again we use (3) to obtain

@

@p�B

Z
v�1

F1(ev1(v�1; p�(q; r�); q; r�))dF�1
=

1

r1 � q1

Z
v�1

f1(ev1(v�1; p�(q; r�); q; r�))dF�1:
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We then substitute these expressions into (20) and (21), and the �rst-order derivative of Firm A�s with

respect to quality qj , j = 2; :::; N , becomes

�
"Z

v�1

F1(ev1(v�1; p�(q; r�); q; r�))dF�1#Ci(q)
+

1

r1 � q1

Z
v�1

f1(ev1(v�1; p�(q; r�); q; r�))vjdF�1 [p�A(q; r�)� C(q)] (45)

+
1

r1 � q1

Z
v�1

f1(ev1(v�1; p�(q; r�); q; r�))dF�1 @p�B
@qj

[p�A(q; r
�)� C(q)] :

We now evaluate (45) at the equilibrium qualities, so replace ev1(v�1; p�(q�; r�); q�; r�)) as ev�1(v�1; q�; r�) =
�(q�; r�)� v�1 � ��1(q�; r�). Using the equilibrium price (12) in Proposition 1

p�A(q
�; r�)� C(q�)
r�1 � q�1

=

Z
v�1

F1(�� v�1 � ��1))dF�1Z
v�1

f1(�� v�1 � ��1))dF�1
;

we simplify the �rst-order derivative of Firm A�s pro�t with respect to qj to

"Z
v�1

F1(�� v�1 � ��1)dF�1

#2664@p�B@qj +
Z
v�1

f1(�� v�1 � ��1)vjdF�1Z
v�1

f1(�� v�1 � ��1))dF�1
� Cj(q)

3775 ; j = 2; :::; N;

where we have omitted the arguments in � and ��1. We set this to zero to obtain the �rst-order condition

for q�j :

@p�B
@qj

+

Z
v�1

f1(�� v�1 � ��1)vjdF�1Z
v�1

f1(�� v�1 � ��1))dF�1
� Cj(q�) = 0 j = 2; :::; N:

For brevity we do not lay out all the steps for obtaining the �rst-order condition of Firm A�s equilibrium

quality q1, but the key di¤erence is that (3) yields
@ev1
@q1

=
ev1

r1 � q1
. The e¤ect of quality q1 on demand now

becomes

@

@q1

Z
v�1

F1(ev1(v�1; p�(q; r�); q; r�))dF�1
=

1

r1 � q1

Z
v�1

f1(ev1(v�1; p�(q; r�); q; r�))~v1dF�1:
Following the same steps, we obtain the following �rst-order condition for q�1

@p�B
@q1

+

Z
v�1

f1(�� v�1 � ��1)ev�1dF�1Z
v�1

f1(�� v�1 � ��1))dF�1
� C1(q�) = 0:
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The �rst-order conditions for Firm B�s equilibrium qualities are derived analogously.�

Proof of Corollary 1: For each j = 2; :::; N , the terms with the integrals are the same in the two

equations in (24) and (25). Taking their di¤erence, we have

@p�B
@qj

� @p
�
A

@rj
= Cj(q

�)� Cj(r�),

and the equivalence of i) and ii) in the Corollary follows. Then we simply apply Proposition 2 on the

equilibrium (q�; r�) for the equivalence of ii) and iii).�

Proof of Corollary 3: Consider the subgame de�ned by equilibrium quality (q�; r�). The di¤erence

in the �rms�price-reaction e¤ects is in Proposition 2. Obviously, f 01 = 0 by assumption, so (15) becomes

@p�B(q
�; r�)

@qj
� @p

�
A(q

�; r�)

@rj
= 1

3 [Cj(q
�)� Cj(r�)]. Under the step-function assumption, Corollary 1 then says

that
@p�B(q

�; r�)

@qj
� @p

�
A(q

�; r�)

@rj
= 1

3 [Cj(q
�)� Cj(r�)] = Cj(q�)�Cj(r�): Hence it must be Cj(q�) = Cj(r�),

j = 2; :::; N . We conclude that
@p�B(q

�; r�)

@qj
� @p�A(q

�; r�)

@rj
= 0: Finally, we apply Corollary 2 to obtain the

nondi¤erentiation result.�

Proof of Corollary 4: Let the valuation density of quality j be a step function. Consider an equilibrium

(q�r�). If q�j = r
�
j , then the �rst part of the corollary is trivially true. Suppose that q

�
j 6= r�j . Without loss

of generality we let q�j < r
�
j . Now we relabel the indexes so that j = 1. Then Corollary 3 applies, and the

�rms choose identical qualities for all quality attributes k = 2; :::; N . Finally, the last part of the Corollary

is a special case of i) and ii).�

Corollary 5 Suppose that the cost function C is additively separable. If in equilibrium (q�; r�), q�j = r
�
j at

some j, 2 < j < N , then

Z
v�1

f
0

1(�(q
�; r�)� v�1 � ��1(q�; r�))dFv�1 �

�
(r�1 � q�1)

@�(q�; r�)

@rj
� E(vj)

�
= 0; (46)

where E(vj) is the expected value of vj. Furthermore, if q�j = r
�
j for each j = 2; :::; N , then

f
0

1(�(q
�; r�)�

�
(r�1 � q�1)

@�(q�; r�)

@rj
� E(vj)

�
= 0: (47)

Corollary 5 can be understood as follows. Absent di¤erentiation at quality j, �rms have identical price-

reaction e¤ects. The slope of the line de�ning the set of indi¤erent consumers has a zero slope at quality
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j (�j = 0). If f1�s derivative does not vanish, the derivative of the intercept � with respect to rj (or qj),

evaluated at the equilibrium (q�; r�), exactly equals the mean of the quality-j valuation distribution divided

by (r�1�q�1), independent of other qualities or distributions. Corollary 5 does not imply any global properties

of the key � function. Neither does Corollary 5 imply any global properties that f1 must satisfy.

Proof of Corollary 5: From Corollary 2, q�j = r�j implies
@p�B(q

�; r�)

@qj
=
@p�A(q

�; r�)

@rj
. Next, from

Proposition 2, we use (15) and Cj(q�) = Cj(r�) to obtain

@p�B(q
�; r�)

@qj
� @p

�
A(q

�; r�)

@rj

=

(r�1 � q�1)
@

@rj

"Z
v�1

f1(�(q
�; r�)� v�1 � ��1(q�; r�))dF�1

#
 Z

v�1

f1(�(q�; r�)� v�1 � ��1(q�; r�))dF�1

!2

=

(r�1 � q�1)
Z
v�1

f
0

1(�(q
�; r�)� v�1 � ��1(q�; r�))

�
@�(q�; r�)

@rj
� vj
r�1 � q�1

�
dFv�1 Z

v�1

f1(�(q�; r�)� v�1 � ��1(q�; r�))dF�1

!2 : (48)

In the numerator of (48), the term in the integrand involving
vj

r�1 � q�1
is

(r�1 � q�1)
Z
v�1

f
0

1(�(q
�; r�)� v�1 � ��1(q�; r�))

�
vj

r�1 � q�1

�
dFv�1 :

Observe that when q�j = r
�
j , �(q

�; r�)�v�1 ���1(q�; r�) is independent of vj , so f
0

1(�(q
�; r�)�v�1 ���1(q�; r�))

is also independent of vj . Therefore, we can simplify this to

Z
v�1

f
0

1(�(q
�; r�)� v�1 � ��1(q�; r�))dFv�1 �

Z
v�1

vjdFv�1

=

Z
v�1

h
f
0

1(�(q
�; r�)� v�1 � ��1(q�; r�))� E(vj)

i
dFv�1 :

Using this and then setting (48) to 0, we obtain (46). Finally, if, for each j = 2; :::; N , we have q�j = r
�
j , then

�j(q
�; r�) =

r�j � q�j
r�1 � q�1

= 0, so v�1 � ��1(q�; r�) = 0. Simplifying the argument inside f 01, we obtain (47).�
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