
10 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Published Version:

A Discrete Environment-Driven GPU-Based Ray Launching Algorithm

Published:
DOI: http://doi.org/10.1109/TAP.2018.2880036

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/649226 since: 2019-02-25

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/TAP.2018.2880036
https://hdl.handle.net/11585/649226

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

J. S. Lu et al., "A Discrete Environment-Driven GPU-Based Ray Launching Algorithm,"

In:

 IEEE Transactions on Antennas and Propagation, vol. 67, no. 2, pp. 1180-1192, Feb.
2019

The final published version is available online at:

 https://doi.org/10.1109/TAP.2018.2880036

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the
publishing policy. For all terms of use and more information see the publisher's website.

0018-926X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAP.2018.2880036, IEEE
Transactions on Antennas and Propagation

 1

1Abstract— We present here a novel, fully discrete Ray
Launching field prediction algorithm that takes advantage
of environment preprocessing to efficiently trace rays
undergoing both specular and diffuse interactions. The
algorithm is “environment-driven” because rays are traced
from the ray source according to the presence and
distribution of obstacles in the surrounding space, therefore
adapting ray density to the environment’s characteristics.
The environment is discretized into simple regular shapes to
facilitate faster geometric computations, to allow for
visibility preprocessing and for the algorithm to be
parallelized in a straightforward way. These innovative
features combined together and implemented on a NVIDIA
Graphical Processing Unit (GPU) are shown to speed-up
computation by several orders of magnitude compared to
more conventional algorithms, while retaining a similar
accuracy level. The speed-up and prediction accuracy
achieved in reference cases is presented in comparison to a
pre-existing ray-based model and RF-coverage
measurements.

Key words — Radio Propagation, Ray Tracing, Ray
Launching, Cellular Radio, GPU

I. INTRODUCTION
Radio propagation models for path-loss prediction,

such as [1], where developed since the eighties and
nineties of the past century to assist the deployment of
public mobile radio systems. After that, there have been
a long line of measurement campaigns that reduce the
small area averaged received signal strength to a simple
power law range dependence together with lognormal
shadow fading, see for example [2]. However, when the
base station antenna is at or below the surrounding
buildings, shadowing becomes even more important in
determining signal strength. Since the 1990’s site-
specific deterministic RF propagation prediction models
using ray-optical approximations [3] where introduced
and tested with success [4]-[7]. With respect to simpler
path-loss models, they also had the potential to simulate
multipath propagation, and therefore the dispersion
characteristics of the radio channel in both time and
space at the same time.

More recently, due to the advent of Multiple-Input
Multiple-Output (MIMO) transmission schemes and to
the use of higher frequency bands, ray-based models
have been proposed for a variety of uses, including the

E. M. Vitucci, V. Degli Esposti, F. Fuschini, M. Barbiroli are with

the Alma Mater Studiorum - Università di Bologna, Dipartimento
dell’Ingegneria Elettrica e dell’Informazione (DEI), IT-40136 Bologna,
Italy (e-mail: enricomaria.vitucci, v.degliesposti, franco.fuschini,
marina.barbiroli @unibo.it).

J. S. Lu and J. A. Blaha are with Polaris Wireless, Inc., Mountain
View, CA, USA (email: jlu, jblaha @polariswireless.com).

H.L. Bertoni is with the NYU Wireless Center at Tandon School of
Engineering, New York University, Brooklyn NY, 11215 USA
(hb752@nyu.edu)

design and planning of new-generation wireless
systems, fingerprinting and multipath-based localization
methods [8],[9], and real-time use for the optimization
of wireless systems performance [10]. Nevertheless,
they still have not achieved widespread application
mainly because of their high computation time.

Although classification criteria and terminology are
not unequivocally defined, ray-based methods can be
divided in two main groups [4],[11],[12]:

(i) Ray Tracing (RT): Algorithms where the exact
position(s) of both the transmitting (Tx) and the receiving
(Rx) point(s) are taken into account from the beginning,
and thus rays satisfying Geometrical Optics (GO) rules
[13],[14] for those specific Rx/Tx locations are searched
using various techniques, including the image method
and the so called visibility tree technique [9]. Sometimes
RT is also referred to as “image-Ray Tracing”.

 (ii) Ray Launching (RL): Algorithms where rays start
from the Tx with a pre-determined angular separation and
are traced regardless of the position of the Rx(s). These
rays are ideally propagated by the algorithm along their
trajectory until they encounter an obstacle, where they are
reflected, diffracted, transmitted or scattered. The
subsequent rays are propagated following GO rules. RL is
also referred to as brute-force ray tracing, shooting and
bouncing rays, pincushion or beam-launching method
[4],[11],[15]. Since rays are not traced specifically to an
exact Rx position(s), a space discretization is assumed
that in principle limits field prediction accuracy. When a
ray is traced and its field is computed, it represents the
field over an entire ray tube volume. Therefore RL is
more efficient – although theoretically less accurate –
than RT to perform RF coverage prediction over vast
areas.

Some RL implementations, at times referred to as ray-
tube tracing, beam tracing or frustum ray tracing, make
use of ray-tubes of properly arranged triangular or
polygonal cross sections so as to realize tessellation of the
whole space [16]–[18]. In these methods ray-tube cross
sections are properly cut using polygon clipping
techniques when a ray tube propagates across the edge of
an obstacle in order to exactly determine which portion of
the tube hits the obstacle and which should continue
undisturbed forward-propagation. These methods can
achieve a high accuracy level, but the discretization error
is always present and can only be reduced by launching a
very high number of beams with small cross section.
Moreover, polygon clipping or similar algorithms to clip
ray tubes are computationally expensive.

Both RT and RL suffer from long running times
because of the many rays that must be tested in order to
find the few that contribute. In the case of RT each wall
in the entire building database must be examined to find
those intersected by relevant rays. On the other hand, RL

A Discrete Environment-Driven GPU-Based Ray
Launching Algorithm

J. S. Lu, Member, IEEE, E. M. Vitucci, Senior Member, IEEE, V. Degli-Esposti, Senior Member, IEEE,
F. Fuschini, M. Barbiroli, J. Blaha, H. L. Bertoni, Life Fellow, IEEE

0018-926X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAP.2018.2880036, IEEE
Transactions on Antennas and Propagation

 2

may spend time to track a lot of rays providing no
contribution at the Rx(s) in practice. Trying to include
diffuse scattering from building surfaces in either RT or
RL raises computation time even further.

In order to improve running time, and include diffuse
scattering in simple way, the present Discrete
Environment-Driven Ray Launching model (DED-RL)
has been developed during a collaboration between the
University of Bologna and Polaris Wireless Inc. In
addition to seamless space tessellation, other advanced
features have been implemented in order to achieve a
very high accuracy while drastically reducing
computation time, as listed below.
1) Environment discretization. Environment surfaces
(walls streets, etc.) are discretized into “tiles” to simplify
the ray launching algorithm and perform basic operations
such as beam cross-section cutting across obstacles’
edges without complex polygon clipping algorithms (see
section II). A similar solution is proposed in [19], but
there the scenario is rasterized into cubes instead of
surface tiles, as proposed here. Discretization also opens
the way to the following features 2) and 3).
2) Environment-driven ray launching. Efficiency has
been improved by launching rays on the base of the
geometrical distribution of the obstacles (tiles) present
in the environment, instead of using a constant angular
discretization: this feature might be called “environment
driven RL” and is particularly useful for outdoor
application where obstacles are sparse or there are large
open sky sectors where launching many rays would be
useless.
3) Visibility preprocessing. Since the environment is
simplified into a set of tiles, the potential existence of a
propagation path between a generic pair of tiles – i.e. a
“visibility relation” – can be pre-computed for a given
environment and saved in a file (the “visibility matrix”),
thus greatly simplifying and speeding-up the computation
of multiple-bounce rays at run-time.
4) Parallelization on a Graphical Processing Unit
(GPU). Since RL approach is inherently fit to parallel
computing [18]–[25] the whole algorithm – including
visibility preprocessing – has been parallelized on
NVIDIA GPUs using the CUDA language extension,
thus further reducing computation time with respect to
traditional implementations.

Although almost all the features listed above have
been to some extent already studied and implemented in
the past, to the best knowledge of the Authors they have
never been combined into a single model where synergies
amplify the advantages of individual solutions in order to
reach an unprecedented level of computational efficiency
for a 3D ray-based approach.

The new model has also inherited some advanced
features from a pre-existing RT model developed at the
University of Bologna [10], such as the Effective
Roughness diffuse-scattering model [26].

Using a NVIDIA K80 GPU platform and environment
discretization with approximately 10x10m tiles, DED-RL
can handle accurate prediction over all building surfaces
of a 20 km2 dense-urban area with a computation time
lower than one hour virtually without memory swapping.

The main purpose of this paper is to present the new
algorithm with its innovative features and to explain why
such features work in synergy to achieve high
computational efficiency. Therefore most of the results in
Sections III and IV show the computation time speed up
achievable using both individual features and all of them
combined in the complete algorithm. As benchmarks to
validate the performance of the new RL model we use the
cited pre-existing RT model and RF coverage
measurements performed by Polaris Wireless.

The main features of the DED-RL algorithm are
presented in section II and described in more detail
together with GPU parallelization and speed-up
characteristics in section III. Some efficiency and
accuracy validation results are then shown in section IV.
Conclusions are finally drawn in section V.

II. ALGORITHM PRINCIPLES
As with all RL algorithms, DED-RL is suitable for

prediction over large areas or volumes. More specifically,
it has been designed to perform fast deterministic
propagation prediction on 3D outdoor surfaces of all
buildings and streets in a given prediction area (or “target
area”), to enable multi-frequency RF coverage design and
optimization, or the application of RF-based localization
methods in urban environments such as fingerprinting
techniques [7]. Prediction on outdoor surfaces can be
extended indoors using empirical or deterministic models
[27]. DED-RL’s input requires location and antenna
details of all transmitters, a 3D building vector database
and a raster terrain-database.

A. Environment-driven vs. traditional ray launching
In conventional RL algorithms, rays are launched

from the Tx – or from diffraction and scattering Virtual
sources (VTx) [10] – into the surrounding space
according to a pre-set angular discretization with a
uniform ray density regardless of the obstacles’ positions
(see Fig. 1 where the discretization grid is triangular). As
the rays propagate in space, intersections with
surrounding objects (walls/edges) are searched in order to
determine obstruction and bouncing.

Fig. 1. Traditional Ray Launching: ray tubes and center rays launched
from the Tx according to a pre-set angular discretization, independently
of the obstacles in the environment. In this case: triangular cross-section
ray tubes are used. Rays can also be launched through triangle vertexes
instead of centroids.

As a result there can be oversampling with multiple
rays in regions where obstacles are not present, e.g. rays
at elevated angles in outdoor applications were large
open-sky sectors are present, and under-sampling where
obstacles are smaller than the distance between rays (ray

0018-926X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAP.2018.2880036, IEEE
Transactions on Antennas and Propagation

 3

spacing). Under-sampling especially occurs far away
from the Tx as ray spacing increases with distance. In
conventional RL algorithms, “beam splitting” techniques
must be enforced after a given propagation distance or
according to a given criterion to artificially increase the
density of rays and reduce the discretization error.

In environment-driven RL algorithms rays are
launched only toward obstacles (Fig. 2), i.e. where they
are actually needed to properly describe the field, and
with a density that is proportional to the spatial density of
obstacles in each direction. Each ray-tube cross section is
inherited from the shape of the reflecting obstacle
(rectangular in Fig. 2). This solution does not require
beam splitting because spatial resolution is automatically
matched to environment complexity at each new bounce
and does not degrade with distance. With this solution,
the total number of rays to be launched is minimized.
Moreover the algorithm can keep track of the exact cross-
section geometry of each ray tube bounced off, or
partially obstructed by, a wall, by clipping it according to
the wall’s shape. Therefore field representation accuracy
can be kept to the maximum level.

This kind of environment-driven algorithm however
has the following drawbacks:
a) polygon clipping algorithms, necessary to determine

the polygonal cross section of ray tubes, are
computationally intensive

b) accuracy degradation might occur when obstacles are
very large or very close to the Tx, where the incidence
angles and therefore the reflection/diffraction
coefficients might appreciably vary over different
points of the same obstacle.

c) no ray (or ray section) can be pre-computed for a
given environment independently of the position of
the Tx because the cross-section shape of each ray
tube after one or more bounces (and clipping
operations) depends on the position of the Tx.

Fig.2. Environment-driven Ray Launching: rays (thick dashed lines) or
corresponding ray tubes (thinner dashed lines) are launched only toward
obstacles, here generating reflected rays

B. The advantages of discretization
All the above-mentioned drawbacks are solved or at

least eased using environment discretization and a
discrete RL algorithm: this is another distinctive feature
of the DED-RL algorithm.

Each wall is subdivided into rectangular tiles (or
pixels) with a typical size of some square meters using
the algorithm described in section III.A (see Fig. 3).
Since tiles are relatively small, their center-points (stars

in Fig. 3, also called centroids) can be considered
representative of the whole tile and all operations can be
performed in a simplified pixel-based fashion using the
centroid instead of the tile’s surface. As walls are
discretized, ray tubes bouncing off-walls also become
discretized and therefore the use of polygon clipping
algorithms can be avoided. Of course there is a
discretization error with respect to a fully analogue,
environment-driven RL, but it can be kept low enough
using small-enough tiles.

One drawback is a higher number of surfaces to be
considered, and therefore rays to be traced. This
problem is mitigated by the use of parallel computation.
In fact, discrete ray launching is very suitable to
parallelization as a large number of similar operations
must be performed at the same time and can be
parallelized on multi-core computing platforms such as
GPUs. This solution has been chosen for DED-RL, as
explained in detail in section III.

Fig. 3. Environment discretization example

Last but not least, discretization opens the way to

another very important feature that has been
implemented in DED-RL: visibility pre-processing.

A great deal of computation time in RL algorithms is
spent in determining the visibility of objects, i.e. the
existence of a Line-of-Sight (LoS) propagation path
between a Tx/Vtx and a given object, or portion of it, as
rays are bounced only at visible objects. For example,
one wall might be only partly visible from the Tx as an
interposed object might obstruct. Since the starting
view-point for visibility is the Tx, in conventional RL
algorithms visibility and therefore rays can only be
determined when the Tx position is known. Not so in
discrete RL. Since objects are tiles, the mutual visibility
between a couple of tiles – and therefore the potential
existence of a ray – can be determined a priori based on
the environment topology and regardless of the position
of the Tx. Therefore a given discretized environment
database can be pre-processed and visibility relations
between each pair of tiles can be saved in a matrix, the
visibility matrix, in order to speed-up the tracing of rays
at a later time for one or more Tx positions. Of course
direct visibility from the Tx, also called first-level
visibility, must be re-determined for each Tx position,
while subsequent visibility levels corresponding to one
or more bounces, can make use of information stored in
the visibility matrix.

Consider for example the case shown in Fig. 4 where
visibility determination and tracing of rays up to the
second level (after 1 bounce) is shown for a simple case.
In Fig. 4(A) first-level visibility from Tx and
corresponding rays are shown for wall w1 and one

0018-926X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAP.2018.2880036, IEEE
Transactions on Antennas and Propagation

 4

obstructing object only (other objects are neglected here
for simplicity). In Fig. 4(B) tile t1 of wall w1 (spawning
tile) is considered and second level visibility is
determined using visible tiles from t1 stored in the
visibility matrix and the reflection cone that impinges
on surrounding obstacles. Only a few objects are shown
for simplicity. We can focus on target wall w4 to
determine the visible portion of it and ultimately which
rays need to be traced after one bounce off tile t1.

Fig. 4. DED-RL functioning example: (A) first-level visibility from Tx
and corresponding rays; (B) spawning tile, related visible and non-
visible tiles, reflection visibility cone and lit tiles; (C) traced rays
corresponding to (B) for wall w4 only.

In traditional RL algorithms the whole environment
(in practice thousands of walls!) would have to be
checked for visibility from the spawning tile. Here,

since the visibility matrix has been pre-computed, tiles
(centroids) visible from the spawning tile are known and
highlighted in green: tiles of wall w3 are not visible
because building b1 itself shadows them, while some of
the tiles in wall w4 are shadowed by building b2. Not all
the remaining, 10 visible tiles must be considered for
launching rays however, because only some of them fall
within the reflection visibility region (reflection cone),
i.e. are visible through reflection from tile t1.

The reflection cone shape is easily determined with a
projection using the VTx position and the tile’s shape
and all tile centroids within the cone can be easily
determined by checking only the 10 visible tiles’
centroids. Therefore the visible portion of wall w4
through reflection from the spawning tile is determined
by the 5 lit tiles highlighted in yellow. As in digital
computer graphics, such a wall portion is determined
without any polygon clipping, simply as a composition
of pixels.

Rays to be traced for this computation step are
shown in Fig. 4(C): the 5 bounced rays from tile t1
addressing the lit tiles of wall w3. Note that both ray
splitting (to keep ray-spacing within a limited range)
and polygon clipping (to determine the lit portion of
walls at the generic computation step) are avoided and
replaced by this discrete, environment-driven RL
procedure.

If diffuse scattering from tile t1 instead of reflection
is considered the pre-processing speed-up advantage is
even greater because visible tiles through diffuse
scattering exactly correspond to the visible tiles stored
in the visibility matrix since diffuse scattering’s
visibility region corresponds to the whole 2π external
hemisphere [10]. Similar considerations would hold for
diffraction off a tile’s edge, where the visibility region
is a large region comprised between the two Keller’s
cones [14] corresponding to the edge’s end points (see
Fig. 5). Note that edges, like surfaces, are also
discretized into segments. Edge segments correspond to
the common edge side of a pair of border tiles located
on two walls sharing a common edge. Border tiles are
properly flagged when discretizing the environment, and
the IDs of the 2 tiles generating the edge segment
(parent tiles) are stored. With this approach, no
operation is needed to determine the visibility of edges:
edge visibility is the OR of the parent tiles’ visibility.

Fig. 5. Visibility region for diffraction off a tile’s edge. The region is
comprised between two Keller’s cones.

0018-926X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAP.2018.2880036, IEEE
Transactions on Antennas and Propagation

 5

In order to determine tiles visible from an edge, the
visibility matrix is queried for both of the parent tiles
and the union of all tiles visible from parent tiles is
made. Then, only those visible tiles are selected that fall
inside the diffraction visibility region, (Fig. 5).

At each iteration step each ray’s field and other
information such as the propagation delay, the ray
geometry etc. are saved in an output file. Note that, as
long as the field is only needed on environment surfaces
(radio coverage prediction), no operation to determine
which ray tubes hit a given Rx point must be performed
here: tiles represent both bouncing and target elements
(Rx points) at the same time and therefore the field
contribution can be automatically saved at each
computation step whenever a ray addresses a tile.

More details on the different features of the DED-
RL algorithm are given in section III. An overall
scheme of the DED-RL algorithm with the different
input, output and computational blocks is shown in Fig.
6. The RL engine uses the following inputs: tile
geometry information from the discretization algorithm,
tile visibility information from the visibility matrix and
the Tx/Rx data (position, antenna diagram and
polarization, radiated power etc.). The outputs, which
can include total field strength and received power as
well as each ray’s field, delay and geometry for each Rx
point, are saved in the output matrix

Fig. 6. Simplified scheme of the DED-RL Algorithm. Input files in
orange, output file in blue.

III. ALGORITHM DETAILS AND IMPLEMENTATION
In this section, select key features of the DED-RL

algorithm are described in some detail and their
contribution to the algorithm’s efficiency is discussed.

A. Environment Discretization
Propagation prediction requires terrain, clutter,

vegetation and building GIS databases in order to
accurately account for significant propagation effects. In
this work only terrain and building databases are
considered, but clutter and vegetation can be considered
as well.

Terrain databases are commonly available in the
form of raster databases created from satellite imagery.
These raster databases are essentially terrain heights
uniformly sampled in an area. The horizontal resolution
of the sampling depends on the data source. For
example, Shuttle Radar Tomography Mission (SRTM)
data is available in 30 m resolution [28].

Building databases on the other hand are usually
given as a set of right prisms with polygonal base and
vertical sides, so that a single building is represented by
one or more of them stacked on top of each other. These
databases are also known as building vector databases
that usually come in the ESRI SHAPE format [29] with
varying accuracy. As an example, the Google street
view of a building is shown in Fig. 7(a) and the
corresponding prisms outlines are drawn in red in Fig.
7(b).

(a)

(b)
Fig. 7. (a) Example building and the surrounding terrain; (b) Tiling the
surfaces of the example building and the surrounding terrain.

To tile the terrain and building surfaces a tile shape
(e.g., triangle, rectangle) and desired tile area AΔ should
first be chosen. Every surface is then overlaid with a
uniform grid of non-overlapping tiles. As far as
buildings are concerned, in the present work we tile
SHAPE-format building walls with as-square-as-
possible rectangular tiles with the following procedure.

For vertical building walls, which are rectangles of
sides u,v, we first define the desired tile-side length Δl
as follows

AΔ = Δl (1)
i.e. the side length of a square tile of area ΔA. Then we
divide each of the wall sides by Δl and save both the
integer quotient q and the reminder length Rl , so that for
example:

Ru q= ⋅Δ +l l (2)

The side “u” is then subdivided into segments of length

 Δ ′ℓu
 as follows:

()

 if
2

1 if >
2

u R

u R

u q

u q

Δ⎧ ′Δ = ≤⎪⎪
⎨ Δ⎪ ′Δ = +⎪⎩

ll l

ll l

 (3)

In this way we ensure that the subdivision length
u′Δl of

wall length u is close enough to desired length Δl . This
discretization procedure also generates the discretization
of the wall edge already presented in section II.

Once we have discretized both dimensions u, v of
the wall into segments of length ,u v′ ′Δ Δl l , respectively,
using equation (3), we have obtained a discretization of

0018-926X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAP.2018.2880036, IEEE
Transactions on Antennas and Propagation

 6

the wall into
u v′ ′Δ ×Δl l tiles. Such tiles are as similar as

possible to squares of side Δl . If a given wall is too
narrow, or its area is too small according to given
minimum parameters, then the wall is dropped from the
tiling procedure and is therefore disregarded in the RL
algorithm.

For polygonal roofs, we draw the minimum
circumscribed rectangle, and proceed with the tiling
procedure as described above. At the end of the process
all tiles whose centroids falls outside the roof’s polygon
are discarded. Conversely, for terrain tiles, all tiles
whose centroids falls inside the building’s footprint
polygon are discarded.

For the building shown in Fig. 7, the tiles are
depicted in Fig. 7(b), with a desired tile area ΔA=100
m2. Note that ΔA=100m2 is used for most RL
simulations in the present work, except where specified
otherwise. For the simulations discussed in Section IV,
100 m2 rectangular tiles were used to tile the 20 km2
area surrounding the high-rise core of San Francisco.
This resulted in 466,529 tiles, which corresponds to
~23,000 tiles/km2. Overall computation time for tiling
was ~5 s on a standard PC using a 3.2 GHz, INTEL
Xeon CPU.

Of course, approximation of the surface shape using
tiles is a source of error, especially for roofs. To
mitigate this error, the tiling algorithm can orient tiles
and use a variable tile area.

The choice of the proper ΔA is obviously a trade-off
between computation time and accuracy. According to
our investigations ΔA=100 m2 can be considered a good
compromise. In fact, considering a medium-sized urban
database with 30 different cellular sites – not shown
here for brevity – using ΔA= 25 m2 instead of ΔA=100
m2 can yield a small decrease of about 1 dB in
prediction error’s standard deviation with respect to
measurements, but at the cost of a nearly quadruple
computation time.

B. Visibility Pre-processing
A ray incident on a tile (spawning tile) can only

bounce to tiles that belong to a subset of those visible to
that spawning tile. Visibility is predetermined on the
base of the visibility of the centroids of the considered
tiles and saved in the visibility matrix as presented in
section II.

If there are N tiles, the pre-processed visibilities for
all tiles can be saved in a NxN visibility matrix of ones
and zeros where the ith row or column corresponds to
the ith tile. For example, if the ij element in the matrix is
1 it means that the ith tile is visible to the jth tile and vice
versa.

As an example, for a 20 km2 dense urban
environment (central S. Francisco), using GPU
parallelization it took an average of 69 ms to compute
visibility from a tile for a total of approximately 9
hours. The resulting average number of visible tiles per
spawning tile is 952. The amount of memory needed to
store the matrix depends on the variable type (e.g.,
Boolean, character). If variable type is Boolean (1 byte
each), the amount of memory occupation for the matrix
is N2 bytes. For the example, (466529)2 bytes = 202.7

GB are needed. Thus, depending on the size of the
environment, the size of the matrix can be prohibitively
large to access or keep in RAM.

Because the matrix is generally sparse (~0.2% non-
zero for the example), a sparse storage method such as
compressed sparse row (CSR) [29] is used in the
present work. This reduces the memory size
dramatically (by ~99.2% to 1.65 GB for the example
discussed here).

The benefit of using the pre-processed visibility
matrix is significant with respect to the case when the
visibility check is done “online” while tracing the rays.
In fact, according to our calculations it would takes
~10ms to check the obstructions for each ray segment,
and this will need to be repeated for every single ray.
Thus, the computation time saved scales directly with
the number of rays considered in a simulation. If a
single TX with a maximum of 3 bounces per ray is
considered for the 20 km2 area in San Francisco, ~108
rays need to be computed, and ~80 days would be
needed only for visibility calculations!

The drawbacks to using a pre-processed visibility
matrix are the initial pre-processing time and memory
needed to store it, but these figures can be kept
reasonably low using the methods described above.
Moreover visibility matrix computation must be done
only once for a given environment database.

As an example, in Fig. 8 the computation times and
the memory occupation for different map sizes are
shown, with reference to the San Francisco scenario
discretized into relatively small tiles of ΔA=25 m2. It is
evident from the figure that even in this challenging
case pre-processing is feasible for an urban area of 10
km2, with a limited effort in term of computation time
(less than one day), and memory occupation (about 10
GB, which can be handled by modern PCs).

Fig. 8 – Preprocessing Computation times and memory occupation for
different sizes of the map, assuming an average tile area ΔA=25 m2

C. Bouncing and saving the field
As mentioned in section II, one peculiar feature of

the DED-RL is that bouncing and saving the field are
performed simultaneously at each computation step.

First of all, at each iteration the centroid of the
current visible tile is set as a Receiver, then the incident
field from each ray is computed, and the total incident
ray field, including time delay and angle of arrival on

0018-926X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAP.2018.2880036, IEEE
Transactions on Antennas and Propagation

 7

the tile is stored. When computing the total field
strength a simple incremental vector addition can be
performed without any further memory occupation in
the output matrix.

The field contribution for each receiving tile is
computed taking into account the current ray trajectory
as well as the number and the kind of bounces (or
interactions) it has undergone on the whole. The
impinging field for a single ray is therefore computed as
[31]:

!
E RX() = SF ⋅ Ci

i=1

Nb

∏
⎛

⎝⎜
⎞

⎠⎟
⋅
!
E0 ⋅e

− jβrtot (4)

where
!
E0 is the field emitted by the Tx antenna in the

direction of departure of the ray, and iC is a dyadic

coefficient (Fresnel reflection coefficients, UTD
diffraction coefficients, or scattering coefficients)
accounting for the amplitude reduction and phase shift
experienced by the propagating field at the i-th
interaction. In (4) SF is the spreading (or divergence)
factor representing the overall propagation loss along
the ray due to the spatial broadening of the wavefront
[11]. Also, Nb is the number of bounces (or interactions)
undergone by the ray, β is the wave number and rtot is
the total length of the ray. The Tx antenna radiation
pattern (directional gain) is accounted for in eq. (4)
through the field amplitude

!
E0 , i.e. the field emitted by

the Tx antenna assuming far field conditions (𝑟 >
2𝐴/λ) at the incident tile, as usual for ray tracing
models. In case far-field conditions are not satisfied, the
corresponding tiles can be excluded from field
computation, or the Tx antenna could be decomposed
into smaller radiating elements.

After incident field computation, bouncing is
applied, i.e. each visible tiles becomes a “spawning”
tile: the visibility matrix is queried to find the
potentially visible tiles from the spawning tile, and then
the actually visible tiles are selected among them with
simple processing operations, according to the different
interaction types.

 Reflection: In order to determine if a visible tile
belongs to the reflection cone, the center of this tile is
back-projected to the wall plane of the spawning tile
following the line that connects it with the VTx, and we
then check whether the projected point falls inside the
spawning tile or not.

Diffraction: Using a similar processing we check
whether the tile’s centroid falls inside the visibility
region shown in Fig. 5 for the current VTx using a ray-
unfolding technique [10].

Diffuse Scattering: No further visibility processing is
needed for diffuse scattering, since all the visible tiles
stored in the visibility matrix can be reached through
scattering.

Finally, the visible edges are automatically set by
identifying the “border” tiles among all the visible tiles,
as mentioned in Section II.

Once the visible tiles and edges are found according
to the different interaction mechanisms, the incident

field for all of them is computed, and the procedure
described above is iterated.

The tracing of a multiple-bounce ray continues until
the incident power falls below a minimum power
threshold, or when the maximum number of interactions
NbMAX is reached. Both the minimum power threshold
and the maximum number of interactions are input
parameters of the DED-RL algorithm.

D. GPU parallelization
All the main features of DED-RL algorithm described

in the previous sections – visibility preprocessing, first
level visibility, ray bouncing and field computation – are
suitable for code parallelization.

Traditional parallelization techniques are based on
multi-threading and multi-core computing, exploiting
the characteristics of modern processors. More
sophisticated techniques rely on the use of multi-
processor architectures, computer clusters, distributed
and grid computing.

In recent years, an alternative approach has become
widespread, which is based on the use of the Graphics
Processing Unit (GPU) - in addition to the CPU - for
general purpose computing. GPU computing is often used
in complex mathematical and geometric calculations, due
to its ability to process vectors or matrices with extreme
efficiency. This great speed and power for mathematical
calculations comes from the fact that modern GPUs have
more processing circuits with data caching and basic flow
control than the CPU. GPU computing is particularly
suitable for problems that may be expressed in terms of
intensive computations on multiple parallel data, i.e. the
same operations are executed for each data element in
parallel. Such approach is often called GP-GPU (General-
Purpose computing on Graphics Processing Units), and it
is the one adopted for the present work: all the features of
the DED-RL have been implemented for parallelization
on NVIDIA GPUs using the CUDA C++ language [32].

CUDA (acronym for Computer Unified Device
Architecture) is a computing platform and a model of
parallel programming that allows a dramatic increase in
performance by exploiting the computing power of the
CUDA-enabled GPUs. The CUDA platform is a software
layer that gives direct access to the GPU's virtual
instruction set and parallel computational elements for the
execution of compute kernels. It is specifically conceived
for NVIDIA GPU architectures. CUDA processors are
usually programmed in CUDA C/C++, which is basically
the standard C/C++ programming language, with some
CUDA extensions [32].

In CUDA C/C++, the code is executed on the GPU
using special functions called “kernels”, which are
synchronous computation “batches” containing the
parallel code. Each instance of the parallel code is
executed by a “thread”, and several threads are grouped
into “blocks”. Different thread blocks constitute a kernel
“grid”. This is a “logical” subdivision, of course. From
the physical point of view, each thread is mapped onto a
core of the GPU, and each thread block is assigned to a
different “Streaming Multiprocessor” (SM). When a
kernel is launched on the GPU, the blocks are distributed
to all the available SMs. The threads of a block execute in

0018-926X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAP.2018.2880036, IEEE
Transactions on Antennas and Propagation

 8

groups of 32 threads, known as warps, and multiple
warps can execute concurrently on a SM, as long as
resources (registers, shared memory, etc.) are available.
As soon as a thread block terminates its execution, it is
immediately replaced by a new block. It is responsibility
of the programmer to create enough blocks to keep all of
the SMs occupied. Of course, the maximum number of
blocks and threads that can run in parallel, depends on the
number of SMs and CUDA cores available on the GPU.

The Tesla K80 GPU Accelerator used in the present
work has 2 GPU units, each one equipped with 12 GB of
internal RAM memory, 13 SMs and 2496 CUDA cores.
Among all the operations done by the DED-RL
algorithm, the geometrical calculation of visibility
between tiles is one of the most computationally
expensive. In order to do this operation in an efficient
way, well known acceleration methods such as kd-trees
or Bounding Volume Hierarchies (BVH) can be used, and
several implementations of these methods on the GPU
have been proposed in the literature. In our case, we
implemented on the GPU the kd-tree method with a short
stack in order to handle the GPU resources in an efficient
way, similarly to what done in [18].

The parallelization potential of the visibility
computation is shown in Fig. 9 for a simple task:
computation of the visible tiles from a Tx (first level
visibility). The full 20 km2 map of San Francisco is used,
and 6 different Tx sites with different characteristics
(micro- and macro-cellular) and located in different zones
of the city have been considered (Tx A, B, C, D, E, F).
For each site, the computation time with parallel
computation (red bars in the histogram) is compared to
the reference case of computation using a single block -
single thread kernel, which in means in practice that no
parallelization is applied (blue bars in the histogram). The
computation time for first level visibility ranges from
30ms to 180ms depending on site and environment, and
the achievable parallelization speed-up ranges from
~500x to ~1600x.

Fig. 9. Parallelization speed-up factors of first level visibility for

different sites in San Francisco. Blue bars refer to computation time
using a single block-single thread kernel.

It is worth noting that the highest speed-up gains are

achieved for macrocellular sites (Tx D,E,F), which are
able to “see” a higher number of tiles, since they are
located above the average height of the surrounding
buildings. In such cases the parallelization potential of the
GPU can be fully exploited, with a better occupation of
the available resources and a good balance in the
execution times of the different threads. For example, Tx
F is a macrocellular base station located in a very dense

urban area close to Union Square and surrounded by very
tall buildings, and in fact we get the highest
parallelization gain in this case.

E. Flow-Chart of the DED-RL engine
The flow-chart of the DED-RL core, corresponding to the
“Ray Launching Engine” block of Fig.6, is shown in Fig.
10. The algorithm consists in the following steps:
a. The tiles visible from the Tx antenna are found
b. Initial ray tubes are launched toward the visible tiles
c. The power and delay of the center rays to the visible

tiles’ centroids are computed and saved.
d. For each visible tile, if the incident power at the

centroid is greater than a user-specified threshold and
the maximum number of allowed bounces is not
exceeded, the corresponding ray tube is allowed to be
bounced.

e. If there are no ray tubes to be bounced, the program
ends

f. For ray tubes that are allowed to bounce, the geometry
of the bounced ray tubes are found.

g. For each bounced ray tube, using the preprocessed tile
visibility matrix those tiles that are visible to the
spawning tile and also lie inside the bounced ray tube
are found.

h. The original bounced ray tubes are split into multiple
bounced ray tubes that are incident on the newly
found tiles.

i. Restart from c), where the initial ray tubes are now
the bounced ray tubes found in h), and the visible tiles
are the tiles that the bounced ray tubes are incident on.

The computation of visibility (a), propagation
characteristics computation (c) and ray tube bouncing (f
& g) are the most computationally intensive parts of the
algorithm, and therefore they are run in parallel into
CUDA kernels (highlighted in red in Fig. 10).

IV. PERFORMANCE FOR WIDE-AREA PREDICTION
Some tests were initially carried out to ensure DED-

RL results were in agreement with theory in some simple,
basic environments, such as free-space with flat terrain
reflection [2]. After that, to evaluate the computation
speed and accuracy of the DED-RL model in realistic
cases, we compared DED-RL predictions to
measurements and RT predictions, using the model
described in [10]. This RT model is used as a reference
because it represents a classical, non parallelized image-
RT algorithm developed in our research group, which can
take into account the same kind of interactions as the
DED-RL model, including diffuse scattering.

A. Evaluation of DED-RL Speed-up Gain

In order to evaluate the relative computation
efficiency of the DED-RL algorithm with respect to RT
in different parameter configurations, a 0.5 km2 area in
central San Francisco has been selected as a reference
environment. The Tx site was located on the top of a
building facing Union Square, and the environment was
discretized using 100m2 tiles, for a total of 5100 tiles.
DED-RL computation time was 2s, 6s and 11s for 1, 2
and 3 bounces, respectively.

0018-926X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAP.2018.2880036, IEEE
Transactions on Antennas and Propagation

 9

Fig. 10. Detailed flow-chart of the DED-RL engine

Since RL intrinsically performs prediction over the
whole area while RT can perform prediction for a specific
Rx point, in order to provide a fair and complete
comparison we decided to run RT several times for
different number of receivers starting from 1 up to 5100
Rx points (all the tiles in the area). DED-RL is of course
more efficient for area prediction, but what if prediction
on only 1 or a few points (e.g. a Rx route) is needed? Is
RT faster for such a point-specific prediction?

Fig. 11. Computation times and speed up factors of DED-RL with
respect to non-parallelized Image-RT run for different number of
bounces (Union Square Scenario). DED-RL computation times are
represented with dashed lines.

In Fig. 11 RT computation time vs. number of
receivers is shown using a log-log scale, while DED-RL
computation time is represented as a horizontal dashed
line. It is evident that RT computation time is similar to
DED-RL computation time only for a single receiver and
for a single-bounce prediction, while the DED-RL
outperforms RT when thousands of receivers and
multiple bounces are considered, with a speed-up gain of
up to several thousands. This gain could be even greater –
about 4 orders of magnitude – for simulations on larger
areas and more bounces. This confirms that 3D

predictions on very large urban areas would be unfeasible
using a non-parallelized image-ray tracing, while DED-
RL is able to handle them in a few minutes.

B. San Francisco Cellular Measurements
The measurements used in the DED-RL performance

evaluations are from two cell sites we will refer to as
TX1 and TX2 with the characteristics reported in Table
I. The cell sites are located just west of the San
Francisco financial district. In the vicinity of the sites,
there is large building height variation with buildings as
short as 15m and buildings taller than 150m. The terrain
also has large variations from 11m above mean sea level
to 105m.

Table I – transmitters and receiver characteristics.

TRANSMITTERS
 Lat. [deg] Lon. [deg] Band

[MHz]
Height

[m]
ERP

[dBm]
TX1 37.7904 -122.4053 850 41 40
TX2 37.7853 -122.4080 850 34 40

RECEIVER
PCTEL Seegull LX GSM 850 MHz scanner with a
PCTEL OP178H
Antenna type Ominidirectional

Two types of measurements were recorded: 1) ground
level (GL) and 2) above ground level (AGL). The GL
measurements were recorded as a vehicle with the
scanner traveled around the streets in the vicinity of the
cell sites. 2063 and 1143 GL measurements were
recorded from each cell site, respectively. The AGL
measurements were recorded as the scanner was carried
up and down an open staircase on the side of a 120 m
building that was serviced by both cell sites. A total of
13 AGL measurements locations were considered.

0018-926X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAP.2018.2880036, IEEE
Transactions on Antennas and Propagation

 10

C. Wide-Area Prediction Accuracy
To evaluate the absolute and relative accuracy of

DED-RL predictions were performed for the two cell
sites over the whole 20 km2 area which encompassed
the measurement locations for both cell sites. In the
simulations, the tile size was ΔA=100m2 and two
different maximum bounce criteria were used: A) “3
bounces” where NbMAX=3 with a maximum of 3
reflections, 1 diffraction and 1 diffuse scattering and B)
“5 bounces” where NbMAX=5 with maximums of 5
reflections, 2 diffractions and 1 diffuse scattering. Such
criteria are considered typical for ray-based prediction
in dense urban environment. It is worth noting that, due
to building obstructions and to the relatively short
distances, terrain diffraction is not as important in urban
environment as it is in rural-environment propagation,
where it often represents a dominant propagation
process. In urban street canyons on hilly areas however,
where the LoS path is obstructed by terrain, the
diffracted path can be dominant and multiple
diffractions on terrain tiles’ edges must be considered in
the DED-RL algorithm to achieve good results.

Fig. 12 (a) 2D view of DED-RL Path Loss predictions from
TX1 (blue triangle) located in central San Francisco;
(b) Zoomed-in 3D view of predictions in the vicinity of TX1.

Table II. RL Computation Time

Tx
DED-RL 3
Bounces

DED-RL 5
Bounces

Time [s] Time [s]
1 1584.0 3044.0
2 1281.0 2345.0

The DED-RL 5-bounce Path Loss (PL) predictions for

TX1 are shown in Figs. 12(a), (b). Fig. 12(a) depicts a

2D view of the predictions, while Fig. 12(b) shows a
zoomed in 3D view of the area around TX1. PL (dB) is
defined here using the following equation:
PL(dB)=ERP-PR, where ERP is the Effective Radiated
Power of the Base Station antenna (see Table I), and PR
is received power. Note that for directive antennas the
original rays from the transmitter and the arriving rays
to the receiver are weighted according to the antenna
gains when computing the received power. The
computation times for each Tx are given in Table II.
The corresponding prediction errors computed versus
measurements for TX1 and TX2 are shown in Figs. 13
and 14, and tabulated in Tables III and IV. The
measurements path loss ranged from 74.8 to 132.0 dB
with a median of 108.1 dB.

The simulated power values corresponding to the
measurement locations shown in Figs. 13 and 14 have
been extracted from the DED-RL predictions by
snapping the power values from the nearest tiles to each
of the measurement points.

Overall, for both TX1 and TX2, the DED-RL with 5
bounces has good prediction accuracy. For TX1, mean
prediction error is -3.3 dB and standard deviation of
error is 8.6 dB for GL measurements, and mean error is
0.9 dB and standard deviation is 7.2 dB for AGL
measurements. There are several areas in which DED-
RL predictions can improve such as vegetation and
street clutter attenuation and over roof top propagation.
From Fig. 13, at locations on streets adjacent to TX1,
signal strength predictions are generally too high. These
locations were generally line-of-sight or close to line-of-
sight. We expect the over-estimation to be caused by
vegetation and street clutter that were not accounted for
in the DED-RL predictions. Another area of
improvement is over roof top propagation. An example
of this is the underestimation of the received power for
locations to the south-east of TX1. We think that the
block grid configuration change from north/south to
north-west/south-east causes rays travelling in the street
canyon to have large losses, so that the dominant rays
travelled over the roof tops. Though, to predict these
rays, more diffractions than the maximum limit of 2 in
our DED-RL predictions are needed.

The results for DED-RL with 3 bounces are also given
in Tables III and IV. Comparing results for 5 bounces
and 3 bounces, the DED-RL computation time is
approximately half but the error standard deviations
degrade a little from 8.6 to 8.8 dB. There is also more
underestimation which is evident from the mean error
going from -3.3 to -5 dB. This is expected due to the
lower number of rays that are considered. Overall, the
biggest impact on performance was not from changing
the maximum number of reflections from 5 to 3, but
from decreasing the maximum number of diffractions
from 2 to 1. If the maximum limit of 2 diffractions was
instead increased, more over-roof-top rays could exist
and performance is expected to improve over the 5
bounce predictions. Unfortunately, diffraction is
computationally intensive, so computation time will
exponentially increase. Further work will have to
address this issue with computationally efficient over-
roof top models.

0018-926X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAP.2018.2880036, IEEE
Transactions on Antennas and Propagation

 11

RT was also run for the measurement locations. DED-
RL generally had slightly better performance than RT
for the same number of bounces. As opposed to the
DED-RL simulations, RT simulations have been done
only for specific measurement locations instead of the
whole 20 km2 area, and the maximum number of
bounces has been limited to 3: in fact, such predictions
on very large areas and with many bounces are not
feasible with RT. For comparison, RT computation time
in the TX 2 case was already almost 1 day for the 1143
GL locations using the 3 bounces setting.

Fig. 13 DED-RL prediction error for TX1

Fig. 14 DED-RL prediction error for TX2

Table III. Ground Level Prediction Error Statistics

Tx

DED-RL 3
Bounces

DED-RL 5
Bounces

Ray-Tracing
3 Bounces

Mean
[dB]

STD
[dB]

Mean
[dB]

STD
[dB]

Mean
[dB]

STD
[dB]

1 -5 8.8 -3.3 8.6 -0.02 11.7
2 -1.6 8 -0.7 7.8 1.0 8.9

Table IV. Above Ground Level Prediction Error Statistics

TX

DED-RL 3
Bounces

DED-RL 5
Bounces

Ray-Tracing
3 Bounces

Mean
[dB]

STD
[dB]

Mean
[dB]

STD
[dB]

Mean
[dB]

STD
[dB]

1 0.5 7.3 0.9 7.2 3.0 10.4
2 -4.7 3.4 -4.5 3.5 4.9 6.0

V. CONCLUSIONS
A novel Ray Launching algorithm for fast 3D

prediction in wide urban areas, called Discrete

Environment-Driven Ray Launching (DED-RL), is
proposed.

Using the combination of different techniques, i.e.
environment discretization, visibility pre-processing and
GPU parallelization, DED-RL is able to achieve very
high levels of computational efficiency, up to four orders
of magnitude compared to a reference ray tracing
algorithm. Typical computation times for complete
predictions over all building surfaces in a urban cell site
range from a few seconds to tens of minutes, depending
on the size of the urban scenario and the characteristics of
the Tx site.

The accuracy level is found to be similar to ray
tracing, despite some approximations that are intrinsic to
the discrete approach as compared to the more rigorous
image-based approach. These approximations can be
over-compensated by the higher number of bounces and
combinations of different mechanisms, which could not
be considered with ray tracing due to the high
computation times.

Further studies will be carried out in the future to
further assess the potential and the prediction accuracy of
DED-RL.

ACKNOWLEDGEMENT
This work has been carried out in the framework of a

research collaboration between Polaris Wireless Inc.
(Mountain View, CA USA) and the CIRI-ICT Industrial
Research Center of the University of Bologna.

REFERENCES
[1] M. Hata, "Empirical formula for propagation loss in land mobile

radio services," in IEEE Transactions on Vehicular Technology,
vol. 29, no. 3, pp. 317-325, Aug. 1980.

[2] M. N. Abdallah et al., "Further Validation of an Electromagnetic
Macro Model for Analysis of Propagation Path Loss in Cellular
Networks Using Measured Driving-Test Data," in IEEE Antennas
and Propagation Magazine, vol. 56, no. 4, pp. 108-129, Aug. 2014.

[3] Felsen, L.B., and N. Marcuvitz, Radiation and Scattering of Waves,
Prentice Hall; IEEE Press, 1973.

[4] T. K. Sarkar, Zhong Ji, Kyungjung Kim, A. Medouri and M.
Salazar-Palma, "A survey of various propagation models for mobile
communication," in IEEE Antennas and Propagation Magazine,
vol. 45, no. 3, pp. 51-82, June 2003.

[5] J. P. Rossi, J. C. Bic, A. J. Levy, Y. Gahillet, and M. Rosen , “A
Ray Launching Method for Radio-mobile Propagation in Urban
Area,” Antennas and Propagation Society Symposium 1991 Digest,
London, Ontario, Canada, pp. 1540-1543 vol.3, 1991.

[6] M. F. Catedra, J. Perez, F. Saez de Adana, O.Gutierrez, “Efficient
Ray-Tracing techniques for three-dimensional analyses of
propagation in mobile communication: application to picocell and
microcell scenarios,” IEEE Antennas and Propagation Magazine,
Vol. 40, No. 2, pp. 15-28, April 1998.

[7] G. Liang and H. L. Bertoni, “A new approach to 3-D ray tracing for
propagation prediction in cities,” IEEE Trans. Antennas Propagat.,
vol. 46, no. 6, pp. 853-863, June 1998.

[8] M. Raspopoulos, "Multidevice Map-Constrained Fingerprint-Based
Indoor Positioning Using 3-D Ray Tracing," in IEEE Transactions
on Instrumentation and Measurement, Vol. 67, No. 2, pp. 466-476,
Feb.2018 doi: 10.1109/TIM.2017.2774181

[9] P. Meissner et al., "On the use of ray tracing for performance
prediction of UWB indoor localization systems," 2013 IEEE
International Conference on Communications Workshops (ICC),
pp. 68-73, Budapest, June 9-13, 2013

[10] F. Fuschini, E. M. Vitucci, M. Barbiroli, G. Falciasecca, and V.
Degli-Esposti, “Ray tracing propagation modeling for future small-
cell and indoor applications: A review of current techniques,”
Radio Science, vol. 50, no. 6, pp. 469–485, Jun. 2015.

[11] H. L. Bertoni, Radio Propagation for Modern Wireless Systems,
Prentice Hall, Upper Saddle River, NJ, USA, 2000.

[12] Z. Yun and M. F. Iskander, "Ray Tracing for Radio Propagation
Modeling: Principles and Applications," in IEEE Access, vol. 3, pp.
1089-1100, 2015.

-122.412 -122.408 -122.404 -122.4 -122.396

longitude [deg]

37.784

37.786

37.788

37.79

37.792

37.794

37.796

la
tit

ud
e

[d
eg

]

-40

-30

-20

-10

 0

 10

 20

 30

 40

Er
ro

r [
dB

]

-122.414 -122.412 -122.41 -122.408 -122.406 -122.404 -122.402

longitude [deg]

37.784

37.785

37.786

37.787

37.788

37.789

37.79

37.791

37.792

la
tit

ud
e

[d
eg

]

-40

-30

-20

-10

 0

 10

 20

 30

 40

E
rro

r [
dB

]

0018-926X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAP.2018.2880036, IEEE
Transactions on Antennas and Propagation

 12

[13] C. A.Balanis, Avanced Engineering Electromagnetics, Wiley &
Sons, 1989.

[14] Derek A. McNamara, Carl W. I. Pistorius, J. A. G. Malherbe,
Introduction to the Uniform Geometrical Theory of Diffraction,
Artech House, 1990.

[15] S. Y. Seidel and T. S. Rappaport, "Site-specific propagation
prediction for wireless in-building personal communication system
design," in IEEE Transactions on Vehicular Technology, Vol. 43,
No. 4, pp. 879-891, Nov 1994.

[16] H. Suzuki, A. Mohan, “Ray tube tracing method for predicting
indoor channel characteristics map”, Electron. Lett. Bol. 33, pp.
1495-1496, August 1997.

[17] H. Suzuki, A. S. Mohan, "Measurement and prediction of high
spatial resolution indoor radio channel characteristic map", IEEE
Transactions on Vehicular Technology, vol. 49, no. 4, pp. 1322-
1333, July 2000.

[18] J. Tan, Z. Su, Y. Long, “A Full 3-D GPU-based Beam-Tracing
Method for Complex Indoor Environments Propagation Modeling”,
IEEE Trans. on Ant. and Propagat., vol. 63, No. 6, pp. 2705-2718,
June 2015.

[19] Z. Lai, N. Bessis, G. de la Roche, H. Song, J. Zhang, G.
Clapworthy, “An intelligent Ray Launching for urban prediction”,
3rd European Conf. on Ant. and Propagat., 23-27 March 2009,
Berlin (GE)-

[20] Z. Lai, N. Bessis, P. Kuonen, G. de la Roche, J. Zhang, G.
Clapworthy, “A Performance Evaluation of a Grid-enabled Object-
Oriented Parallel Outdoor Ray Launching for Wireless Network
Coverage Prediction”, 5th Int. Conf. on Wireless and Mobile
Communications, 2009.

[21] C. Y. Kee, C. Wang, “Efficient GPU Implementation of the High-
Frequency SBR-PO Method”, IEEE Wireless Propagat. Letters,
vol. 12, pp. 941-944, 2013.

[22] Y Tao, H. Lin, H. Bao, “GPU-Based Shooting and Bouncing Ray
Method for Fast RCS Prediction”, IEEE Trans. on Ant. and
Propagat., vol. 58, No. 2, pp. 494-502, February 2010.

[23] M. Schiller, A. Knoll, M. Mocker, T. Eibert, “GPU Accelerated
Ray Launching for High-Fidelity Virtual Test Drives of VANET
Applications”, Int. Conf. on High Performance Computing and
Simulations, 20-24 July 2015, Amsterdam (NL).

[24] A. Schmitz, L. Kobbelt, “Efficient and accurate urban outdoor radio
wave propagation”, Int. Conf. on Electromagnetics in Advanced
Applications (ICEAA), 12-16 September 2011, Torino (IT).

[25] R. Felbecker, L. Raschkowski. W. Keusgen, M. Peter,
“Electromagnetic Wave Propagation in the Millimeter Wave Band
Using the NVIDIA OptiX GPU Ray Tracing Engine”, 6th European
Conf. on Ant. and Propagat., 26-30 March 2012, Prague (CZ).

[26] V. Degli-Esposti, F. Fuschini, E. M. Vitucci, and G. Falciasecca,
“Measurement and Modelling of Scattering From Buildings,” IEEE
Trans. Antennas Propagat., Vol. 55 No 1, pp. 143-153, Jan. 2007.

[27] V. Degli-Esposti, J. S. Lu, J. N. Wu, J. J. Zhu, J. A. Blaha, E. M.
Vitucci, F. Fuschini, M. Barbiroli, “A Semi-deterministic Model for
Outdoor-to-Indoor Prediction in Urban Areas”, IEEE Antennas and
Wireless Propagation Letters, vol. 16, 2017, pp 2412-2415.

[28] Shuttle Radar Topography Mission, U.S. Geological Survey,
accessed on January 24th, 2018. Available:
https://lta.cr.usgs.gov/SRTM .

[29] ESRI Shapefile Technical Description—An ESRI White Paper—
July 1998, accessed on Apr. 15, 2017. Available:
https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf.

[30] D. Rose (Ed.), Sparse Matrices and their Applications, Springer-
Verlag New York Inc, 1972.

[31] V. Degli-Esposti, F. Fuschini, E. M. Vitucci, M. Barbiroli, M. Zoli,
L. Tian, X. Yin, D. Dupleich, R. Müller, C. Schneider, R.S. Thomä,
“Ray-tracing based mm-wave beamforming assessment,” IEEE
Access, Vol. 2, Nov. 2014, pp. 1314 – 1325.

[32] J. Cheng, M. Grossmann, T. McKercher, Professional CUDA C
Programming, Wiley & Sons, 2014.

