
10 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Published Version:

A Discrete Environment-Driven GPU-Based Ray Launching Algorithm

Published:
DOI: http://doi.org/10.1109/TAP.2018.2880036

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/649226 since: 2019-02-25

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/TAP.2018.2880036
https://hdl.handle.net/11585/649226


This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

 

 

 

 

 

This is the final peer-reviewed accepted manuscript of:  

J. S. Lu et al., "A Discrete Environment-Driven GPU-Based Ray Launching Algorithm,"  

 

In: 

 IEEE Transactions on Antennas and Propagation, vol. 67, no. 2, pp. 1180-1192, Feb. 
2019 

 

 

The final published version is available online at: 

 https://doi.org/10.1109/TAP.2018.2880036 

 

 

 

Rights / License: 

The terms and conditions for the reuse of this version of the manuscript are specified in the 
publishing policy. For all terms of use and more information see the publisher's website.   

 



0018-926X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAP.2018.2880036, IEEE
Transactions on Antennas and Propagation

 1 

1Abstract— We present here a novel, fully discrete Ray 
Launching field prediction algorithm that takes advantage 
of environment preprocessing to efficiently trace rays 
undergoing both specular and diffuse interactions. The 
algorithm is “environment-driven” because rays are traced 
from the ray source according to the presence and 
distribution of obstacles in the surrounding space, therefore 
adapting ray density to the environment’s characteristics. 
The environment is discretized into simple regular shapes to 
facilitate faster geometric computations, to allow for 
visibility preprocessing and for the algorithm to be 
parallelized in a straightforward way. These innovative 
features combined together and implemented on a NVIDIA 
Graphical Processing Unit (GPU) are shown to speed-up 
computation by several orders of magnitude compared to 
more conventional algorithms, while retaining a similar 
accuracy level. The speed-up and prediction accuracy 
achieved in reference cases is presented in comparison to a 
pre-existing ray-based model and RF-coverage 
measurements. 

Key words — Radio Propagation, Ray Tracing, Ray 
Launching, Cellular Radio, GPU 

I. INTRODUCTION 
Radio propagation models for path-loss prediction, 

such as [1], where developed since the eighties and 
nineties of the past century to assist the deployment of 
public mobile radio systems. After that, there have been 
a long line of measurement campaigns that reduce the 
small area averaged received signal strength to a simple 
power law range dependence together with lognormal 
shadow fading, see for example [2]. However, when the 
base station antenna is at or below the surrounding 
buildings, shadowing becomes even more important in 
determining signal strength. Since the 1990’s site-
specific deterministic RF propagation prediction models 
using ray-optical approximations [3] where introduced 
and tested with success [4]-[7]. With respect to simpler 
path-loss models, they also had the potential to simulate 
multipath propagation, and therefore the dispersion 
characteristics of the radio channel in both time and 
space at the same time. 

More recently, due to the advent of Multiple-Input 
Multiple-Output (MIMO) transmission schemes and to 
the use of higher frequency bands, ray-based models 
have been proposed for a variety of uses, including the 
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design and planning of new-generation wireless 
systems, fingerprinting and multipath-based localization 
methods [8],[9], and real-time use for the optimization 
of wireless systems performance [10]. Nevertheless, 
they still have not achieved widespread application 
mainly because of their high computation time. 

Although classification criteria and terminology are 
not unequivocally defined, ray-based methods can be 
divided in two main groups [4],[11],[12]: 

(i) Ray Tracing (RT): Algorithms where the exact 
position(s) of both the transmitting (Tx) and the receiving 
(Rx) point(s) are taken into account from the beginning, 
and thus rays satisfying Geometrical Optics (GO) rules 
[13],[14] for those specific Rx/Tx locations are searched 
using various techniques, including the image method 
and the so called visibility tree technique [9]. Sometimes 
RT is also referred to as “image-Ray Tracing”.  

 (ii) Ray Launching (RL): Algorithms where rays start 
from the Tx with a pre-determined angular separation and 
are traced regardless of the position of the Rx(s). These 
rays are ideally propagated by the algorithm along their 
trajectory until they encounter an obstacle, where they are 
reflected, diffracted, transmitted or scattered. The 
subsequent rays are propagated following GO rules. RL is 
also referred to as brute-force ray tracing, shooting and 
bouncing rays, pincushion or beam-launching method 
[4],[11],[15]. Since rays are not traced specifically to an 
exact Rx position(s), a space discretization is assumed 
that in principle limits field prediction accuracy. When a 
ray is traced and its field is computed, it represents the 
field over an entire ray tube volume. Therefore RL is 
more efficient – although theoretically less accurate – 
than RT to perform RF coverage prediction over vast 
areas. 

Some RL implementations, at times referred to as ray-
tube tracing, beam tracing or frustum ray tracing, make 
use of ray-tubes of properly arranged triangular or 
polygonal cross sections so as to realize tessellation of the 
whole space [16]–[18]. In these methods ray-tube cross 
sections are properly cut using polygon clipping 
techniques when a ray tube propagates across the edge of 
an obstacle in order to exactly determine which portion of 
the tube hits the obstacle and which should continue 
undisturbed forward-propagation. These methods can 
achieve a high accuracy level, but the discretization error 
is always present and can only be reduced by launching a 
very high number of beams with small cross section. 
Moreover, polygon clipping or similar algorithms to clip 
ray tubes are computationally expensive. 

Both RT and RL suffer from long running times 
because of the many rays that must be tested in order to 
find the few that contribute.  In the case of RT each wall 
in the entire building database must be examined to find 
those intersected by relevant rays.  On the other hand, RL 
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may spend time to track a lot of rays providing no 
contribution at the Rx(s) in practice. Trying to include 
diffuse scattering from building surfaces in either RT or 
RL raises computation time even further. 

In order to improve running time, and include diffuse 
scattering in simple way, the present Discrete 
Environment-Driven Ray Launching model (DED-RL) 
has been developed during a collaboration between the 
University of Bologna and Polaris Wireless Inc. In 
addition to seamless space tessellation, other advanced 
features have been implemented in order to achieve a 
very high accuracy while drastically reducing 
computation time, as listed below. 
1) Environment discretization. Environment surfaces 
(walls streets, etc.) are discretized into “tiles” to simplify 
the ray launching algorithm and perform basic operations 
such as beam cross-section cutting across obstacles’ 
edges without complex polygon clipping algorithms (see 
section II). A similar solution is proposed in [19], but 
there the scenario is rasterized into cubes instead of 
surface tiles, as proposed here. Discretization also opens 
the way to the following features 2) and 3). 
2) Environment-driven ray launching. Efficiency has 
been improved by launching rays on the base of the 
geometrical distribution of the obstacles (tiles) present 
in the environment, instead of using a constant angular 
discretization: this feature might be called “environment 
driven RL” and is particularly useful for outdoor 
application where obstacles are sparse or there are large 
open sky sectors where launching many rays would be 
useless. 
3) Visibility preprocessing. Since the environment is 
simplified into a set of tiles, the potential existence of a 
propagation path between a generic pair of tiles – i.e. a 
“visibility relation” – can be pre-computed for a given 
environment and saved in a file (the “visibility matrix”), 
thus greatly simplifying and speeding-up the computation 
of multiple-bounce rays at run-time. 
4) Parallelization on a Graphical Processing Unit 
(GPU). Since RL approach is inherently fit to parallel 
computing [18]–[25] the whole algorithm – including 
visibility preprocessing – has been parallelized on 
NVIDIA GPUs using the CUDA language extension, 
thus further reducing computation time with respect to 
traditional implementations. 

Although almost all the features listed above have 
been to some extent already studied and implemented in 
the past, to the best knowledge of the Authors they have 
never been combined into a single model where synergies 
amplify the advantages of individual solutions in order to 
reach an unprecedented level of computational efficiency 
for a 3D ray-based approach. 

The new model has also inherited some advanced 
features from a pre-existing RT model developed at the 
University of Bologna [10], such as the Effective 
Roughness diffuse-scattering model [26]. 

Using a NVIDIA K80 GPU platform and environment 
discretization with approximately 10x10m tiles, DED-RL 
can handle accurate prediction over all building surfaces 
of a 20 km2 dense-urban area with a computation time 
lower than one hour virtually without memory swapping. 

The main purpose of this paper is to present the new 
algorithm with its innovative features and to explain why 
such features work in synergy to achieve high 
computational efficiency. Therefore most of the results in 
Sections III and IV show the computation time speed up 
achievable using both individual features and all of them 
combined in the complete algorithm. As benchmarks to 
validate the performance of the new RL model we use the 
cited pre-existing RT model and RF coverage 
measurements performed by Polaris Wireless. 

The main features of the DED-RL algorithm are 
presented in section II and described in more detail 
together with GPU parallelization and speed-up 
characteristics in section III. Some efficiency and 
accuracy validation results are then shown in section IV. 
Conclusions are finally drawn in section V. 

II. ALGORITHM PRINCIPLES 
As with all RL algorithms, DED-RL is suitable for 

prediction over large areas or volumes. More specifically, 
it has been designed to perform fast deterministic 
propagation prediction on 3D outdoor surfaces of all 
buildings and streets in a given prediction area (or “target 
area”), to enable multi-frequency RF coverage design and 
optimization, or the application of RF-based localization 
methods in urban environments such as fingerprinting 
techniques [7]. Prediction on outdoor surfaces can be 
extended indoors using empirical or deterministic models 
[27]. DED-RL’s input requires location and antenna 
details of all transmitters, a 3D building vector database 
and a raster terrain-database. 

A. Environment-driven vs. traditional ray launching 
In conventional RL algorithms, rays are launched 

from the Tx – or from diffraction and scattering Virtual 
sources (VTx) [10] – into the surrounding space 
according to a pre-set angular discretization with a 
uniform ray density regardless of the obstacles’ positions 
(see Fig. 1 where the discretization grid is triangular). As 
the rays propagate in space, intersections with 
surrounding objects (walls/edges) are searched in order to 
determine obstruction and bouncing.  

 
Fig. 1. Traditional Ray Launching: ray tubes and center rays launched 
from the Tx according to a pre-set angular discretization, independently 
of the obstacles in the environment. In this case: triangular cross-section 
ray tubes are used. Rays can also be launched through triangle vertexes 
instead of centroids. 
 

As a result there can be oversampling with multiple 
rays in regions where obstacles are not present, e.g. rays 
at elevated angles in outdoor applications were large 
open-sky sectors are present, and under-sampling where 
obstacles are smaller than the distance between rays (ray 
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spacing). Under-sampling especially occurs far away 
from the Tx as ray spacing increases with distance. In 
conventional RL algorithms, “beam splitting” techniques 
must be enforced after a given propagation distance or 
according to a given criterion to artificially increase the 
density of rays and reduce the discretization error. 

In environment-driven RL algorithms rays are 
launched only toward obstacles (Fig. 2), i.e. where they 
are actually needed to properly describe the field, and 
with a density that is proportional to the spatial density of 
obstacles in each direction. Each ray-tube cross section is 
inherited from the shape of the reflecting obstacle 
(rectangular in Fig. 2). This solution does not require 
beam splitting because spatial resolution is automatically 
matched to environment complexity at each new bounce 
and does not degrade with distance. With this solution, 
the total number of rays to be launched is minimized. 
Moreover the algorithm can keep track of the exact cross-
section geometry of each ray tube bounced off, or 
partially obstructed by, a wall, by clipping it according to 
the wall’s shape. Therefore field representation accuracy 
can be kept to the maximum level. 

This kind of environment-driven algorithm however 
has the following drawbacks: 
a) polygon clipping algorithms, necessary to determine 

the polygonal cross section of ray tubes, are 
computationally intensive 

b) accuracy degradation might occur when obstacles are 
very large or very close to the Tx, where the incidence 
angles and therefore the reflection/diffraction 
coefficients might appreciably vary over different 
points of the same obstacle. 

c) no ray (or ray section) can be pre-computed for a 
given environment independently of the position of 
the Tx because the cross-section shape of each ray 
tube after one or more bounces (and clipping 
operations) depends on the position of the Tx.  

 
Fig.2. Environment-driven Ray Launching: rays (thick dashed lines) or 
corresponding ray tubes (thinner dashed lines) are launched only toward 
obstacles, here generating reflected rays  
 

B. The advantages of discretization 
All the above-mentioned drawbacks are solved or at 

least eased using environment discretization and a 
discrete RL algorithm: this is another distinctive feature 
of the DED-RL algorithm. 

Each wall is subdivided into rectangular tiles (or 
pixels) with a typical size of some square meters using 
the algorithm described in section III.A (see Fig. 3). 
Since tiles are relatively small, their center-points (stars 

in Fig. 3, also called centroids) can be considered 
representative of the whole tile and all operations can be 
performed in a simplified pixel-based fashion using the 
centroid instead of the tile’s surface. As walls are 
discretized, ray tubes bouncing off-walls also become 
discretized and therefore the use of polygon clipping 
algorithms can be avoided. Of course there is a 
discretization error with respect to a fully analogue, 
environment-driven RL, but it can be kept low enough 
using small-enough tiles. 

One drawback is a higher number of surfaces to be 
considered, and therefore rays to be traced. This 
problem is mitigated by the use of parallel computation. 
In fact, discrete ray launching is very suitable to 
parallelization as a large number of similar operations 
must be performed at the same time and can be 
parallelized on multi-core computing platforms such as 
GPUs. This solution has been chosen for DED-RL, as 
explained in detail in section III. 

 

 
Fig. 3. Environment discretization example 

 
Last but not least, discretization opens the way to 

another very important feature that has been 
implemented in DED-RL: visibility pre-processing. 

A great deal of computation time in RL algorithms is 
spent in determining the visibility of objects, i.e. the 
existence of a Line-of-Sight (LoS) propagation path 
between a Tx/Vtx and a given object, or portion of it, as 
rays are bounced only at visible objects. For example, 
one wall might be only partly visible from the Tx as an 
interposed object might obstruct. Since the starting 
view-point for visibility is the Tx, in conventional RL 
algorithms visibility and therefore rays can only be 
determined when the Tx position is known. Not so in 
discrete RL. Since objects are tiles, the mutual visibility 
between a couple of tiles – and therefore the potential 
existence of a ray – can be determined a priori based on 
the environment topology and regardless of the position 
of the Tx. Therefore a given discretized environment 
database can be pre-processed and visibility relations 
between each pair of tiles can be saved in a matrix, the 
visibility matrix, in order to speed-up the tracing of rays 
at a later time for one or more Tx positions. Of course 
direct visibility from the Tx, also called first-level 
visibility, must be re-determined for each Tx position, 
while subsequent visibility levels corresponding to one 
or more bounces, can make use of information stored in 
the visibility matrix.  

Consider for example the case shown in Fig. 4 where 
visibility determination and tracing of rays up to the 
second level (after 1 bounce) is shown for a simple case. 
In Fig. 4(A) first-level visibility from Tx and 
corresponding rays are shown for wall w1 and one 
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obstructing object only (other objects are neglected here 
for simplicity). In Fig. 4(B) tile t1 of wall w1 (spawning 
tile) is considered and second level visibility is 
determined using visible tiles from t1 stored in the 
visibility matrix and the reflection cone that impinges 
on surrounding obstacles. Only a few objects are shown 
for simplicity. We can focus on target wall w4 to 
determine the visible portion of it and ultimately which 
rays need to be traced after one bounce off tile t1. 

 

 

 
Fig. 4. DED-RL functioning example: (A) first-level visibility from Tx 
and corresponding rays; (B) spawning tile, related visible and non-
visible tiles, reflection visibility cone and lit tiles; (C) traced rays 
corresponding to (B) for wall w4 only. 
 

In traditional RL algorithms the whole environment 
(in practice thousands of walls!) would have to be 
checked for visibility from the spawning tile. Here, 

since the visibility matrix has been pre-computed, tiles 
(centroids) visible from the spawning tile are known and 
highlighted in green: tiles of wall w3 are not visible 
because building b1 itself shadows them, while some of 
the tiles in wall w4 are shadowed by building b2. Not all 
the remaining, 10 visible tiles must be considered for 
launching rays however, because only some of them fall 
within the reflection visibility region (reflection cone), 
i.e. are visible through reflection from tile t1.  

The reflection cone shape is easily determined with a 
projection using the VTx position and the tile’s shape 
and all tile centroids within the cone can be easily 
determined by checking only the 10 visible tiles’ 
centroids. Therefore the visible portion of wall w4 
through reflection from the spawning tile is determined 
by the 5 lit tiles highlighted in yellow. As in digital 
computer graphics, such a wall portion is determined 
without any polygon clipping, simply as a composition 
of pixels. 

Rays to be traced for this computation step are 
shown in Fig. 4(C): the 5 bounced rays from tile t1 
addressing the lit tiles of wall w3. Note that both ray 
splitting (to keep ray-spacing within a limited range) 
and polygon clipping (to determine the lit portion of 
walls at the generic computation step) are avoided and 
replaced by this discrete, environment-driven RL 
procedure.  

If diffuse scattering from tile t1 instead of reflection 
is considered the pre-processing speed-up advantage is 
even greater because visible tiles through diffuse 
scattering exactly correspond to the visible tiles stored 
in the visibility matrix since diffuse scattering’s 
visibility region corresponds to the whole 2π external 
hemisphere [10]. Similar considerations would hold for 
diffraction off a tile’s edge, where the visibility region 
is a large region comprised between the two Keller’s 
cones [14] corresponding to the edge’s end points (see 
Fig. 5). Note that edges, like surfaces, are also 
discretized into segments.  Edge segments correspond to 
the common edge side of a pair of border tiles located 
on two walls sharing a common edge. Border tiles are 
properly flagged when discretizing the environment, and 
the IDs of the 2 tiles generating the edge segment 
(parent tiles) are stored. With this approach, no 
operation is needed to determine the visibility of edges: 
edge visibility is the OR of the parent tiles’ visibility. 
 

 
Fig. 5. Visibility region for diffraction off a tile’s edge. The region is 
comprised between two Keller’s cones. 
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In order to determine tiles visible from an edge, the 
visibility matrix is queried for both of the parent tiles 
and the union of all tiles visible from parent tiles is 
made. Then, only those visible tiles are selected that fall 
inside the diffraction visibility region, (Fig. 5). 

At each iteration step each ray’s field and other 
information such as the propagation delay, the ray 
geometry etc. are saved in an output file. Note that, as 
long as the field is only needed on environment surfaces 
(radio coverage prediction), no operation to determine 
which ray tubes hit a given Rx point must be performed 
here: tiles represent both bouncing and target elements 
(Rx points) at the same time and therefore the field 
contribution can be automatically saved at each 
computation step whenever a ray addresses a tile. 

More details on the different features of the DED-
RL algorithm are given in section III. An overall 
scheme of the DED-RL algorithm with the different 
input, output and computational blocks is shown in Fig. 
6. The RL engine uses the following inputs: tile 
geometry information from the discretization algorithm, 
tile visibility information from the visibility matrix and 
the Tx/Rx data (position, antenna diagram and 
polarization, radiated power etc.). The outputs, which 
can include total field strength and received power as 
well as each ray’s field, delay and geometry for each Rx 
point, are saved in the output matrix  

 

 
Fig. 6. Simplified scheme of the DED-RL Algorithm. Input files in 
orange, output file in blue. 
 

III. ALGORITHM DETAILS AND IMPLEMENTATION 
In this section, select key features of the DED-RL 

algorithm are described in some detail and their 
contribution to the algorithm’s efficiency is discussed.  

A. Environment Discretization 
Propagation prediction requires terrain, clutter, 

vegetation and building GIS databases in order to 
accurately account for significant propagation effects. In 
this work only terrain and building databases are 
considered, but clutter and vegetation can be considered 
as well.  

Terrain databases are commonly available in the 
form of raster databases created from satellite imagery. 
These raster databases are essentially terrain heights 
uniformly sampled in an area. The horizontal resolution 
of the sampling depends on the data source. For 
example, Shuttle Radar Tomography Mission (SRTM) 
data is available in 30 m resolution [28].  

Building databases on the other hand are usually 
given as a set of right prisms with polygonal base and 
vertical sides, so that a single building is represented by 
one or more of them stacked on top of each other. These 
databases are also known as building vector databases 
that usually come in the ESRI SHAPE format [29] with 
varying accuracy. As an example, the Google street 
view of a building is shown in Fig. 7(a) and the 
corresponding prisms outlines are drawn in red in Fig. 
7(b). 
 

 

(a) 
 

(b) 
Fig. 7. (a) Example building and the surrounding terrain; (b) Tiling the 
surfaces of the example building and the surrounding terrain. 

To tile the terrain and building surfaces a tile shape 
(e.g., triangle, rectangle) and desired tile area AΔ  should 
first be chosen.  Every surface is then overlaid with a 
uniform grid of non-overlapping tiles.  As far as 
buildings are concerned, in the present work we tile 
SHAPE-format building walls with as-square-as-
possible rectangular tiles with the following procedure. 

For vertical building walls, which are rectangles of 
sides u,v, we first define the desired tile-side length Δl  
as follows  

AΔ = Δl                                (1) 
i.e. the side length of a square tile of area ΔA. Then we 
divide each of the wall sides by Δl  and save both the 
integer quotient q and the reminder length Rl , so that for 
example: 

Ru q= ⋅Δ +l l                              (2) 

The side “u” is then subdivided into segments of length 

  Δ ′ℓu
 as follows: 

( )

           if   
2

1    if   >
2

u R

u R

u q

u q

Δ⎧ ′Δ = ≤⎪⎪
⎨ Δ⎪ ′Δ = +⎪⎩

ll l

ll l

               (3) 

In this way we ensure that the subdivision length 
u′Δl  of 

wall length u is close enough to desired length Δl .  This 
discretization procedure also generates the discretization 
of the wall edge already presented in section II. 

Once we have discretized both dimensions u, v of 
the wall into segments of length ,u v′ ′Δ Δl l , respectively, 
using equation (3), we have obtained a discretization of 
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the wall into 
u v′ ′Δ ×Δl l  tiles. Such tiles are as similar as 

possible to squares of side Δl . If a given wall is too 
narrow, or its area is too small according to given 
minimum parameters, then the wall is dropped from the 
tiling procedure and is therefore disregarded in the RL 
algorithm. 

For polygonal roofs, we draw the minimum 
circumscribed rectangle, and proceed with the tiling 
procedure as described above. At the end of the process 
all tiles whose centroids falls outside the roof’s polygon 
are discarded. Conversely, for terrain tiles, all tiles 
whose centroids falls inside the building’s footprint 
polygon are discarded. 

For the building shown in Fig. 7, the tiles are 
depicted in Fig. 7(b), with a desired tile area ΔA=100 
m2. Note that ΔA=100m2 is used for most RL 
simulations in the present work, except where specified 
otherwise. For the simulations discussed in Section IV, 
100 m2 rectangular tiles were used to tile the 20 km2 
area surrounding the high-rise core of San Francisco. 
This resulted in 466,529 tiles, which corresponds to 
~23,000 tiles/km2. Overall computation time for tiling 
was ~5 s on a standard PC using a 3.2 GHz, INTEL 
Xeon CPU. 

Of course, approximation of the surface shape using 
tiles is a source of error, especially for roofs. To 
mitigate this error, the tiling algorithm can orient tiles 
and use a variable tile area. 

The choice of the proper ΔA is obviously a trade-off 
between computation time and accuracy. According to 
our investigations ΔA=100 m2 can be considered a good 
compromise. In fact, considering a medium-sized urban 
database with 30 different cellular sites – not shown 
here for brevity – using ΔA= 25 m2 instead of ΔA=100 
m2 can yield a small decrease of about 1 dB in 
prediction error’s standard deviation with respect to 
measurements, but at the cost of a nearly quadruple 
computation time. 

B. Visibility Pre-processing 
A ray incident on a tile (spawning tile) can only 

bounce to tiles that belong to a subset of those visible to 
that spawning tile. Visibility is predetermined on the 
base of the visibility of the centroids of the considered 
tiles and saved in the visibility matrix as presented in 
section II. 

If there are N tiles, the pre-processed visibilities for 
all tiles can be saved in a NxN visibility matrix of ones 
and zeros where the ith row or column corresponds to 
the ith tile. For example, if the ij element in the matrix is 
1 it means that the ith tile is visible to the jth tile and vice 
versa.  

As an example, for a 20 km2 dense urban 
environment (central S. Francisco), using GPU 
parallelization it took an average of 69 ms to compute 
visibility from a tile for a total of approximately 9 
hours. The resulting average number of visible tiles per 
spawning tile is 952. The amount of memory needed to 
store the matrix depends on the variable type (e.g., 
Boolean, character). If variable type is Boolean (1 byte 
each), the amount of memory occupation for the matrix 
is N2 bytes. For the example, (466529)2 bytes = 202.7 

GB are needed. Thus, depending on the size of the 
environment, the size of the matrix can be prohibitively 
large to access or keep in RAM. 

Because the matrix is generally sparse (~0.2% non-
zero for the example), a sparse storage method such as 
compressed sparse row (CSR) [29] is used in the 
present work. This reduces the memory size 
dramatically (by ~99.2% to 1.65 GB for the example 
discussed here). 

The benefit of using the pre-processed visibility 
matrix is significant with respect to the case when the 
visibility check is done “online” while tracing the rays. 
In fact, according to our calculations it would takes 
~10ms to check the obstructions for each ray segment, 
and this will need to be repeated for every single ray. 
Thus, the computation time saved scales directly with 
the number of rays considered in a simulation. If a 
single TX with a maximum of 3 bounces per ray is 
considered for the 20 km2 area in San Francisco, ~108 
rays need to be computed, and ~80 days would be 
needed only for visibility calculations! 

The drawbacks to using a pre-processed visibility 
matrix are the initial pre-processing time and memory 
needed to store it, but these figures can be kept 
reasonably low using the methods described above. 
Moreover visibility matrix computation must be done 
only once for a given environment database. 

As an example, in Fig. 8 the computation times and 
the memory occupation for different map sizes are 
shown, with reference to the San Francisco scenario 
discretized into relatively small tiles of ΔA=25 m2. It is 
evident from the figure that even in this challenging 
case pre-processing is feasible for an urban area of 10 
km2, with a limited effort in term of computation time 
(less than one day), and memory occupation (about 10 
GB, which can be handled by modern PCs). 

 
Fig. 8 – Preprocessing Computation times and memory occupation for 
different sizes of the map, assuming an average tile area ΔA=25 m2  

C. Bouncing and saving the field 
As mentioned in section II, one peculiar feature of 

the DED-RL is that bouncing and saving the field are 
performed simultaneously at each computation step. 

First of all, at each iteration the centroid of the 
current visible tile is set as a Receiver, then the incident 
field from each ray is computed, and the total incident 
ray field, including time delay and angle of arrival on 
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the tile is stored. When computing the total field 
strength a simple incremental vector addition can be 
performed without any further memory occupation in 
the output matrix. 

The field contribution for each receiving tile is 
computed taking into account the current ray trajectory 
as well as the number and the kind of bounces (or 
interactions) it has undergone on the whole. The 
impinging field for a single ray is therefore computed as 
[31]: 

   

!
E RX( ) = SF ⋅ Ci

i=1

Nb

∏
⎛

⎝⎜
⎞

⎠⎟
⋅
!
E0 ⋅e

− jβrtot                  (4) 

where    
!
E0  is the field emitted by the Tx antenna in the 

direction of departure of the ray, and iC is a dyadic 

coefficient (Fresnel reflection coefficients, UTD 
diffraction coefficients, or scattering coefficients) 
accounting for the amplitude reduction and phase shift 
experienced by the propagating field at the i-th 
interaction.  In (4) SF is the spreading (or divergence) 
factor representing the overall propagation loss along 
the ray due to the spatial broadening of the wavefront 
[11]. Also, Nb is the number of bounces (or interactions) 
undergone by the ray, β is the wave number and rtot is 
the total length of the ray. The Tx antenna radiation 
pattern (directional gain) is accounted for in eq. (4) 
through the field amplitude    

!
E0 , i.e. the field emitted by 

the Tx antenna assuming far field conditions (𝑟 >
2𝐴/λ) at the incident tile, as usual for ray tracing 
models. In case far-field conditions are not satisfied, the 
corresponding tiles can be excluded from field 
computation, or the Tx antenna could be decomposed 
into smaller radiating elements. 

After incident field computation, bouncing is 
applied, i.e. each visible tiles becomes a “spawning” 
tile: the visibility matrix is queried to find the 
potentially visible tiles from the spawning tile, and then 
the actually visible tiles are selected among them with 
simple processing operations, according to the different 
interaction types. 

 Reflection: In order to determine if a visible tile 
belongs to the reflection cone, the center of this tile is 
back-projected to the wall plane of the spawning tile 
following the line that connects it with the VTx, and we 
then check whether the projected point falls inside the 
spawning tile or not. 

Diffraction: Using a similar processing we check 
whether the tile’s centroid falls inside the visibility 
region shown in Fig. 5 for the current VTx using a ray-
unfolding technique [10]. 

Diffuse Scattering: No further visibility processing is 
needed for diffuse scattering, since all the visible tiles 
stored in the visibility matrix can be reached through 
scattering. 

Finally, the visible edges are automatically set by 
identifying the “border” tiles among all the visible tiles, 
as mentioned in Section II. 

Once the visible tiles and edges are found according 
to the different interaction mechanisms, the incident 

field for all of them is computed, and the procedure 
described above is iterated.  

The tracing of a multiple-bounce ray continues until 
the incident power falls below a minimum power 
threshold, or when the maximum number of interactions 
NbMAX is reached. Both the minimum power threshold 
and the maximum number of interactions are input 
parameters of the DED-RL algorithm.  

D. GPU parallelization 
All the main features of DED-RL algorithm described 

in the previous sections – visibility preprocessing, first 
level visibility, ray bouncing and field computation – are 
suitable for code parallelization. 

Traditional parallelization techniques are based on 
multi-threading and multi-core computing, exploiting 
the characteristics of modern processors. More 
sophisticated techniques rely on the use of multi-
processor architectures, computer clusters, distributed 
and grid computing. 

In recent years, an alternative approach has become 
widespread, which is based on the use of the Graphics 
Processing Unit (GPU) - in addition to the CPU - for 
general purpose computing. GPU computing is often used 
in complex mathematical and geometric calculations, due 
to its ability to process vectors or matrices with extreme 
efficiency. This great speed and power for mathematical 
calculations comes from the fact that modern GPUs have 
more processing circuits with data caching and basic flow 
control than the CPU. GPU computing is particularly 
suitable for problems that may be expressed in terms of 
intensive computations on multiple parallel data, i.e. the 
same operations are executed for each data element in 
parallel. Such approach is often called GP-GPU (General-
Purpose computing on Graphics Processing Units), and it 
is the one adopted for the present work: all the features of 
the DED-RL have been implemented for parallelization 
on NVIDIA GPUs using the CUDA C++ language [32]. 

CUDA (acronym for Computer Unified Device 
Architecture) is a computing platform and a model of 
parallel programming that allows a dramatic increase in 
performance by exploiting the computing power of the 
CUDA-enabled GPUs. The CUDA platform is a software 
layer that gives direct access to the GPU's virtual 
instruction set and parallel computational elements for the 
execution of compute kernels. It is specifically conceived 
for NVIDIA GPU architectures. CUDA processors are 
usually programmed in CUDA C/C++, which is basically 
the standard C/C++ programming language, with some 
CUDA extensions [32]. 

In CUDA C/C++, the code is executed on the GPU 
using special functions called “kernels”, which are 
synchronous computation “batches” containing the 
parallel code. Each instance of the parallel code is 
executed by a “thread”, and several threads are grouped 
into “blocks”. Different thread blocks constitute a kernel 
“grid”. This is a “logical” subdivision, of course. From 
the physical point of view, each thread is mapped onto a 
core of the GPU, and each thread block is assigned to a 
different “Streaming Multiprocessor” (SM). When a 
kernel is launched on the GPU, the blocks are distributed 
to all the available SMs. The threads of a block execute in 
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groups of 32 threads, known as warps, and multiple 
warps can execute concurrently on a SM, as long as 
resources (registers, shared memory, etc.) are available. 
As soon as a thread block terminates its execution, it is 
immediately replaced by a new block. It is responsibility 
of the programmer to create enough blocks to keep all of 
the SMs occupied. Of course, the maximum number of 
blocks and threads that can run in parallel, depends on the 
number of SMs and CUDA cores available on the GPU.  

The Tesla K80 GPU Accelerator used in the present 
work has 2 GPU units, each one equipped with 12 GB of 
internal RAM memory, 13 SMs and 2496 CUDA cores. 
Among all the operations done by the DED-RL 
algorithm, the geometrical calculation of visibility 
between tiles is one of the most computationally 
expensive. In order to do this operation in an efficient 
way, well known acceleration methods such as kd-trees 
or Bounding Volume Hierarchies (BVH) can be used, and 
several implementations of these methods on the GPU 
have been proposed in the literature. In our case, we 
implemented on the GPU the kd-tree method with a short 
stack in order to handle the GPU resources in an efficient 
way, similarly to what done in [18].  

The parallelization potential of the visibility 
computation is shown in Fig. 9 for a simple task: 
computation of the visible tiles from a Tx (first level 
visibility). The full 20 km2 map of San Francisco is used, 
and 6 different Tx sites with different characteristics 
(micro- and macro-cellular) and located in different zones 
of the city have been considered (Tx A, B, C, D, E, F). 
For each site, the computation time with parallel 
computation (red bars in the histogram) is compared to 
the reference case of computation using a single block - 
single thread kernel, which in means in practice that no 
parallelization is applied (blue bars in the histogram). The 
computation time for first level visibility ranges from 
30ms to 180ms depending on site and environment, and 
the achievable parallelization speed-up ranges from 
~500x to ~1600x.  

 
Fig. 9. Parallelization speed-up factors of first level visibility for 

different sites in San Francisco. Blue bars refer to computation time 
using a single block-single thread kernel. 

 
It is worth noting that the highest speed-up gains are 

achieved for macrocellular sites (Tx D,E,F), which are 
able to “see” a higher number of tiles, since they are 
located above the average height of the surrounding 
buildings. In such cases the parallelization potential of the 
GPU can be fully exploited, with a better occupation of 
the available resources and a good balance in the 
execution times of the different threads. For example, Tx 
F is a macrocellular base station located in a very dense 

urban area close to Union Square and surrounded by very 
tall buildings, and in fact we get the highest 
parallelization gain in this case. 

E. Flow-Chart of the DED-RL engine 
The flow-chart of the DED-RL core, corresponding to the 
“Ray Launching Engine” block of Fig.6, is shown in Fig. 
10. The algorithm consists in the following steps: 
a. The tiles visible from the Tx antenna are found  
b. Initial ray tubes are launched toward the visible tiles 
c. The power and delay of the center rays to the visible 

tiles’ centroids are computed and saved. 
d. For each visible tile, if the incident power at the 

centroid is greater than a user-specified threshold and 
the maximum number of allowed bounces is not 
exceeded, the corresponding ray tube is allowed to be 
bounced.  

e. If there are no ray tubes to be bounced, the program 
ends 

f. For ray tubes that are allowed to bounce, the geometry 
of the bounced ray tubes are found.  

g. For each bounced ray tube, using the preprocessed tile 
visibility matrix those tiles that are visible to the 
spawning tile and also lie inside the bounced ray tube 
are found.  

h. The original bounced ray tubes are split into multiple 
bounced ray tubes that are incident on the newly 
found tiles. 

i.  Restart from c), where the initial ray tubes are now 
the bounced ray tubes found in h), and the visible tiles 
are the tiles that the bounced ray tubes are incident on. 

The computation of visibility (a), propagation 
characteristics computation (c) and ray tube bouncing (f 
& g) are the most computationally intensive parts of the 
algorithm, and therefore they are run in parallel into 
CUDA kernels (highlighted in red in Fig. 10). 
 

IV. PERFORMANCE FOR WIDE-AREA PREDICTION 
Some tests were initially carried out to ensure DED-

RL results were in agreement with theory in some simple, 
basic environments, such as free-space with flat terrain 
reflection [2]. After that, to evaluate the computation 
speed and accuracy of the DED-RL model in realistic 
cases, we compared DED-RL predictions to 
measurements and RT predictions, using the model 
described in [10]. This RT model is used as a reference 
because it represents a classical, non parallelized image-
RT algorithm developed in our research group, which can 
take into account the same kind of interactions as the 
DED-RL model, including diffuse scattering. 

 
A. Evaluation of DED-RL Speed-up Gain  

In order to evaluate the relative computation 
efficiency of the DED-RL algorithm with respect to RT 
in different parameter configurations, a 0.5 km2 area in 
central San Francisco has been selected as a reference 
environment. The Tx site was located on the top of a 
building facing Union Square, and the environment was 
discretized using 100m2 tiles, for a total of 5100 tiles. 
DED-RL computation time was 2s, 6s and 11s for 1, 2 
and 3 bounces, respectively.  
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Fig. 10. Detailed flow-chart of the DED-RL engine 

 
 

Since RL intrinsically performs prediction over the 
whole area while RT can perform prediction for a specific 
Rx point, in order to provide a fair and complete 
comparison we decided to run RT several times for 
different number of receivers starting from 1 up to 5100 
Rx points (all the tiles in the area). DED-RL is of course 
more efficient for area prediction, but what if prediction 
on only 1 or a few points (e.g. a Rx route) is needed? Is 
RT faster for such a point-specific prediction?  

 

 
 
Fig. 11. Computation times and speed up factors of DED-RL with 
respect to non-parallelized Image-RT run for different number of 
bounces (Union Square Scenario). DED-RL computation times are 
represented with dashed lines. 
 

In Fig. 11 RT computation time vs. number of 
receivers is shown using a log-log scale, while DED-RL 
computation time is represented as a horizontal dashed 
line. It is evident that RT computation time is similar to 
DED-RL computation time only for a single receiver and 
for a single-bounce prediction, while the DED-RL 
outperforms RT when thousands of receivers and 
multiple bounces are considered, with a speed-up gain of 
up to several thousands. This gain could be even greater – 
about 4 orders of magnitude – for simulations on larger 
areas and more bounces. This confirms that 3D 

predictions on very large urban areas would be unfeasible 
using a non-parallelized image-ray tracing, while DED-
RL is able to handle them in a few minutes. 
 

B. San Francisco Cellular Measurements 
The measurements used in the DED-RL performance 

evaluations are from two cell sites we will refer to as 
TX1 and TX2 with the characteristics reported in Table 
I. The cell sites are located just west of the San 
Francisco financial district. In the vicinity of the sites, 
there is large building height variation with buildings as 
short as 15m and buildings taller than 150m. The terrain 
also has large variations from 11m above mean sea level 
to 105m. 

Table I – transmitters and receiver characteristics. 

TRANSMITTERS 
 Lat. [deg] Lon. [deg] Band 

[MHz] 
Height 

[m] 
ERP 

[dBm] 
TX1 37.7904 -122.4053 850 41 40 
TX2 37.7853 -122.4080 850 34 40 

RECEIVER 
PCTEL Seegull LX GSM 850 MHz scanner with a 
PCTEL OP178H 
Antenna type Ominidirectional 
 

Two types of measurements were recorded: 1) ground 
level (GL) and 2) above ground level (AGL). The GL 
measurements were recorded as a vehicle with the 
scanner traveled around the streets in the vicinity of the 
cell sites. 2063 and 1143 GL measurements were 
recorded from each cell site, respectively. The AGL 
measurements were recorded as the scanner was carried 
up and down an open staircase on the side of a 120 m 
building that was serviced by both cell sites. A total of 
13 AGL measurements locations were considered. 
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C. Wide-Area Prediction Accuracy 
To evaluate the absolute and relative accuracy of 

DED-RL predictions were performed for the two cell 
sites over the whole 20 km2 area which encompassed 
the measurement locations for both cell sites. In the 
simulations, the tile size was ΔA=100m2 and two 
different maximum bounce criteria were used: A) “3 
bounces” where NbMAX=3 with a maximum of 3 
reflections, 1 diffraction and 1 diffuse scattering and B) 
“5 bounces” where NbMAX=5 with maximums of 5 
reflections, 2 diffractions and 1 diffuse scattering. Such 
criteria are considered typical for ray-based prediction 
in dense urban environment. It is worth noting that, due 
to building obstructions and to the relatively short 
distances, terrain diffraction is not as important in urban 
environment as it is in rural-environment propagation, 
where it often represents a dominant propagation 
process. In urban street canyons on hilly areas however, 
where the LoS path is obstructed by terrain, the 
diffracted path can be dominant and multiple 
diffractions on terrain tiles’ edges must be considered in 
the DED-RL algorithm to achieve good results.  

 

 
 
Fig. 12 (a) 2D view of DED-RL Path Loss predictions from 
TX1 (blue triangle) located in central San Francisco;            
(b) Zoomed-in 3D view of predictions in the vicinity of TX1. 
 

Table II. RL Computation Time 

Tx 
DED-RL 3 
Bounces 

DED-RL 5 
Bounces 

Time [s] Time [s] 
1 1584.0 3044.0 
2 1281.0 2345.0 

  
The DED-RL 5-bounce Path Loss (PL) predictions for 

TX1 are shown in Figs. 12(a), (b). Fig. 12(a) depicts a 

2D view of the predictions, while Fig. 12(b) shows a 
zoomed in 3D view of the area around TX1. PL (dB) is 
defined here using the following equation: 
PL(dB)=ERP-PR, where ERP is the Effective Radiated 
Power of the Base Station antenna (see Table I), and PR 
is received power. Note that for directive antennas the 
original rays from the transmitter and the arriving rays 
to the receiver are weighted according to the antenna 
gains when computing the received power. The 
computation times for each Tx are given in Table II. 
The corresponding prediction errors computed versus 
measurements for TX1 and TX2 are shown in Figs. 13 
and 14, and tabulated in Tables III and IV. The 
measurements path loss ranged from 74.8 to 132.0 dB 
with a median of 108.1 dB. 

The simulated power values corresponding to the 
measurement locations shown in Figs. 13 and 14 have 
been extracted from the DED-RL predictions by 
snapping the power values from the nearest tiles to each 
of the measurement points.  

Overall, for both TX1 and TX2, the DED-RL with 5 
bounces has good prediction accuracy. For TX1, mean 
prediction error is -3.3 dB and standard deviation of 
error is 8.6 dB for GL measurements, and mean error is 
0.9 dB and standard deviation is 7.2 dB for AGL 
measurements. There are several areas in which DED-
RL predictions can improve such as vegetation and 
street clutter attenuation and over roof top propagation. 
From Fig. 13, at locations on streets adjacent to TX1, 
signal strength predictions are generally too high. These 
locations were generally line-of-sight or close to line-of-
sight. We expect the over-estimation to be caused by 
vegetation and street clutter that were not accounted for 
in the DED-RL predictions. Another area of 
improvement is over roof top propagation. An example 
of this is the underestimation of the received power for 
locations to the south-east of TX1. We think that the 
block grid configuration change from north/south to 
north-west/south-east causes rays travelling in the street 
canyon to have large losses, so that the dominant rays 
travelled over the roof tops. Though, to predict these 
rays, more diffractions than the maximum limit of 2 in 
our DED-RL predictions are needed.  

The results for DED-RL with 3 bounces are also given 
in Tables III and IV. Comparing results for 5 bounces 
and 3 bounces, the DED-RL computation time is 
approximately half but the error standard deviations 
degrade a little from 8.6 to 8.8 dB. There is also more 
underestimation which is evident from the mean error 
going from -3.3 to -5 dB. This is expected due to the 
lower number of rays that are considered. Overall, the 
biggest impact on performance was not from changing 
the maximum number of reflections from 5 to 3, but 
from decreasing the maximum number of diffractions 
from 2 to 1. If the maximum limit of 2 diffractions was 
instead increased, more over-roof-top rays could exist 
and performance is expected to improve over the 5 
bounce predictions. Unfortunately, diffraction is 
computationally intensive, so computation time will 
exponentially increase. Further work will have to 
address this issue with computationally efficient over-
roof top models. 
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RT was also run for the measurement locations. DED-
RL generally had slightly better performance than RT 
for the same number of bounces.  As opposed to the 
DED-RL simulations, RT simulations have been done 
only for specific measurement locations instead of the 
whole 20 km2 area, and the maximum number of 
bounces has been limited to 3: in fact, such predictions 
on very large areas and with many bounces are not 
feasible with RT. For comparison, RT computation time 
in the TX 2 case was already almost 1 day for the 1143 
GL locations using the 3 bounces setting. 

 
Fig. 13 DED-RL prediction error for TX1 

 
Fig. 14 DED-RL prediction error for TX2 
 

Table III. Ground Level Prediction Error Statistics 

Tx 

DED-RL 3 
Bounces 

DED-RL 5 
Bounces 

Ray-Tracing 
3 Bounces 

Mean 
[dB] 

STD 
[dB] 

Mean 
[dB] 

STD 
[dB] 

Mean 
[dB] 

STD 
[dB] 

1 -5 8.8 -3.3 8.6 -0.02 11.7 
2 -1.6 8 -0.7 7.8 1.0 8.9 

 
Table IV. Above Ground Level Prediction Error Statistics 

TX 

DED-RL 3 
Bounces 

DED-RL 5 
Bounces 

Ray-Tracing 
3 Bounces 

Mean 
[dB] 

STD 
[dB] 

Mean 
[dB] 

STD 
[dB] 

Mean 
[dB] 

STD 
[dB] 

1 0.5 7.3 0.9 7.2 3.0 10.4 
2 -4.7 3.4 -4.5 3.5 4.9 6.0 

 

V. CONCLUSIONS 
A novel Ray Launching algorithm for fast 3D 

prediction in wide urban areas, called Discrete 

Environment-Driven Ray Launching (DED-RL), is 
proposed.  

Using the combination of different techniques, i.e. 
environment discretization, visibility pre-processing and 
GPU parallelization, DED-RL is able to achieve very 
high levels of computational efficiency, up to four orders 
of magnitude compared to a reference ray tracing 
algorithm. Typical computation times for complete 
predictions over all building surfaces in a urban cell site 
range from a few seconds to tens of minutes, depending 
on the size of the urban scenario and the characteristics of 
the Tx site.  

The accuracy level is found to be similar to ray 
tracing, despite some approximations that are intrinsic to 
the discrete approach as compared to the more rigorous 
image-based approach. These approximations can be 
over-compensated by the higher number of bounces and 
combinations of different mechanisms, which could not 
be considered with ray tracing due to the high 
computation times. 

Further studies will be carried out in the future to 
further assess the potential and the prediction accuracy of 
DED-RL. 
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