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1 Introduction
In this paper we focus on the existence and the regularity results for solutions u to the Dirichlet problems

associated with the following nonlinear system in divergence form (here α = 1, . . . , N):

{{{
{{{
{

n
∑
i=1

∂
∂xi

Aαi (Du) = 0 in Ω,

u = u
0

on ∂Ω,
(1.1)

where the functions Aαi (ξ) are locally C1 in ℝnN , Ω is an open bounded subset of ℝn and Du : Ω → ℝnN

represents the gradient of a (vector-valued) function u : Ω → ℝN .
We equip the problem with the general (p, q)-growth conditions, i.e., we assume that there are p, q

with 1 < p ≤ q < ∞ and two positive constants m,M such that for all ξ, λ ∈ ℝnN and for all i, j = 1, . . . , n,
and α, β = 1, . . . , N there holds

m(1 + |ξ|2)
p−2
2 |λ|2 ≤

n
∑
i,j=1

N
∑
α,β=1

∂Aαi
∂ξ βj

(ξ)λαi λ
β
j , (1.2)

!!!!!!!
∂Aαi
∂ξ βj

(ξ)
!!!!!!!
≤ M(1 + |ξ|2)

q−2
2
. (1.3)

Notice that (1.2) is the usual ellipticity condition and (1.3) is the q-growth condition, from which the

name of (p, q)-growth comes from. Under these assumptions, one can easily observe (see Lemma 2.1)
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that

|Aαi (ξ)| ≤ C(1 + |ξ|)q−1

with some generic constant C and therefore we can naturally define a notion of a weak solution to (1.1) in

the following way:

Let u
0
∈ W1,p(Ω;ℝN) ∩W1,q

loc

(Ω;ℝN). We say that u is a weak solution to (1.1) if

u − u
0
∈ W1,p

0

(Ω;ℝN) ∩W1,q
loc

(Ω;ℝN)

and for all open Ω

�
fulfilling Ω

� ⊂ Ω and for all φ ∈ W1,q
0

(Ω�
;ℝN) there holds

∫
Ω

n
∑
i=1

N
∑
α=1

Aαi (Du)φ
α
xi (x) dx = 0. (1.4)

Here, and also in what follows, we use the abbreviation φαxi :=
∂φα
∂xi .

Our main task in the paper is to establish the existence of such a solution and further some regularity of

arbitraryweak solutions. However, contrary to the classical result, we donot in general assume any symmetry

condition on the derivative of Aαi and sowedonot assume that the system is in variational form.Nevertheless,

as done in [23] in the scalar framework, we will need to compensate this lack of symmetry by the following

assumption on the asymptotic behavior of the skew-symmetric part, namely, for all ξ, λ ∈ ℝnN and for all

i, j = 1, . . . , n, and α, β = 1, . . . , N there holds

!!!!!!!
∂Aαi
∂ξ βj

(ξ) −
∂Aβj
∂ξ αi

(ξ)
!!!!!!!
≤ M(1 + |ξ|2)

q+p−4
4
. (1.5)

If p = q, the existence ofweak solutions to (1.1) canbe establishedusing the theory of coercive,monotone

operators, see Leray–Lions [19], Browder [3] and Hartman–Stampacchia [15]. Also the regularity issue has

been studied extensively, see themonographs [12, 14] and the surveys [24, 25]. Notice also that, without any

further additional structural assumptions, the best¹ known regularity information about the solution is that

V(Du) ∈ W1,2

loc

(Ω;ℝnN), where
V(ξ) := (1 + |ξ|2)

p−2
4 ξ.

On the other hand, if p < q, the above classical existence results cannot be applied due to the lack of coercivity
in W1,q

. Moreover, the request u ∈ W1,q
loc

(Ω;ℝN) in the definition of weak solution, needed to have a well-

defined integral, is an additional difficulty. Notice that such a request is a priori assumed in some regularity

results under the (p, q)-growth, see for example [2, 7, 17].

The first result of the paper is that any weak solution is in fact twice weakly differentiable.

Theorem 1.1. Let 1 < p ≤ q < ∞ be arbitrary and suppose that A satisfies (1.2), (1.3) and (1.5). Then any
u ∈ W1,max{q,2}

loc

(Ω;ℝN) fulfilling (1.4) satisfies for all η ∈ C∞c (Ω) the estimate

∫
Ω

(1 + |Du|2)
p−2
2 |D2u|2η2 dx ≤ c∫

Ω

(1 + |Du|2)
q
2 |Dη|2 dx, (1.6)

where the constant c depends only on m and M. In particular, we also have

∫
Ω

|DV(Du)|2η2 dx ≤ c∫
Ω

(1 + |Du|2)
q
2 |Dη|2 dx. (1.7)

The above theorem provides the existence of the second derivatives for arbitrary 1 < p ≤ q < ∞ but the right-

hand side of (1.6) or (1.7) still depends on theW1,q
norm of u. We shall improve this estimate provided that

p and q are sufficiently close to each other. Thus, the second main theorem of the paper is the following.

1 This information can be as usual slightly improved by the Gehring lemma.
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Theorem 1.2. Let 1 < p ≤ q < ∞ be arbitrary, let A satisfy (1.2), (1.3) and (1.5) and let u ∈ W1,max{q,2}
loc

(Ω;ℝN)
satisfy (1.4). Then for all open Ω� ⊂ Ω� ⊂ Ω the following hold:
(i) If

q < p n + 2

n
, (1.8)

then

∫
Ω

�

(|V(Du)|
2q
p + |DV(Du)|2 + (1 + |Du|2)

p−2
2 |D2u|2) dx ≤ C(Ω�

, n, N, p, q,m,M, ‖Du‖Lp(Ω)).

(ii) If u ∈ L∞(Ω;ℝN) and
q < p + 2 and p < n, (1.9)

then

∫
Ω

�

(|V(Du)|
2q
p + |DV(Du)|2 + (1 + |Du|2)

p−2
2 |D2u|2) dx ≤ C(Ω�

, n, N, p, q,m,M, ‖Du‖Lp(Ω), ‖u‖L∞(Ω)).

In particular, in both cases we have V(Du) ∈ W1,2

loc

(Ω;ℝnN), which, due to the embedding theorem, leads to
Du ∈ Lp2

∗/2
loc

(Ω;ℝnN).

Finally, we state our last main result of the paper. It is an existence result for the Dirichlet problem (1.1). For

this purpose, we need to consider a regularity assumption on the boundary datum. We shall require in what

follows that

u
0
∈ W1,r(Ω;ℝN), with r := max{2,

p(q − 1)
p − 1

}. (1.10)

Theorem 1.3. Let 1 < p ≤ q < ∞ be arbitrary and let A satisfy (1.2), (1.3) and (1.5). Moreover, let u
0
ful-

fill (1.10). Then there exists a weak solution to the problem (1.1) provided that at least one of the following
conditions holds:
(i) p and q satisfy (1.8).
(ii) p and q satisfy (1.9), u

0
∈ L∞(∂Ω;ℝN) and
n
∑
i=1
Aαi (ξ)ξ

α
i ≥ 0 for all ξ ∈ ℝnN and all α ∈ {1, . . . , N}. (1.11)

As far as the regularity of solutions is concerned, the obstructions are essentially two: we are dealing with

systems and under non-standard growth (p < q). Indeed, in the vectorial case, even under the standard

growth, the everywhere regularity of solutions for systems, or of minimizers of integrals, cannot be expected

unless some structure conditions are assigned, and this holds also for the local boundedness, see e.g. the

counterexamples by De Giorgi [8] and Šverák–Yan [26]. Assumption (1.11) is the structural conditions that

leads to locally bounded solution and was used e.g. in [18] in context of the regularity theory for nonlinear

elliptic systems or in [28] for existence theory in problems with the right-hand side being a Radon measure.

Since the pioneering paper by Marcellini [22], the theory of regularity in the framework of non-standard

growth has been deeply investigated. The results and the contributions to regularity are so many, that it is

a hard task to provide a comprehensive overview of the issue. For this, we refer to the survey of Mingione [24]

for an accurate and interesting account on this subject. A common feature is that to get regularity results p
and q must be not too far apart, as examples of irregular solutions by Giaquinta [13], Marcellini [21] and

Hong [16] show. On the other hand, many regularity results are available if the ratio

q
p is bounded above by

a suitable constant that in general depends on the dimension n, and converges to 1 when n tends to infinity
[1, 5, 9–11]. Moreover, the condition on the distance between the exponents p and q can usually be relaxed
if the solutions/minimizers are assumed locally bounded.

Let us observe that the local higher differentiability results for bounded minimizers of integral func-

tionals satisfying (p, q)-growth conditions is more studied than the analogous issue for systems of PDEs.

In particular, recently, the authors, in [4], considered integral functionals with convex integrand satisfying

(p, q)-growth conditions. They proved local higher differentiability results for bounded minimizers under

dimension-free conditions on the gap between the growth and the coercivity exponents; i.e., (1.9) restricted
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to the case p ≥ 2, using an improved Gagliardo–Nirenberg’s inequality. We also observe that an existence

result in the (p, q)-framework was proved in [6] for a Dirichlet problem (1.1) with monotone operators possi-

bly depending on the x-variable, but for p ≥ 2 only. As a novel feature, the main results are achieved through

uniform higher differentiability estimates for solutions to a class of auxiliary problems, constructed adding

higher order perturbations to the integrand. Herewe achieve the same result for systemswith non-variational

structure with control on the skew-symmetric part (see (1.5)).

The plan of the paper is the following. In Section 2 we prove some preliminary algebraic inequalities. In

Sections 3 and 4 we prove the higher differentiability results Theorem 1.1 and Theorem 1.2, respectively. In

the last section, we prove the existence result (Theorem 1.2) for problem (1.1).

2 Auxiliary algebraic inequalities
In this part, we recall several algebraic inequalities related to the mapping A. Although their proof can be

in some simplified setting found in many works, see e.g. [23, Lemmas 4.4, Lemma 2.4], [27, Lemma 1],

[7, Lemma 5.1] or [20, Chapter 5], we provide for the sake of clarity a detailed proof here. We start with

the first auxiliary result based on assumptions (1.2)–(1.3).

Lemma 2.1. Let A : ℝnN → ℝnN be a continuous mapping fulfilling (1.2) and (1.3). Then there exists a positive
constant K such that for all ξ, η ∈ ℝnN there hold

|ξ|p ≤ K{(1 + |η|2)
p(q−1)
2(p−1) +

n
∑
i=1

N
∑
α=1

Aαi (ξ)(ξ
α
i − ηαi )}, (2.1)

|Aαi (ξ)| ≤ K(1 + |ξ|2)
q−1
2 for all α = 1, . . . , N and i = 1, . . . , n, (2.2)

|ξ − η|p ≤ K
n
∑
i=1

N
∑
α=1

(Aαi (ξ) − A
α
i (η))(ξ

α
i − ηαi ) for p ≥ 2, (2.3)

(1 + |ξ|2 + |η|2)
p−2
2 |ξ − η|2 ≤ K

n
∑
i=1

N
∑
α=1

(Aαi (ξ) − A
α
i (η))(ξ

α
i − ηβi ) for p ∈ (1, 2). (2.4)

Proof. We start the proof with (2.2). Since

Aαi (ξ) − A
α
i (0) =

1

∫
0

n
∑
j=1

N
∑
β=1

∂Aαi (tξ)

∂ξ βj
ξ βj dt,

we can use assumption (1.3), to get

|Aαi (ξ)| ≤ |Aαi (0)| +M
1

∫
0

n
∑
j=1

N
∑
β=1

(1 + t2|ξ|2)
q−2
2 |ξ βj | dt ≤ |Aαi (0)| +MnN

1

∫
0

(1 + t2|ξ|2)
q−2
2 |ξ| dt.

Thus, in case q ≥ 2, inequality (2.2) immediately follows.

If q ∈ (1, 2), we can continue with estimating the last integral in the following way:

1

∫
0

(1 + t2|ξ|2)
q−2
2 |ξ| dt =

|ξ|

∫
0

(1 + t2)
q−2
2 dt ≤ 2

2−q
2

|ξ|

∫
0

(1 + t)q−2 dt ≤ 2

2−q
2

q − 1

(1 + |ξ|)q−1

and we again see that (2.2) follows directly.

To show (2.3)–(2.4), we write

n
∑
i=1

N
∑
α=1

(Aαi (ξ) − A
α
i (η))(ξ

α
i − ηαi ) =

1

∫
0

n
∑
i,j=1

N
∑
α=1

∂Aαi (tξ + (1 − t)η)

∂ξ βj
(ξ βj − ηβj )(ξ

α
i − ηαi ) dt

≥ m|ξ − η|2
1

∫
0

(1 + |tξ + (1 − t)η|2)
p−2
2 dt,



M. Bulíček et al., Existence and regularity results of weak solutions | 277

using (1.2) for the estimate. Then following step by step proof of [20, Chapter 5, Lemma 1.19], we deduce

inequalities (2.3)–(2.4).

To show (2.1), we first consider the case p ≥ 2. Then by using (2.3) and (2.2) and also Young’s inequality,

we can observe that for all ϵ > 0 and all ξ, η ∈ ℝnN , we have

|ξ|p ≤ c(|ξ − η|p + |η|p) ≤ c{
n
∑
i=1

N
∑
α=1

(Aαi (ξ) − A
α
i (η))(ξ

α
i − ηαi ) + |η|p}

≤ c{|η|p +
n
∑
i=1

N
∑
α=1

Aαi (ξ)(ξ
α
i − ηαi ) + C̄(1 + |η|2)

q−1
2 (|ξ| + |η|)}

≤ c{(1 + |η|2)
p
2 +

n
∑
i=1

N
∑
α=1

Aαi (ξ)(ξ
α
i − ηαi ) + cϵ(1 + |η|2)

p(q−1)
2(p−1) + ϵ(|ξ| + |η|)p};

thus if ϵ is small enough, we get (2.1).

In the case 1 < p < 2, we proceed slightly differently. By using Young’s inequality with complementary

exponents

2

p and
2

2−p we get for ϵ > 0,

|ξ|p ≤ c(|ξ − η|p + |η|p) ≤ c(|η|p + (|ξ − η|2)
p
2 (1 + |ξ|2 + |η|2)

p(p−2)
4

+ p(2−p)
4 )

≤ c{(1 + |η|2)
p
2 + cϵ(1 + |ξ|2 + |η|2)

p−2
2 |ξ − η|2 + ϵ(1 + |ξ|2 + |η|2)

p
2 }.

Therefore, by (2.4), with a proper choice of (small) ϵ > 0, we get

|ξ|p ≤ c{(1 + |η|2)
p
2 +

n
∑
i=1

N
∑
α=1

(Aαi (ξ) − A
α
i (η))(ξ

α
i − ηαi )}

and we conclude by proceeding as above.

The following estimate will play a crucial role for getting the information about the second derivatives of the

weak solutions to (1.4).

Lemma 2.2. Let A be a continuousmapping fulfilling (1.2), (1.3) and (1.5). Then there exists a positive constant
K such that for all ξ, η, ζ ∈ ℝnN we have

m
2

(1 + |ζ|2)
p−2
2 |ξ|2 ≤

n
∑
i,j=1

N
∑
α,β=1

∂Aαi (ζ)

∂ζ βj
(ξ αi − ηαi )ξ

β
j + K(1 + |ζ|2)

q−2
2 |η|2. (2.5)

Proof. For arbitrary ζ, ξ, η ∈ ℕ, we define a bilinear form (for fixed ζ )

(ξ, η)ζ :=
1

2

n
∑
i,j=1

N
∑
α,β=1

(
∂Aαi (ζ)

∂ζ βj
+
∂Aβj (ζ)
∂ζ αi

)ηαi ξ
β
j .

Trivially, (ξ, η)ζ = (η, ξ)ζ . Moreover, using assumption (1.2), we get

(ξ, ξ)ζ =
n
∑
i,j=1

N
∑
α,β=1

∂Aαi (ζ)

∂ζ βj
ξ αi ξ

β
j ≥ m(1 + |ζ|2)

p−2
2 |ξ|2,

and consequently, we see that for any fixed ζ , the relation (ξ, η)ζ is a scalar product onℝnN and therefore the
Cauchy–Schwarz inequality holds, i.e.,

|(ξ, η)ζ | ≤ (ξ, ξ)
1

2

ζ (η, η)
1

2

ζ .

Thus, by assumption (1.2) and taking into account that

n
∑
i,j=1

N
∑
α,β=1

(
∂Aαi (ζ)

∂ζ βj
−
∂Aβj (ζ)
∂ζ αi

)ξ αi ξ
β
j = 0,
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we have

m(1 + |ζ|2)
p−2
2 |ξ|2 ≤ (ξ, ξ)ζ

= −(ξ − η, ξ − η)ζ + 2(ξ, ξ − η)ζ + (η, η)ζ
≤ 2(ξ, ξ − η)ζ + (η, η)ζ

=
n
∑
i,j=1

N
∑
α,β=1

(
∂Aαi (ζ)

∂ζ βj
+
∂Aβj (ζ)
∂ζ αi

)(ξ αi − ηαi )ξ
β
j +

n
∑
i,j=1

N
∑
α,β=1

∂Aαi (ζ)

∂ζ βj
ηαi η

β
j

= 2

n
∑
i,j=1

N
∑
α,β=1

∂Aαi (ζ)

∂ζ βj
(ξ αi − ηαi )ξ

β
j −

n
∑
i,j=1

N
∑
α,β=1

(
∂Aαi (ζ)

∂ζ βj
−
∂Aβj (ζ)
∂ζ αi

)(ξ αi − ηαi )ξ
β
j

+
n
∑
i,j=1

N
∑
α,β=1

∂Aαi (ζ)

∂ζ βj
ηαi η

β
j

= 2

n
∑
i,j=1

N
∑
α,β=1

∂Aαi (ζ)

∂ζ βj
(ξ αi − ηαi )ξ

β
j +

n
∑
i,j=1

N
∑
α,β=1

(
∂Aαi (ζ)

∂ζ βj
−
∂Aβj (ζ)
∂ζ αi

)ηαi ξ
β
j

+
n
∑
i,j=1

N
∑
α,β=1

∂Aαi (ζ)

∂ζ βj
ηαi η

β
j

≤ 2

n
∑
i,j=1

N
∑
α,β=1

∂Aαi (ζ)

∂ζ βj
(ξ αi − ηαi )ξ

β
j +MnN(1 + |ζ|2)

q+p−4
4 |η||ξ| +MnN(1 + |ζ|2)

q−2
2 |η|2,

using (1.3) and (1.5) in the last inequality. Taking into account that

(1 + |ζ|2)
q+p−4

4 |η||ξ| = ((1 + |ζ|2)
p−2
4 |ξ|)((1 + |ζ|2)

q−2
4 |η|)

and using Young’s inequality, we get

m(1 + |ζ|2)
p−2
2 |ξ|2 ≤ 2

n
∑
i,j=1

N
∑
α,β=1

∂Aαi (ζ)

∂ζ βj
(ξ αi − ηαi )ξ

β
j +

m
2

(1 + |ζ|2)
p−2
2 |ξ|2 + C(1 + |ζ|2)

q−2
2 |η|2

for a suitable constant C. Then (2.5) easily follows.

3 Proof of Theorem 1.1
We proceed via difference quotients technique. Due to the assumed regularity of the solution u and thanks

to (2.2), it follows from (1.4) that

∫
Ω

n
∑
i=1

N
∑
α=1

(Aαi (Du(x + hek)) − A
α
i (Du(x)))φ

α
xi dx = 0

for all φ ∈ W1,q
0

(Ωh;ℝN), all h ∈ (0, 1) and all k = 1, . . . , n, where Ωh := {x ∈ Ω : B
2h(x) ⊂ Ω} and ek is a unit

vector in the kth direction. Hence, setting

φ(x) := (u(x + hek) − u(x))τ2(x)

with τ ∈ C∞
c (Ω

2h) (which is an admissible choice), we obtain the starting identity

0 = ∫
Ω

n
∑
i=1

N
∑
α=1

(Aαi (Du(x+hek))−A
α
i (Du(x)))τ(x)((u

α
xi (x+hek)−u

α
xi (x))τ(x)+2(u

α(x+hek)−uα(x))τxi ) dx. (3.1)

Since

Aαi (Du(x + hek)) − A
α
i (Du(x)) =

t

∫
0

n
∑
j=1

N
∑
β=1

1

∫
0

∂Aαi (tDu(x + hek) + (1 − t)Du(x))

∂ζ βj
(uβxj (x + hek) − u

β
xj (x)) dt,
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identity (3.1) can be equivalently rewritten as

0 = ∫
Ω

n
∑
i,j=1

N
∑
α,β=1

1

∫
0

∂Aαi (tDu(x + hek) + (1 − t)Du(x))

∂ζ βj
(uβxj (x + hek) − u

β
xj (x))τ(x)

⋅ ((uαxi (x + hek) − u
α
xi (x))τ(x) + 2(uα(x + hek) − uα(x))τxi ) dt dx. (3.2)

Abbreviating for the moment

ξ αi := τ(x)(uαxi (x + hek) − u
α
xi (x)), ηαi := −2(uα(x + hek) − uα(x))τxi (x), ζ := tDu(x + hek) + (1 − t)Du(x),

we can formally rewrite (3.2) as

0 = ∫
Ω

1

∫
0

n
∑
i,j=1

N
∑
α,β=1

∂Aαi (ζ)

∂ζ βj
ξ βj (ξ

α
i − ηαi ) dt dx.

Thus, using (2.5), we obtain (here C is some constant depending only on m,M, n, N, p, q)

∫
Ω

1

∫
0

(1 + |ζ|2)
p−2
2 |ξ|2 dt dx ≤ C∫

Ω

1

∫
0

(1 + |ζ|2)
q−2
2 |η|2 dt dx,

which in terms of original variables after division by h2 means that

∫
Ω

1

∫
0

(1 + |tDu(x + hek) + (1 − t)Du(x))|2)
p−2
2

|Du(x + hek) − Du(x)|2

h2
τ2(x) dt dx

≤ 4C∫
Ω

1

∫
0

(1 + |tDu(x + hek) + (1 − t)Du(x))|2)
q−2
2

|u(x + hek) − u(x)|2

h2
|Dτ(x)|2 dt dx. (3.3)

Finally, we let h → 0+. First, we focus on the limit in the term on the right-hand side of (3.3). In case

that q ≤ 2, we use the assumption that u ∈ W1,2

loc

(Ω;ℝN) and therefore, we can use the Lebesgue dominated

convergence theorem to conclude that

lim sup

h→0

∫
Ω

1

∫
0

(1 + |tDu(x + hek) + (1 − t)Du(x))|2)
q−2
2

|u(x + hek) − u(x)|2

h2
|Dτ(x)|2 dt dx

= ∫
Ω

(1 + |Du|2)
q−2
2 |uxk |2|Dτ|2 dx ≤ ∫

Ω

(1 + |Du|2)
q
2 |Dτ|2 dx.

Next, if q > 2, we use the Hölder inequality, the assumption u ∈ W1,q
loc

(Ω;ℝN) and the Lebesgue dominated

convergence theorem to conclude

lim sup

h→0

∫
Ω

1

∫
0

(1 + |tDu(x + hek) + (1 − t)Du(x))|2)
q−2
2

|u(x + hek) − u(x)|2

h2
|Dτ(x)|2 dt dx

= lim sup

h→0

∫
Ω

1

∫
0

(((1 + |tDu(x + hek) + (1 − t)Du(x))|2)
q−2
2 |Dτ(x)|2

q−2
q )

⋅
|u(x + hek) − u(x)|2

h2
|Dτ(x)|

4

q dt dx

≤ lim sup

h→0

1

∫
0

(∫
Ω

((1 + |tDu(x + hek) + (1 − t)Du(x))|2)
q
2 |Dτ(x)|2 dx)

q−2
q

⋅ (∫
Ω

|u(x + hek) − u(x)|q

hq
|Dτ(x)|2 dx)

2

q

dt

≤ ∫
Ω

(1 + |Du|2)
q
2 |Dτ|2 dx.
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Consequently, substituting these limits into (3.3), we have

lim sup

h→0

∫
Ω

1

∫
0

(1 + |tDu(x + hek) + (1 − t)Du(x))|2)
p−2
2

|Du(x + hek) − Du(x)|2

h2
τ2(x) dt dx

≤ 4C∫
Ω

(1 + |Du|2)
q
2 |Dτ|2 dx. (3.4)

From this estimate it immediately follows that u ∈ W2,min{2,p}
loc

(Ω;ℝN); in particular, we know that D2u exists
and that for almost all x,

Du(x + hek) − Du(x)
h

→ D2uxk (x),

where D2uxk stands for ∂Du∂xk . Therefore, we can use the Fatou lemma in (3.4) to conclude

∫
Ω

(1 + |Du|2)
p−2
2 |D2uxk (x)|2τ2 dx ≤ 4C∫

Ω

(1 + |Du|2)
q
2 |Dτ|2 dx.

Since k is arbitrary, relation (1.6) obviously follows. In addition, using the following algebraic inequality

|DV(Du)|2 ≤ K(1 + |Du|2)
p−2
2 |D2u|2,

we see that (1.7) holds as well. Hence the proof is complete.

4 Proof of Theorem 1.2
We shall start by recalling the definition of the Sobolev embedding exponent:

2

∗ =
{
{
{

2n
n−2 if n ≥ 3,

arbitrary > 2 if n = 2.

The value 2

∗
in dimension n = 2 will be finally chosen sufficiently large. Since u is assumed to be a weak

solution belonging to W1,max{q,2}
loc

(Ω;ℝN), we can use Theorem 1.1 and after summing (1.7) and (1.6), we

obtain the starting inequality valid for all τ ∈ C∞
c (Ω):

∫
Ω

((1 + |Du|2)
p−2
2 |D2u|2τ2 + |DV(Du)|2τ2) dx ≤ K ∫

Ω

(1 + |Du|2)
q
2 |Dτ|2 dx. (4.1)

Moreover, we remark that

∫
Ω

(1 + |Du|2)
q
2 |Dτ|2 dx ≤ c∫

Ω

((1 + |Du|2)
p
2 + |V(Du)|

2q
p )|Dτ|2 dx. (4.2)

Indeed, in {|Du| ≤ 1} we have
(1 + |Du|2)

q
2 ≤ 2

q−p
2 (1 + |Du|2)

p
2

and, in {|Du| > 1},
(1 + |Du|2)

q
2 = {(1 + |Du|2)

p−2
2 (1 + |Du|2)}

q
p ≤ 2

q
p |V(Du)|

2q
p
.

Next, we split the proof for cases (i) and (ii).

4.1 The case q < p n+2n
In this case, we first use the Sobolev embedding to conclude that (with some C depending on 2∗)

‖V(Du)τ‖2
2
∗ ≤ C‖D(V(Du)τ)‖2

2

≤ 2C∫
Ω

(|DV(Du)|2τ2 + |V(Du)|2|Dτ|2) dx

≤ 2C∫
Ω

(|DV(Du)|2τ2 + (1 + |Du|2)
p
2 |Dτ|2) dx.
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Using this inequality in (4.1), and taking into account (4.2), we get

‖V(Du)τ‖2
2
∗ + ∫

Ω

((1 + |Du|2)
p−2
2 |D2u|2τ2 + |DV(Du)|2τ2) dx

≤ K
1
∫
Ω

((1 + |Du|2)
p
2 |Dτ|2 + (1 + |Du|2)

q
2 |Dτ|2) dx

≤ K
2
∫
Ω

((1 + |Du|2)
p
2 |Dτ|2 + |V(Du)|

2q
p |Dτ|2) dx. (4.3)

In particular, we have V(Du) ∈ L2∗
loc

.

Let us now estimate the last integral on the right-hand side. Since q ∈ (p, p 2

∗

2

), which follows from the

assumption that q < p n+2n (note here that the value of2

∗
in dimension n = 2has to be chosen greater than

2q
p ),

there exists a unique θ ∈ (0, 1) such that

q
2

=
p
2

(1 − θ) + p2
∗

4

θ, θ := q − p
p(2∗

2

− 1)
.

As we will prove below, under our assumptions on the exponents p and q and, if n = 2, with a suitable

choice of 2

∗
, we have

2 > 2

∗θ. (4.4)

Consider η ∈ C∞
c (Ω) an arbitrary nonnegative cut-off function and set

τ := ηγ with γ := 2

2 − 2
∗θ
.

We have

|Dτ|2

τ2∗θ
= γ2ηγ(2−2∗θ)−2|Dη|2 = γ2|Dη|2. (4.5)

Then by the Hölder inequality, we have

∫
Ω

|V(Du)|
2q
p |Dτ|2 dx = ∫

Ω

|V(Du)|2(1−θ)(V(Du)τ)2∗θ |Dτ|
2

τ2∗θ
dx

≤ ‖V(Du)‖2(1−θ)
2

‖V(Du)τ‖2∗θ
2
∗

"""""""
|Dτ|2

τ2∗θ
"""""""∞

and we can apply Young’s inequality to deduce that for arbitrary ε > 0 we have

∫
Ω

|V(Du)|
2q
p |Dτ|2 dx ≤ ε‖V(Du)τ‖2

2
∗ + C(ε, γ)‖V(Du)‖2(1−θ)γ

2

"""""""
|Dτ|2

τ2∗θ
"""""""

γ

∞
.

(4.6)

Therefore, combining (4.3), (4.6), (4.5) and taking into account that |V(Du)| ≤ (1 + |Du|2)
p
4 , with a proper

choice of ε > 0, we obtain

‖V(Du)τ‖2
2
∗ + ∫

Ω

((1 + |Du|2)
p−2
2 |D2u|2η2γ + |DV(Du)|2η2γ) dx ≤ K(γ, ‖Dη‖∞)(∫

Ω

(1 + |Du|2)
p
2 dx)

q̃

,

with some power q̃ whose value depends on p, q and γ. From this inequality statement (i) of Theorem 1.2

follows directly.

Now, we check the validity of (4.4), which, by using of definition of θ, it can be written as

q < 2p(1 −
1

2
∗ ).

If n = 2, we can choose 2

∗
arbitrarily large, therefore in this case condition (4.4) reduces to q < 2p, which is

exactly assumption (1.8) for n = 2. If n ≥ 3, we have 2

∗ = 2n
n−2 and the above condition is then equivalent to

q < p n + 2

n
,

which is nothing else than assumption (1.8). Hence the proof of statement (i) is finished.
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4.2 The case q < p + 2 and p < n
We again start to estimate the integral on the right-hand side of (4.1). Using a simple inequality and the

integration by parts, we find that (here K is again a generic constant depending only on q, n, ‖Dτ‖
2
and N,

see also [1, the bottom of p. 147])

∫
Ω

(1 + |Du|2)
q
2 |Dτ|2 dx ≤ K + 2

q
n
∑
k=1

N
∑
α=1

∫
Ω

(1 + |Du|2)
q−2
2 uαxku

α
xk |Dτ|

2 dx

= K − 2

q
n
∑
k=1

N
∑
α=1

∫
Ω

((1 + |Du|2)
q−2
2 uαxk |Dτ|

2)xku
α dx

≤ K + K‖u‖∞ ∫
Ω

((1 + |Du|2)
q−2
2 |D2u||Dτ|2 + (1 + |Du|2)

q−1
2 |Dτ||D2τ|) dx.

Let us now set τ := ηγ, γ ≥ 2 to be chosen later, where η ∈ C∞
c (Ω) is an arbitrary nonnegative cut-off function.

By Young’s inequality,

K‖u‖∞ ∫
Ω

(1 + |Du|2)
q−2
2 |D2u||Dτ|2 dx

= ∫
Ω

{(1 + |Du|2)
p−2
4 |D2u|τ}{‖u‖∞(1 + |Du|2)

2q−p−2
4

|Dτ|2

τ } dx

≤ ε∫
Ω

(1 + |Du|2)
p−2
2 |D2u|2τ2 dx + cε,K‖u‖2∞ ∫

Ω

(1 + |Du|2)
2q−p−2

2

|Dτ|4

τ2
dx.

Therefore,

∫
Ω

(1 + |Du|2)
q
2 |Dτ|2 dx ≤ ε∫

Ω

(1 + |Du|2)
p−2
2 |D2u|2τ2 dx + K + K‖u‖2∞ ∫

Ω

(1 + |Du|2)
2q−p−2

2

|Dτ|4

τ2
dx

+ K‖u‖∞ ∫
Ω

(1 + |Du|2)
q−1
2 |Dτ||D2τ| dx, (4.7)

with a possibly different positive constant K(ε) than before depending also on ε > 0.

Let us nowdiscuss first the case q ∈ [p, p + 1]. If q belongs to this range, the above inequality immediately

reduces to

∫
Ω

(1 + |Du|2)
q
2 |Dτ|2 dx ≤ ε∫

Ω

(1 + |Du|2)
p−2
2 |D2u|2τ2 dx + K + K‖u‖2∞ ∫

Ω

(1 + |Du|2)
p
2

|Dτ|4

τ2
dx

+ K‖u‖∞ ∫
Ω

(1 + |Du|2)
p
2 |Dτ||D2τ| dx.

Let us now choose γ = 2, that is τ := η2. Thus we get

∫
Ω

(1 + |Du|2)
q
2 |Dτ|2 dx ≤ ε∫

Ω

(1 + |Du|2)
p−2
2 |D2u|2τ2 dx + K(ε) + C(ε,‖u‖∞, ‖η‖2,∞)∫

Ω

(1 + |Du|2)
p
2 dx. (4.8)

Hence by (4.1) and taking a proper ε > 0, so that we can absorb the first term on the right-hand side in (4.8)

by the left-hand side in (4.1), it is not difficult to arrive to statement (ii) of Theorem 1.2 for q ∈ [p, p + 1].
Notice here that once fixing ε, the constants K(ε), C(ε, ‖u‖∞, ‖η‖2,∞) depend again only on data, in particular
through the numbers m and M.

Next, we focus on the case when q ∈ (p + 1, p + 2). There exist θ
1
, θ

2
∈ (0, 1) such that

q − 1 = p(1 − θ
1
) + qθ

1
, θ

1
:=
q − 1 − p
q − p

,

2q − p − 2 = p(1 − θ
2
) + qθ

2
, θ

2
:=

2(q − 1 − p)
q − p

.
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In addition, considering τ = ηγ with
γ = 2 − θ

2

1 − θ
2

, (4.9)

we have

|Dτ|2−θ2
τ = γ2−θ2 |Dη|2−θ2 .

With this setting, we can now estimate the remaining integrals on the right-hand side of (4.7) by means

of the Hölder inequality as follows:

∫
Ω

(1 + |Du|2)
2q−p−2

2

|Dτ|4

τ2
dx = ∫

Ω

((1 + |Du|2)
q
2 |Dτ|2)θ2 (1 + |Du|2)

p(1−θ
2
)

2

|Dτ|4−2θ2
τ2

dx

≤ C
"""""""
|Dτ|4−2θ2

τ2
"""""""∞

‖(1 + |Du|)‖p(1−θ2)p (∫
Ω

(1 + |Du|2)
q
2 |Dτ|2 dx)

θ
2

.

Then the above estimate reduces to

∫
Ω

(1 + |Du|2)
2q−p−2

2

|Dτ|4

τ2
dx ≤ C(θ

2
, ‖η‖

1,∞)‖(1 + |Du|)‖p(1−θ2)p (∫
Ω

(1 + |Du|2)
q
2 |Dτ|2 dx)

θ
2

. (4.10)

We proceed similarly also with the remaining integral in (4.7), i.e., using the Hölder inequality, we have

∫
Ω

(1 + |Du|2)
q−1
2 |Dτ||D2τ| dx = ∫

Ω

(1 + |Du|2)
p(1−θ

1
)

2 ((1 + |Du|2)
q
2 |Dτ|2)θ1 |Dτ|1−2θ1 |D2τ| dx

≤ K‖(1 + |Du|)‖p(1−θ1)p ‖|Dτ|1−2θ1 |D2τ|‖∞(∫
Ω

(1 + |Du|2)
q
2 |Dτ|2 dx)

θ
1

≤ C(‖τ‖
2,∞, θ2)‖(1 + |Du|)‖p(1−θ1)p (∫

Ω

(1 + |Du|2)
q
2 |Dτ|2 dx)

θ
1

, (4.11)

where the last inequality follows from the fact that 1 − 2θ
1
= 1 − θ

2
> 0.

Finally, using (4.10) and (4.11) in (4.7), keeping in mind the special choice of τ in (4.9) and applying

Young’s inequality (notice that θ
1
, θ

2
< 1), we observe that

∫
Ω

(1 + |Du|2)
q
2 |Dτ|2 dx ≤ ε∫

Ω

(1 + |Du|2)
p−2
2 |D2u|2τ2 dx + C(ε, θ

2
, ‖η‖

2,∞, ‖u‖∞, ‖Du‖p).

Thus, going back to (4.1), choosing ε > 0 sufficiently small to absorb the term involving the secondderivatives

by the left-hand side, we finally get statement (ii) of Theorem 1.2.

5 Proof of Theorem 1.3
In this final sectionweestablish the existence of aweak solution to theDirichlet problem (1.1), under assump-

tion (1.10) on the boundary datum u
0
; i.e.,

u
0
∈ W1,r(Ω;ℝN), r := max{2, p q − 1

p − 1

}.

We use an approximation procedure. For arbitrary ϵ ∈ (0, 1) we introduce the approximate problem

(α = 1, . . . , N)
{{{
{{{
{

n
∑
i=1

∂
∂xi

(Aαϵ,i(Duϵ)) = 0 in Ω,

uϵ = u0 on ∂Ω,
(5.1)

where Aαϵ,i : ℝ
nN → ℝ is defined as

Aαϵ,i(ξ) := A
α
i (ξ) + ϵ(1 + |ξ|2)

max{q,2}−2
2 ξ αi . (5.2)

In addition, in casewe deal with statement (ii) of the theorem,we shall require that u
0
∈ L∞(∂Ω). Due to (2.1)
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used with η ≡ 0 and (2.2), we have Aαϵ,i(ξ) satisfies the following properties:
n
∑
i=1

N
∑
α=1

Aαϵ,i(ξ)ξ
α
i ≥ ϵ|ξ|max{q,2} − λ

and

|Aαϵ,i(ξ)| ≤ M
�(1 + |ξ|)max{q,2}−1

for some positive λ and M�
independent on ϵ. Furthermore, thanks to (2.3) and (2.4), we can apply the

theory of monotone operators (see e.g. [3, 15, 19]) to prove the existence of a unique solution to (5.1), i.e.,

the existence of uϵ ∈ u0 +W
1,max{q,2}
0

(Ω;ℝN) fulfilling

∫
Ω

N
∑
α=1

n
∑
i=1
Aαϵ,i(Duϵ)φ

α
xi dx = 0 for all φ ∈ W1,max{q,2}

0

(Ω;ℝN). (5.3)

5.1 First a priori estimates

We now derive estimates for uϵ independent of ϵ. Using φ := uϵ − u0 as a test function in (5.3), we get

0 = ∫
Ω

N
∑
α=1

n
∑
i=1
Aαϵ,i(Duϵ)((uϵ)

α
xi − (u

0
)αxi ) dx

= ∫
Ω

N
∑
α=1

n
∑
i=1

{Aαi (Duϵ)((uϵ)
α
xi − (u

0
)αxi ) + ϵ(1 + |Duϵ|2)

max{q,2}−2
2 (uϵ)αxi ((uϵ)

α
xi − (u

0
)αxi )} dx

≥ ∫
Ω

(K−1|Duϵ|p − (1 + |Du
0
|2)

p(q−1)
2(p−1) + ϵ(1 + |Duϵ|2)

max{q,2}−2
2 |Duϵ|(|Duϵ| − |Du

0
|)) dx, (5.4)

where we have used (2.1) for the last inequality. Since

(1 + |Duϵ|2)
max{q,2}−2

2 |Duϵ|(|Duϵ| − |Du
0
|) = (1 + |Duϵ|2)

max{q,2}−2
2 |Duϵ|2 − (1 + |Duϵ|2)

max{q,2}−2
2 |Duϵ||Du0|,

inequality (5.4) implies

∫
Ω

(|Duϵ|p + ϵ(1 + |Duϵ|2)
max{q,2}−2

2 |Duϵ|2) dx

≤ c∫
Ω

((1 + |Du
0
|2)

p(q−1)
2(p−1) + ϵ(1 + |Duϵ|2)

max{q,2}−2
2 |Duϵ||Du0|) dx. (5.5)

We claim that (5.5) implies

∫
Ω

(|Duϵ|p +
ϵ
2

(1 + |Duϵ|2)
max{2,q}−2

2 |Duϵ|2) dx ≤ c∫
Ω

(1 + |Du
0
|2)

r
2 dx. (5.6)

If q ≤ 2, we can conclude using Young’s inequality with exponent 2 on the last term in (5.5):

|Duϵ||Du0| ≤
1

2c
|Duϵ|2 + c�|Du0|2.

Therefore, recalling that r = max{2, p(q−1)p−1 }, inequality (5.6) follows. Otherwise, if q > 2, the last term in (5.5)

can be estimate as follows:

ϵ(1 + |Duϵ|2)
max{q,2}−2

2 |Duϵ||Du0| ≤ ϵ{c(1 + |Du
0
|2)

r
2 + c(1 + |Duϵ|2)

q−2
4 |Duϵ|

q
2 |Du

0
|}. (5.7)

Indeed, in {|Duϵ| ≤ 1} we have

(1 + |Duϵ|2)
max{q,2}−2

2 |Duϵ||Du0| ≤ 2

q−2
2 |Du

0
| ≤ c(1 + |Du

0
|2)

r
2

and, in {|Duϵ| > 1},

(1 + |Duϵ|2)
max{q,2}−2

2 |Duϵ||Du0| ≤ 2

q−2
4 (1 + |Duϵ|2)

q−2
4 |Duϵ|

q
2 |Du

0
|

and (5.7) follows.
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To estimate the last term in (5.7), we use Young’s inequality with exponents 2, q, 2q
q−2 . Recalling that

ϵ < 1, we have

ϵc(1 + |Duϵ|2)
q−2
4 |Duϵ|

q
2 |Du

0
| = ϵc{(1 + |Duϵ|2)

q−2
4 |Duϵ|}|Duϵ|

q−2
2 |Du

0
|

≤
ϵ
8

(1 + |Duϵ|2)
q−2
2 |Duϵ|2 +

ϵ
8

|Duϵ|q + ϵc|Du0|q

≤
ϵ
4

(1 + |Duϵ|2)
max{q,2}−2

2 |Duϵ|2 + c(1 + |Du
0
|2)

r
2

(5.8)

with c independent of ϵ. Therefore, collecting (5.5), (5.7) and (5.8), inequality (5.6) follows also in the

case q > 2. Thus, we can find a universal constant C > 0 such that (using also the Poincaré inequality)

‖uϵ‖1,p + ϵ‖uϵ‖
max{q,2}
1,max{q,2} ≤ C. (5.9)

If assumption (1.11) holds, then for every α ∈ {1, . . . , N} we have
n
∑
i=1
Aαϵ,i(ξ)ξ

α
i ≥ ϵ(1 + |ξ|2)

max{2,q}−2
2 |ξ α|2 ≥ ϵ|ξ α|max{q,2}

(5.10)

and

|Aαϵ,i(ξ)| ≤ (K + 1)(1 + |ξ|2)
max{2,q}−1

2
,

where K is as in (2.2). Next we denote M̃ := ‖u
0
‖L∞(∂Ω) and define

φα := max{uαϵ − M̃, 0}, α ∈ {1, . . . , N}.

Evidently, φ = (φ1

, . . . , φN) ∈ W1,max{2,q}
0

(Ω;ℝN) and can be used as a test function in (5.3). Doing so, and

using the definition of φ we obtain (here χuαϵ≥M̃ denotes the characteristic function of the set, where uαϵ ≥ M̃)

0 = ∫
Ω

N
∑
α=1

n
∑
i=1
Aαϵ,i(Duϵ)φ

α
xi dx = ∫

Ω

N
∑
α=1

n
∑
i=1
Aαϵ,i(Duϵ)Du

α
ε χuαϵ≥M̃ dx.

Using finally (5.10), we see that

0 = ∫
Ω

N
∑
α=1

n
∑
i=1
Aαϵ,i(Duϵ)Du

α
ε χuαϵ≥M̃ dx

≥ ϵ∫
Ω

N
∑
α=1

|Duαϵ |max{q,2}χuαϵ≥M̃ dx

= ϵ∫
Ω

N
∑
α=1

|Dφα|max{q,2} dx.

Consequently, Dφ ≡ 0 and since it has zero trace, due to the Poincaré inequality, it must be identically

zero and it directly follows from its definition that uαε ≤ M̃ = ‖u
0
‖L∞(∂Ω) for all α ∈ {1, . . . , N}. The minimum

principle can be obtained by repeating step by step the above procedure for a test function defined as

φα := min{uαϵ + M̃, 0}, α ∈ {1, . . . , N}.

Therefore, we conclude that, for every ϵ ∈ (0, 1),

‖uϵ‖L∞(Ω) ≤ ‖u
0
‖L∞(∂Ω). (5.11)

5.2 Uniform higher order estimates

Due to the proof of a priori estimates, we can use Theorem 1.1 to get the existence of the second order deriva-

tives of uϵ, but with their estimates depending on ϵ. Nevertheless, we can repeat step by step the estimates
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in Theorem 1.1 to get the inequality

∫
Ω

(1 + |Duϵ|2)
p−2
2 |D2uϵ|2τ2 dx

≤ c∫
Ω

(1 + |Duϵ|2)
q
2 |Dτ|2 dx − cϵ∫

Ω

n
∑
i,k=1

N
∑
α=1

((1 + |Duϵ|2)
max{q,2}−2

2 (uϵ)αxi )xk ((uϵ)
α
xk τ

2)xi dx
(5.12)

for every τ ∈ C∞
c (Ω). To provide more details of the proof of the above inequality, we shall first re-denote

the parameters p and q appearing in Theorem 1.1 by q̃ and p̃. Then using the definition (5.2), we see that

all assumptions of Theorem 1.1 are satisfied with p̃ = q̃ = max{2, q}. Therefore, DV(Duϵ) ∈ L2
loc

and also

uϵ has square integrable second derivatives. In particular, all integrals appearing in (5.12) exist and are

finite. Next, we follow the proof of Theorem 1.1. It follows from (5.3) that for any compactly supported

φ ∈ W1,max{q,2}
0

(Ω;ℝN), any k = 1, . . . , n and sufficiently small h > 0, we have

∫
Ω

N
∑
α=1

n
∑
i=1

(Aαϵ,i(Duϵ(x + hek) − A
α
ϵ,i(Duϵ(x)))φ

α
xi dx = 0.

Setting φ(x) := (uϵ(x + hek) − uϵ(x))τ2(x) and using the definition of Aϵ, we obtain

h−2 ∫
Ω

N
∑
α=1

n
∑
i=1

(Aαi (Duϵ(x + hek) − A
α
i (Duϵ(x)))((u

α
ϵ (x + hek) − uαϵ (x))τ2(x))xi dx

= −ϵh−2 ∫
Ω

N
∑
α=1

n
∑
i=1

((1 + |Duϵ(x + hek)|2)
max{2,q}−2

2 (uϵ)αxi (x + hek)

− (1 + |Duϵ(x)|2)
max{2,q}−2

2 (uϵ)αxi (x))((u
α
ϵ (x + hek) − uαϵ (x))τ2(x))xi dx.

Finally, we let h → 0+. For the term on the left-hand side, we can directly use the proof of Theorem 1.1 (see

the resulting estimate after (3.4)) to get

lim sup

h→0+

h−2 ∫
Ω

N
∑
α=1

n
∑
i=1

(Aαi (Duϵ(x + hek) − A
α
i (Duϵ(x)))((u

α
ϵ (x + hek) − uαϵ (x))τ2(x))xi dx

≥ c−1 ∫
Ω

(1 + |Du|2)
p−2
2 |D2uxk (x)|2τ2 dx − 4Cc−1 ∫

Ω

(1 + |Du|2)
q
2 |Dτ|2 dx.

Similarly, for the term on the right-hand side, we get

lim

h→0+
ϵh−2 ∫

Ω

N
∑
α=1

n
∑
i=1

((1 + |Duϵ(x + hek)|2)
max{2,q}−2

2 (uϵ)αxi (x + hek)

− (1 + |Duϵ(x)|2)
max{2,q}−2

2 (uϵ)αxi (x))((u
α
ϵ (x + hek) − uαϵ (x))τ2(x))xi dx

= ϵ∫
Ω

N
∑
α=1

n
∑
i=1

((1 + |Duϵ|2)
max{2,q}−2

2 (uϵ)αxi )xk ((uϵ)
α
xk τ

2(x))xi dx.

Combining the resulting inequalities and summing with respect to k = 1, . . . , n, we obtain (5.12).
Thus, we need to bound uniformly the last integral in (5.12). By a rather standard manipulation and

using the Young inequality, it is not difficult to check that

n
∑
i,k=1

N
∑
α=1

((1 + |Duϵ|2)
max{q,2}−2

2 (uϵ)αxi )xk ((uϵ)
α
xk τ

2)xi

≥ (1 + |Duϵ|2)
max{q,2}−2

2 |D2uϵ|2τ2 − 2max{q, 2}(1 + |Duϵ|2)
max{q,2}−2

2 |D2uϵ|τ|Duϵ||Dτ|

≥ −C(1 + |Duϵ|2)
max{q,2}

2 |Dτ|2
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with C independent of ϵ. Substituting this into (5.12), we derive

∫
Ω

(1 + |Duϵ|2)
p−2
2 |D2uϵ|2τ2 dx ≤ c∫

Ω

(1 + |Duϵ|2)
q
2 |Dτ|2 dx + cϵ∫

Ω

(1 + |Duϵ|2)
max{q,2}

2 |Dτ|2 dx

≤ c + c∫
Ω

(1 + |Duϵ|2)
q
2 |Dτ|2 dx,

where we have used (5.9) in the last inequality. Hence, we are in the same starting position as in the proof

of Theorem 1.2 and due to uniform (ϵ-independent) uniform bounds (5.9) and (5.11), we deduce that for

arbitrary open Ω

� ⊂ Ω� ⊂ Ω,

∫
Ω

�

(|Duϵ|q + |DV(Duϵ)|2 + (1 + |Duϵ|2)
p−2
2 |D2uϵ|2) dx ≤ C(Ω�

, u
0
). (5.13)

Further, it is then not difficult to observe with the help of the Hölder inequality that

∫
Ω

�

|D2uϵ|min{2,p} dx ≤ C(Ω�
, u

0
). (5.14)

5.3 Limit ϵ→ 0

Using the uniform bounds (5.9), (5.13) and (5.14), the compact Sobolev embedding and the diagonal proce-

dure, we can find a subsequence, that we do not relabel, and it exists u ∈ (u
0
+W1,p

0

(Ω;ℝN)) ∩W1,q
loc

(Ω;ℝN)
such that for arbitrary open Ω

� ⊂ Ω� ⊂ Ω, we have

uϵ ⇀ u weakly inW1,p(Ω;ℝN), (5.15)

uϵ ⇀ u weakly inW1,q(Ω�
;ℝN), (5.16)

Duϵ → Du strongly in Lp(Ω�
;ℝN), (5.17)

Duϵ → Du almost everywhere in Ω, (5.18)

ϵ(1 + |Duϵ|2)
max(2,q)−2

2 Duϵ → 0 strongly in L1(Ω�
;ℝnN). (5.19)

Having (5.15)–(5.19), it is easy to let ϵ → 0 in (5.3)with arbitraryφ ∈ C∞
c (Ω;ℝN) to deduce (1.4) for the same

class of functions φ. The density result then leads to the validity of (1.4) in the full generality. This finishes

the proof.
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